mirror of git://gcc.gnu.org/git/gcc.git
[multiple changes]
2016-11-15 Jerry DeLisle <jvdelisle@gcc.gnu.org> Thomas Koenig <tkoenig@gcc.gnu.org> PR libgfortran/51119 * Makefile.am: Add new optimization flags matmul. * Makefile.in: Regenerate. * m4/matmul.m4: For the case of all strides = 1, implement a fast blocked matrix multiply. Fix some whitespace. * generated/matmul_c10.c: Regenerate. * generated/matmul_c16.c: Regenerate. * generated/matmul_c4.c: Regenerate. * generated/matmul_c8.c: Regenerate. * generated/matmul_i1.c: Regenerate. * generated/matmul_i16.c: Regenerate. * generated/matmul_i2.c: Regenerate. * generated/matmul_i4.c: Regenerate. * generated/matmul_i8.c: Regenerate. * generated/matmul_r10.c: Regenerate. * generated/matmul_r16.c: Regenerate. * generated/matmul_r4.c: Regenerate. * generated/matmul_r8.c: Regenerate. 2016-11-15 Thomas Koenig <tkoenig@gcc.gnu.org> PR libgfortran/51119 * gfortran.dg/matmul_12.f90: New test case. From-SVN: r242462
This commit is contained in:
parent
fd0477ca84
commit
5d70ab07b6
|
|
@ -1,3 +1,8 @@
|
||||||
|
2016-11-15 Thomas Koenig <tkoenig@gcc.gnu.org>
|
||||||
|
|
||||||
|
PR libgfortran/51119
|
||||||
|
* gfortran.dg/matmul_12.f90: New test case.
|
||||||
|
|
||||||
2016-11-15 Uros Bizjak <ubizjak@gmail.com>
|
2016-11-15 Uros Bizjak <ubizjak@gmail.com>
|
||||||
|
|
||||||
* gcc.target/i386/funcspec-56.inc: New file.
|
* gcc.target/i386/funcspec-56.inc: New file.
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,22 @@
|
||||||
|
! { dg-do run }
|
||||||
|
program main
|
||||||
|
integer, parameter :: sz=5, su=3
|
||||||
|
integer, parameter :: l=2
|
||||||
|
integer, parameter :: u=l-1+su
|
||||||
|
integer(kind=4), dimension(sz,sz) :: r,a,b
|
||||||
|
integer :: i,j
|
||||||
|
do i=1,4
|
||||||
|
do j=1,4
|
||||||
|
a(i,j) = i*10+j
|
||||||
|
b(i,j) = 100+i*10+j
|
||||||
|
end do
|
||||||
|
end do
|
||||||
|
r = -1
|
||||||
|
b(l:u,l:u) = reshape([(i,i=1,su*su)],[su,su]);
|
||||||
|
a(l:u,l:u) = reshape([(i,i=1,su*su)],[su,su]);
|
||||||
|
|
||||||
|
r(1:su,1:su) = matmul(a(l:u,l:u),b(l:u,l:u))
|
||||||
|
if (any(reshape(r,[sz*sz]) /= [30, 36, 42, -1, -1, 66, 81, 96, -1, -1,&
|
||||||
|
& 102, 126, 150, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])) &
|
||||||
|
call abort
|
||||||
|
end program main
|
||||||
|
|
@ -1,3 +1,25 @@
|
||||||
|
2016-11-15 Jerry DeLisle <jvdelisle@gcc.gnu.org>
|
||||||
|
Thomas Koenig <tkoenig@gcc.gnu.org>
|
||||||
|
|
||||||
|
PR libgfortran/51119
|
||||||
|
* Makefile.am: Add new optimization flags matmul.
|
||||||
|
* Makefile.in: Regenerate.
|
||||||
|
* m4/matmul.m4: For the case of all strides = 1, implement a
|
||||||
|
fast blocked matrix multiply. Fix some whitespace.
|
||||||
|
* generated/matmul_c10.c: Regenerate.
|
||||||
|
* generated/matmul_c16.c: Regenerate.
|
||||||
|
* generated/matmul_c4.c: Regenerate.
|
||||||
|
* generated/matmul_c8.c: Regenerate.
