mirror of git://gcc.gnu.org/git/gcc.git
PR 49010,24518 MOD/MODULO fixes.
gcc/fortran: 2012-05-05 Janne Blomqvist <jb@gcc.gnu.org> PR fortran/49010 PR fortran/24518 * intrinsic.texi (MOD, MODULO): Mention sign and magnitude of result. * simplify.c (gfc_simplify_mod): Use mpfr_fmod. (gfc_simplify_modulo): Likewise, use copysign to fix the result if zero. * trans-intrinsic.c (gfc_conv_intrinsic_mod): Remove fallback as builtin_fmod is always available. For modulo, call copysign to fix the result when signed zeros are enabled. testsuite: 2012-05-05 Janne Blomqvist <jb@gcc.gnu.org> PR fortran/49010 PR fortran/24518 * gfortran.dg/mod_sign0_1.f90: New test. * gfortran.dg/mod_large_1.f90: New test. From-SVN: r187191
This commit is contained in:
parent
68ee9c0807
commit
4ecad771dd
|
@ -1,3 +1,15 @@
|
|||
2012-05-05 Janne Blomqvist <jb@gcc.gnu.org>
|
||||
|
||||
PR fortran/49010
|
||||
PR fortran/24518
|
||||
* intrinsic.texi (MOD, MODULO): Mention sign and magnitude of result.
|
||||
* simplify.c (gfc_simplify_mod): Use mpfr_fmod.
|
||||
(gfc_simplify_modulo): Likewise, use copysign to fix the result if
|
||||
zero.
|
||||
* trans-intrinsic.c (gfc_conv_intrinsic_mod): Remove fallback as
|
||||
builtin_fmod is always available. For modulo, call copysign to fix
|
||||
the result when signed zeros are enabled.
|
||||
|
||||
2012-05-05 Janne Blomqvist <jb@gcc.gnu.org>
|
||||
|
||||
* gfortran.texi (GFORTRAN_TMPDIR): Rename to TMPDIR, explain
|
||||
|
|
|
@ -8991,8 +8991,7 @@ cases, the result is of the same type and kind as @var{ARRAY}.
|
|||
|
||||
@table @asis
|
||||
@item @emph{Description}:
|
||||
@code{MOD(A,P)} computes the remainder of the division of A by P@. It is
|
||||
calculated as @code{A - (INT(A/P) * P)}.
|
||||
@code{MOD(A,P)} computes the remainder of the division of A by P@.
|
||||
|
||||
@item @emph{Standard}:
|
||||
Fortran 77 and later
|
||||
|
@ -9005,14 +9004,16 @@ Elemental function
|
|||
|
||||
@item @emph{Arguments}:
|
||||
@multitable @columnfractions .15 .70
|
||||
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}
|
||||
@item @var{P} @tab Shall be a scalar of the same type as @var{A} and not
|
||||
equal to zero
|
||||
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
|
||||
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}
|
||||
and not equal to zero.
|
||||
@end multitable
|
||||
|
||||
@item @emph{Return value}:
|
||||
The kind of the return value is the result of cross-promoting
|
||||
the kinds of the arguments.
|
||||
The return value is the result of @code{A - (INT(A/P) * P)}. The type
|
||||
and kind of the return value is the same as that of the arguments. The
|
||||
returned value has the same sign as A and a magnitude less than the
|
||||
magnitude of P.
|
||||
|
||||
@item @emph{Example}:
|
||||
@smallexample
|
||||
|
@ -9041,6 +9042,10 @@ end program test_mod
|
|||
@item @code{AMOD(A,P)} @tab @code{REAL(4) A,P} @tab @code{REAL(4)} @tab Fortran 95 and later
|
||||
@item @code{DMOD(A,P)} @tab @code{REAL(8) A,P} @tab @code{REAL(8)} @tab Fortran 95 and later
|
||||
@end multitable
|
||||
|
||||
@item @emph{See also}:
|
||||
@ref{MODULO}
|
||||
|
||||
@end table
|
||||
|
||||
|
||||
|
@ -9066,8 +9071,9 @@ Elemental function
|
|||
|
||||
@item @emph{Arguments}:
|
||||
@multitable @columnfractions .15 .70
|
||||
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}
|
||||
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}
|
||||
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
|
||||
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}.
|
||||
It shall not be zero.
|
||||
@end multitable
|
||||
|
||||
@item @emph{Return value}:
|
||||
|
@ -9080,7 +9086,8 @@ The type and kind of the result are those of the arguments.
|
|||
@item If @var{A} and @var{P} are of type @code{REAL}:
|
||||
@code{MODULO(A,P)} has the value of @code{A - FLOOR (A / P) * P}.