|
||||||
|
* generated/matmul_i1.c: Regenerate.
|
||||||
|
* generated/matmul_i16.c: Regenerate.
|
||||||
|
* generated/matmul_i2.c: Regenerate.
|
||||||
|
* generated/matmul_i4.c: Regenerate.
|
||||||
|
* generated/matmul_i8.c: Regenerate.
|
||||||
|
* generated/matmul_r10.c: Regenerate.
|
||||||
|
* generated/matmul_r16.c: Regenerate.
|
||||||
|
* generated/matmul_r4.c: Regenerate.
|
||||||
|
* generated/matmul_r8.c: Regenerate.
|
||||||
|
|
||||||
2016-11-15 Matthias Klose <doko@ubuntu.com>
|
2016-11-15 Matthias Klose <doko@ubuntu.com>
|
||||||
|
|
||||||
* configure: Regenerate.
|
* configure: Regenerate.
|
||||||
|
|
|
||||||
|
|
@ -850,7 +850,7 @@ intrinsics/dprod_r8.f90 \
|
||||||
intrinsics/f2c_specifics.F90
|
intrinsics/f2c_specifics.F90
|
||||||
|
|
||||||
# Turn on vectorization and loop unrolling for matmul.
|
# Turn on vectorization and loop unrolling for matmul.
|
||||||
$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops
|
$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4
|
||||||
# Logical matmul doesn't vectorize.
|
# Logical matmul doesn't vectorize.
|
||||||
$(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
|
$(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -5956,7 +5956,7 @@ uninstall-am: uninstall-cafexeclibLTLIBRARIES \
|
||||||
@LIBGFOR_USE_SYMVER_SUN_TRUE@@LIBGFOR_USE_SYMVER_TRUE@ > $@ || (rm -f $@ ; exit 1)
|
@LIBGFOR_USE_SYMVER_SUN_TRUE@@LIBGFOR_USE_SYMVER_TRUE@ > $@ || (rm -f $@ ; exit 1)
|
||||||
|
|
||||||
# Turn on vectorization and loop unrolling for matmul.
|
# Turn on vectorization and loop unrolling for matmul.
|
||||||
$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops
|
$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4
|
||||||
# Logical matmul doesn't vectorize.
|
# Logical matmul doesn't vectorize.
|
||||||
$(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
|
$(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_COMPLEX_10)
|
#if defined (HAVE_GFC_COMPLEX_10)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_COMPLEX_10 one = 1, zero = 0;
|
const GFC_COMPLEX_10 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_COMPLEX_10 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_COMPLEX_10 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_COMPLEX_10 * restrict abase_n;
|
|
||||||
GFC_COMPLEX_10 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_COMPLEX_10) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_COMPLEX_10)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_COMPLEX_10 *a, *b;
|
||||||
|
GFC_COMPLEX_10 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_COMPLEX_10 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_COMPLEX_16)
|
#if defined (HAVE_GFC_COMPLEX_16)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_COMPLEX_16 one = 1, zero = 0;
|
const GFC_COMPLEX_16 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_COMPLEX_16 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_COMPLEX_16 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_COMPLEX_16 * restrict abase_n;
|
|
||||||
GFC_COMPLEX_16 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_COMPLEX_16) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_COMPLEX_16)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_COMPLEX_16 *a, *b;
|
||||||
|
GFC_COMPLEX_16 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_COMPLEX_16 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_COMPLEX_4)
|
#if defined (HAVE_GFC_COMPLEX_4)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_COMPLEX_4 one = 1, zero = 0;
|
const GFC_COMPLEX_4 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_COMPLEX_4 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_COMPLEX_4 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_COMPLEX_4 * restrict abase_n;
|
|
||||||
GFC_COMPLEX_4 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_COMPLEX_4)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_COMPLEX_4 *a, *b;
|
||||||
|
GFC_COMPLEX_4 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_COMPLEX_4 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_COMPLEX_8)
|
#if defined (HAVE_GFC_COMPLEX_8)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_COMPLEX_8 one = 1, zero = 0;
|
const GFC_COMPLEX_8 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_COMPLEX_8 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_COMPLEX_8 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_COMPLEX_8 * restrict abase_n;
|
|
||||||
GFC_COMPLEX_8 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_COMPLEX_8) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_COMPLEX_8)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_COMPLEX_8 *a, *b;
|
||||||
|
GFC_COMPLEX_8 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_COMPLEX_8 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_INTEGER_1)