|
||||
@end table
|
||||
In all cases, if @var{P} is zero the result is processor-dependent.
|
||||
The returned value has the same sign as P and a magnitude less than
|
||||
the magnitude of P.
|
||||
|
||||
@item @emph{Example}:
|
||||
@smallexample
|
||||
|
@ -9096,6 +9103,9 @@ program test_modulo
|
|||
end program
|
||||
@end smallexample
|
||||
|
||||
@item @emph{See also}:
|
||||
@ref{MOD}
|
||||
|
||||
@end table
|
||||
|
||||
|
||||
|
|
|
@ -4222,7 +4222,6 @@ gfc_expr *
|
|||
gfc_simplify_mod (gfc_expr *a, gfc_expr *p)
|
||||
{
|
||||
gfc_expr *result;
|
||||
mpfr_t tmp;
|
||||
int kind;
|
||||
|
||||
if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
|
||||
|
@ -4254,12 +4253,8 @@ gfc_simplify_mod (gfc_expr *a, gfc_expr *p)
|
|||
}
|
||||
|
||||
gfc_set_model_kind (kind);
|
||||
mpfr_init (tmp);
|
||||
mpfr_div (tmp, a->value.real, p->value.real, GFC_RND_MODE);
|
||||
mpfr_trunc (tmp, tmp);
|
||||
mpfr_mul (tmp, tmp, p->value.real, GFC_RND_MODE);
|
||||
mpfr_sub (result->value.real, a->value.real, tmp, GFC_RND_MODE);
|
||||
mpfr_clear (tmp);
|
||||
mpfr_fmod (result->value.real, a->value.real, p->value.real,
|
||||
GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -4274,7 +4269,6 @@ gfc_expr *
|
|||
gfc_simplify_modulo (gfc_expr *a, gfc_expr *p)
|
||||
{
|
||||
gfc_expr *result;
|
||||
mpfr_t tmp;
|
||||
int kind;
|
||||
|
||||
if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
|
||||
|
@ -4308,12 +4302,17 @@ gfc_simplify_modulo (gfc_expr *a, gfc_expr *p)
|
|||
}
|
||||
|
||||
gfc_set_model_kind (kind);
|
||||
mpfr_init (tmp);
|
||||
mpfr_div (tmp, a->value.real, p->value.real, GFC_RND_MODE);
|
||||
mpfr_floor (tmp, tmp);
|
||||
mpfr_mul (tmp, tmp, p->value.real, GFC_RND_MODE);
|
||||
mpfr_sub (result->value.real, a->value.real, tmp, GFC_RND_MODE);
|
||||
mpfr_clear (tmp);
|
||||
mpfr_fmod (result->value.real, a->value.real, p->value.real,
|
||||
GFC_RND_MODE);
|
||||
if (mpfr_cmp_ui (result->value.real, 0) != 0)
|
||||
{
|
||||
if (mpfr_signbit (a->value.real) != mpfr_signbit (p->value.real))
|
||||
mpfr_add (result->value.real, result->value.real, p->value.real,
|
||||
GFC_RND_MODE);
|
||||
}
|
||||
else
|
||||
mpfr_copysign (result->value.real, result->value.real,
|
||||
p->value.real, GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
default:
|
||||
|
|
|
@ -1719,21 +1719,24 @@ gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
|
|||
se->expr = fold_build2_loc (input_location, COMPLEX_EXPR, type, real, imag);
|
||||
}
|
||||
|
||||
|
||||
/* Remainder function MOD(A, P) = A - INT(A / P) * P
|
||||
MODULO(A, P) = A - FLOOR (A / P) * P */
|
||||
/* TODO: MOD(x, 0) */
|
||||
MODULO(A, P) = A - FLOOR (A / P) * P
|
||||
|
||||
The obvious algorithms above are numerically instable for large
|
||||
arguments, hence these intrinsics are instead implemented via calls
|
||||
to the fmod family of functions. It is the responsibility of the
|
||||
user to ensure that the second argument is non-zero. */
|
||||
|
||||
static void
|
||||
gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
|
||||
{
|
||||
tree type;
|
||||
tree itype;
|
||||
tree tmp;
|
||||
tree test;
|
||||
tree test2;
|
||||
tree fmod;
|
||||
mpfr_t huge;
|
||||
int n, ikind;
|
||||
tree zero;
|
||||
tree args[2];
|
||||
|
||||
gfc_conv_intrinsic_function_args (se, expr, args, 2);
|
||||
|
@ -1757,16 +1760,15 @@ gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
|
|||
/* Check if we have a builtin fmod. */
|
||||
fmod = gfc_builtin_decl_for_float_kind (BUILT_IN_FMOD, expr->ts.kind);
|
||||
|
||||
/* Use it if it exists. */
|
||||
if (fmod != NULL_TREE)
|
||||