|
#if defined (HAVE_GFC_INTEGER_1)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_INTEGER_1 one = 1, zero = 0;
|
const GFC_INTEGER_1 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_INTEGER_1 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_INTEGER_1 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_INTEGER_1 * restrict abase_n;
|
|
||||||
GFC_INTEGER_1 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_INTEGER_1) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_INTEGER_1)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_INTEGER_1 *a, *b;
|
||||||
|
GFC_INTEGER_1 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_INTEGER_1 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_INTEGER_1)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_INTEGER_16)
|
#if defined (HAVE_GFC_INTEGER_16)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_INTEGER_16 one = 1, zero = 0;
|
const GFC_INTEGER_16 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_INTEGER_16 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_INTEGER_16 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_INTEGER_16 * restrict abase_n;
|
|
||||||
GFC_INTEGER_16 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_INTEGER_16) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_INTEGER_16)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_INTEGER_16 *a, *b;
|
||||||
|
GFC_INTEGER_16 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_INTEGER_16 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_INTEGER_16)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_INTEGER_2)
|
#if defined (HAVE_GFC_INTEGER_2)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_INTEGER_2 one = 1, zero = 0;
|
const GFC_INTEGER_2 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_INTEGER_2 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_INTEGER_2 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_INTEGER_2 * restrict abase_n;
|
|
||||||
GFC_INTEGER_2 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_INTEGER_2) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_INTEGER_2)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_INTEGER_2 *a, *b;
|
||||||
|
GFC_INTEGER_2 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_INTEGER_2 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_INTEGER_2)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_INTEGER_4)
|
#if defined (HAVE_GFC_INTEGER_4)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_INTEGER_4 one = 1, zero = 0;
|
const GFC_INTEGER_4 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_INTEGER_4 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_INTEGER_4 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_INTEGER_4 * restrict abase_n;
|
|
||||||
GFC_INTEGER_4 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_INTEGER_4) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_INTEGER_4)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_INTEGER_4 *a, *b;
|
||||||
|
GFC_INTEGER_4 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_INTEGER_4 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_INTEGER_4)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_INTEGER_8)
|
#if defined (HAVE_GFC_INTEGER_8)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_INTEGER_8 one = 1, zero = 0;
|
const GFC_INTEGER_8 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_INTEGER_8 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_INTEGER_8 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_INTEGER_8 * restrict abase_n;
|
|
||||||
GFC_INTEGER_8 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_INTEGER_8) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_INTEGER_8)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_INTEGER_8 *a, *b;
|
||||||
|
GFC_INTEGER_8 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_INTEGER_8 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_INTEGER_8)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_REAL_10)
|
#if defined (HAVE_GFC_REAL_10)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_REAL_10 one = 1, zero = 0;
|
const GFC_REAL_10 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_REAL_10 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_REAL_10 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_REAL_10 * restrict abase_n;
|
|
||||||
GFC_REAL_10 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_REAL_10) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_REAL_10)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_REAL_10 *a, *b;
|
||||||
|
GFC_REAL_10 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_REAL_10 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_REAL_10)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_REAL_16)
|