{
|
||||
/* The builtin should always be available. */
|
||||
gcc_assert (fmod != NULL_TREE);
|
||||
|
||||
tmp = build_addr (fmod, current_function_decl);
|
||||
se->expr = build_call_array_loc (input_location,
|
||||
TREE_TYPE (TREE_TYPE (fmod)),
|
||||
tmp, 2, args);
|
||||
if (modulo == 0)
|
||||
return;
|
||||
}
|
||||
|
||||
type = TREE_TYPE (args[0]);
|
||||
|
||||
|
@ -1774,16 +1776,31 @@ gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
|
|||
args[1] = gfc_evaluate_now (args[1], &se->pre);
|
||||
|
||||
/* Definition:
|
||||
modulo = arg - floor (arg/arg2) * arg2, so
|
||||
= test ? fmod (arg, arg2) : fmod (arg, arg2) + arg2,
|
||||
where
|
||||
test = (fmod (arg, arg2) != 0) && ((arg < 0) xor (arg2 < 0))
|
||||
thereby avoiding another division and retaining the accuracy
|
||||
of the builtin function. */
|
||||
if (fmod != NULL_TREE && modulo)
|
||||
modulo = arg - floor (arg/arg2) * arg2
|
||||
|
||||
In order to calculate the result accurately, we use the fmod
|
||||
function as follows.
|
||||
|
||||
res = fmod (arg, arg2);
|
||||
if (res)
|
||||
{
|
||||
tree zero = gfc_build_const (type, integer_zero_node);
|
||||
if ((arg < 0) xor (arg2 < 0))
|
||||
res += arg2;
|
||||
}
|
||||
else
|
||||
res = copysign (0., arg2);
|
||||
|
||||
=> As two nested ternary exprs:
|
||||
|
||||
res = res ? (((arg < 0) xor (arg2 < 0)) ? res + arg2 : res)
|
||||
: copysign (0., arg2);
|
||||
|
||||
*/
|
||||
|
||||
zero = gfc_build_const (type, integer_zero_node);
|
||||
tmp = gfc_evaluate_now (se->expr, &se->pre);
|
||||
if (!flag_signed_zeros)
|
||||
{
|
||||
test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
|
||||
args[0], zero);
|
||||
test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
|
||||
|
@ -1796,50 +1813,35 @@ gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
|
|||
boolean_type_node, test, test2);
|
||||
test = gfc_evaluate_now (test, &se->pre);
|
||||
se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
|
||||
fold_build2_loc (input_location, PLUS_EXPR,
|
||||
type, tmp, args[1]), tmp);
|
||||
return;
|
||||
}
|
||||
|
||||
/* If we do not have a built_in fmod, the calculation is going to
|
||||
have to be done longhand. */
|
||||
tmp = fold_build2_loc (input_location, RDIV_EXPR, type, args[0], args[1]);
|
||||
|
||||
/* Test if the value is too large to handle sensibly. */
|
||||
gfc_set_model_kind (expr->ts.kind);
|
||||
mpfr_init (huge);
|
||||
n = gfc_validate_kind (BT_INTEGER, expr->ts.kind, true);
|
||||
ikind = expr->ts.kind;
|
||||
if (n < 0)
|
||||
{
|
||||
n = gfc_validate_kind (BT_INTEGER, gfc_max_integer_kind, false);
|
||||
ikind = gfc_max_integer_kind;
|
||||
}
|
||||
mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
|
||||
test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
|
||||
test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
|
||||
tmp, test);
|
||||
|
||||
mpfr_neg (huge, huge, GFC_RND_MODE);
|
||||
test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
|
||||
test = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, tmp,
|
||||
test);
|
||||
test2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
|
||||
boolean_type_node, test, test2);
|
||||
|
||||
itype = gfc_get_int_type (ikind);
|
||||
if (modulo)
|
||||
tmp = build_fix_expr (&se->pre, tmp, itype, RND_FLOOR);
|
||||
else
|
||||
tmp = build_fix_expr (&se->pre, tmp, itype, RND_TRUNC);
|
||||
tmp = convert (type, tmp);
|
||||
tmp = fold_build3_loc (input_location, COND_EXPR, type, test2, tmp,
|
||||
args[0]);
|
||||
tmp = fold_build2_loc (input_location, MULT_EXPR, type, tmp, args[1]);
|
||||