#if defined (HAVE_GFC_REAL_16)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_REAL_16 one = 1, zero = 0;
|
const GFC_REAL_16 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_REAL_16 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_REAL_16 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_REAL_16 * restrict abase_n;
|
|
||||||
GFC_REAL_16 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_REAL_16) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_REAL_16)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_REAL_16 *a, *b;
|
||||||
|
GFC_REAL_16 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_REAL_16 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_REAL_16)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_REAL_4)
|
#if defined (HAVE_GFC_REAL_4)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_REAL_4 one = 1, zero = 0;
|
const GFC_REAL_4 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_REAL_4 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_REAL_4 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_REAL_4 * restrict abase_n;
|
|
||||||
GFC_REAL_4 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_REAL_4) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_REAL_4)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_REAL_4 *a, *b;
|
||||||
|
GFC_REAL_4 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_REAL_4 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_REAL_4)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
#if defined (HAVE_GFC_REAL_8)
|
#if defined (HAVE_GFC_REAL_8)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we'll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -99,7 +99,7 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -127,47 +127,47 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||||
|
|
@ -230,61 +230,294 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we're performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const GFC_REAL_8 one = 1, zero = 0;
|
const GFC_REAL_8 one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const GFC_REAL_8 * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
GFC_REAL_8 * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const GFC_REAL_8 * restrict abase_n;
|
|
||||||
GFC_REAL_8 bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = (GFC_REAL_8)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const GFC_REAL_8 *a, *b;
|
||||||
|
GFC_REAL_8 *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
GFC_REAL_8 t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = (GFC_REAL_8)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -334,7 +567,9 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -372,5 +607,4 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
|
|
@ -33,7 +33,7 @@ include(iparm.m4)dnl
|
||||||
`#if defined (HAVE_'rtype_name`)
|
`#if defined (HAVE_'rtype_name`)
|
||||||
|
|
||||||
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
||||||
passed to us by the front-end, in which case we''`ll call it for large
|
passed to us by the front-end, in which case we call it for large
|
||||||
matrices. */
|
matrices. */
|
||||||
|
|
||||||
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
||||||
|
|
@ -100,7 +100,7 @@ matmul_'rtype_code` ('rtype` * const restrict retarray,
|
||||||
|
|
||||||
o One-dimensional argument B is implicitly treated as a column matrix
|
o One-dimensional argument B is implicitly treated as a column matrix
|
||||||
dimensioned [count, 1], so ycount=1.
|
dimensioned [count, 1], so ycount=1.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (retarray->base_addr == NULL)
|
if (retarray->base_addr == NULL)
|
||||||
{
|
{
|
||||||
|
|
@ -128,47 +128,47 @@ matmul_'rtype_code` ('rtype` * const restrict retarray,
|
||||||
= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
|
= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
|
||||||
retarray->offset = 0;
|
retarray->offset = 0;
|
||||||
}
|
}
|
||||||
else if (unlikely (compile_options.bounds_check))
|
else if (unlikely (compile_options.bounds_check))
|
||||||
{
|
{
|
||||||
index_type ret_extent, arg_extent;
|
index_type ret_extent, arg_extent;
|
||||||
|
|
||||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic: is %ld, should be %ld",
|
" MATMUL intrinsic: is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 1:"
|
" MATMUL intrinsic for dimension 1:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
|
|
||||||
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
||||||
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
||||||
if (arg_extent != ret_extent)
|
if (arg_extent != ret_extent)
|
||||||
runtime_error ("Incorrect extent in return array in"
|
runtime_error ("Incorrect extent in return array in"
|
||||||
" MATMUL intrinsic for dimension 2:"
|