se->expr = fold_build2_loc (input_location, MINUS_EXPR, type, args[0],
|
||||
fold_build2_loc (input_location,
|
||||
PLUS_EXPR,
|
||||
type, tmp, args[1]),
|
||||
tmp);
|
||||
mpfr_clear (huge);
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
tree expr1, copysign, cscall;
|
||||
copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN,
|
||||
expr->ts.kind);
|
||||
test = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
|
||||
args[0], zero);
|
||||
test2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
|
||||
args[1], zero);
|
||||
test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR,
|
||||
boolean_type_node, test, test2);
|
||||
expr1 = fold_build3_loc (input_location, COND_EXPR, type, test2,
|
||||
fold_build2_loc (input_location,
|
||||
PLUS_EXPR,
|
||||
type, tmp, args[1]),
|
||||
tmp);
|
||||
test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
|
||||
tmp, zero);
|
||||
cscall = build_call_expr_loc (input_location, copysign, 2, zero,
|
||||
args[1]);
|
||||
se->expr = fold_build3_loc (input_location, COND_EXPR, type, test,
|
||||
expr1, cscall);
|
||||
}
|
||||
return;
|
||||
|
||||
default:
|
||||
gcc_unreachable ();
|
||||
|
|
|
@ -1,3 +1,10 @@
|
|||
2012-05-05 Janne Blomqvist <jb@gcc.gnu.org>
|
||||
|
||||
PR fortran/49010
|
||||
PR fortran/24518
|
||||
* gfortran.dg/mod_sign0_1.f90: New test.
|
||||
* gfortran.dg/mod_large_1.f90: New test.
|
||||
|
||||
2012-05-04 Tobias Burnus <burnus@net-b.de>
|
||||
|
||||
PR fortran/53175
|
||||
|
|
|
@ -0,0 +1,16 @@
|
|||
! { dg-do run }
|
||||
! PR fortran/24518
|
||||
! MOD/MODULO of large arguments.
|
||||
! The naive algorithm goes pear-shaped for large arguments, instead
|
||||
! use fmod.
|
||||
! Here we test only with constant arguments (evaluated with
|
||||
! mpfr_fmod), as we don't want to cause failures on targets with a
|
||||
! crappy libm.
|
||||
program mod_large_1
|
||||
implicit none
|
||||
real :: r1
|
||||
r1 = mod (1e22, 1.7)
|
||||
if (abs(r1 - 0.995928764) > 1e-5) call abort
|
||||
r1 = modulo (1e22, -1.7)
|
||||
if (abs(r1 + 0.704071283) > 1e-5) call abort
|
||||
end program mod_large_1
|
|
@ -0,0 +1,54 @@
|
|||
! { dg-do run }
|
||||
! PR fortran/49010
|
||||
! MOD/MODULO sign of zero.
|
||||
|
||||
! We wish to provide the following guarantees:
|
||||
|
||||
! MOD(A, P): The result has the sign of A and a magnitude less than
|
||||
! that of P.
|
||||
|
||||
! MODULO(A, P): The result has the sign of P and a magnitude less than
|
||||
! that of P.
|
||||
|
||||
! Here we test only with constant arguments (evaluated with
|
||||
! mpfr_fmod), as we don't want to cause failures on targets with a
|
||||
! crappy libm. But, a target where fmod follows C99 Annex F is
|
||||
! fine. Also, targets where GCC inline expands fmod (such as x86(-64))
|
||||
! are also fine.
|
||||
program mod_sign0_1
|
||||
implicit none
|
||||
real :: r, t
|
||||
|
||||
r = mod (4., 2.)
|
||||
t = sign (1., r)
|
||||
if (t < 0.) call abort
|
||||
|
||||
r = modulo (4., 2.)
|
||||
t = sign (1., r)
|
||||
if (t < 0.) call abort
|
||||
|
||||
r = mod (-4., 2.)
|
||||
t = sign (1., r)
|
||||
if (t > 0.) call abort
|
||||
|
||||
r = modulo (-4., 2.)
|
||||
t = sign (1., r)
|
||||
if (t < 0.) call abort
|
||||
|
||||
r = mod (4., -2.)
|
||||
t = sign (1., r)
|
||||
if (t < 0.) call abort
|
||||
|
||||
r = modulo (4., -2.)
|
||||
t = sign (1., r)
|
||||
if (t > 0.) call abort
|
||||
|
||||
r = mod (-4., -2.)
|
||||
t = sign (1., r)
|
||||
if (t > 0.) call abort
|
||||
|
||||
r = modulo (-4., -2.)
|
||||
t = sign (1., r)
|
||||
if (t > 0.) call abort
|
||||
|
||||
end program mod_sign0_1
|
Loading…
Reference in New Issue