" MATMUL intrinsic for dimension 2:"
|
||||||
" is %ld, should be %ld",
|
" is %ld, should be %ld",
|
||||||
(long int) ret_extent, (long int) arg_extent);
|
(long int) ret_extent, (long int) arg_extent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
'
|
'
|
||||||
sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||||
`
|
`
|
||||||
|
|
@ -232,61 +232,294 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||||
bbase = b->base_addr;
|
bbase = b->base_addr;
|
||||||
dest = retarray->base_addr;
|
dest = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Now that everything is set up, we perform the multiplication
|
||||||
/* Now that everything is set up, we''`re performing the multiplication
|
|
||||||
itself. */
|
itself. */
|
||||||
|
|
||||||
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
||||||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||||
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||||
|
|
||||||
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
||||||
&& (bxstride == 1 || bystride == 1)
|
&& (bxstride == 1 || bystride == 1)
|
||||||
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
||||||
> POW3(blas_limit)))
|
> POW3(blas_limit)))
|
||||||
{
|
{
|
||||||
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
||||||
const 'rtype_name` one = 1, zero = 0;
|
const 'rtype_name` one = 1, zero = 0;
|
||||||
const int lda = (axstride == 1) ? aystride : axstride,
|
const int lda = (axstride == 1) ? aystride : axstride,
|
||||||
ldb = (bxstride == 1) ? bystride : bxstride;
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
||||||
|
|
||||||
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
||||||
{
|
{
|
||||||
assert (gemm != NULL);
|
assert (gemm != NULL);
|
||||||
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
|
||||||
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
||||||
return;
|
&ldc, 1, 1);
|
||||||
}
|
return;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
const 'rtype_name` * restrict bbase_y;
|
/* This block of code implements a tuned matmul, derived from
|
||||||
'rtype_name` * restrict dest_y;
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
||||||
const 'rtype_name` * restrict abase_n;
|
|
||||||
'rtype_name` bbase_yn;
|
|
||||||
|
|
||||||
if (rystride == xcount)
|
Bo Kagstrom and Per Ling
|
||||||
memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount));
|
Department of Computing Science
|
||||||
else
|
Umea University
|
||||||
{
|
S-901 87 Umea, Sweden
|
||||||
for (y = 0; y < ycount; y++)
|
|
||||||
for (x = 0; x < xcount; x++)
|
|
||||||
dest[x + y*rystride] = ('rtype_name`)0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (y = 0; y < ycount; y++)
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
||||||
|
|
||||||
|
const 'rtype_name` *a, *b;
|
||||||
|
'rtype_name` *c;
|
||||||
|
const index_type m = xcount, n = ycount, k = count;
|
||||||
|
|
||||||
|
/* System generated locals */
|
||||||
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
||||||
|
i1, i2, i3, i4, i5, i6;
|
||||||
|
|
||||||
|
/* Local variables */
|
||||||
|
'rtype_name` t1[65536], /* was [256][256] */
|
||||||
|
f11, f12, f21, f22, f31, f32, f41, f42,
|
||||||
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
||||||
|
index_type i, j, l, ii, jj, ll;
|
||||||
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
||||||
|
|
||||||
|
a = abase;
|
||||||
|
b = bbase;
|
||||||
|
c = retarray->base_addr;
|
||||||
|
|
||||||
|
/* Parameter adjustments */
|
||||||
|
c_dim1 = rystride;
|
||||||
|
c_offset = 1 + c_dim1;
|
||||||
|
c -= c_offset;
|
||||||
|
a_dim1 = aystride;
|
||||||
|
a_offset = 1 + a_dim1;
|
||||||
|
a -= a_offset;
|
||||||
|
b_dim1 = bystride;
|
||||||
|
b_offset = 1 + b_dim1;
|
||||||
|
b -= b_offset;
|
||||||
|
|
||||||
|
/* Early exit if possible */
|
||||||
|
if (m == 0 || n == 0 || k == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Empty c first. */
|
||||||
|
for (j=1; j<=n; j++)
|
||||||
|
for (i=1; i<=m; i++)
|
||||||
|
c[i + j * c_dim1] = ('rtype_name`)0;
|
||||||
|
|
||||||
|
/* Start turning the crank. */
|
||||||
|
i1 = n;
|
||||||
|
for (jj = 1; jj <= i1; jj += 512)
|
||||||
{
|
{
|
||||||
bbase_y = bbase + y*bystride;
|
/* Computing MIN */
|
||||||
dest_y = dest + y*rystride;
|
i2 = 512;
|
||||||
for (n = 0; n < count; n++)
|
i3 = n - jj + 1;
|
||||||
|
jsec = min(i2,i3);
|
||||||
|
ujsec = jsec - jsec % 4;
|
||||||
|
i2 = k;
|
||||||
|
for (ll = 1; ll <= i2; ll += 256)
|
||||||
{
|
{
|
||||||
abase_n = abase + n*aystride;
|
/* Computing MIN */
|
||||||
bbase_yn = bbase_y[n];
|
i3 = 256;
|
||||||
for (x = 0; x < xcount; x++)
|
i4 = k - ll + 1;
|
||||||
|
lsec = min(i3,i4);
|
||||||
|
ulsec = lsec - lsec % 2;
|
||||||
|
|
||||||
|
i3 = m;
|
||||||
|
for (ii = 1; ii <= i3; ii += 256)
|
||||||
{
|
{
|
||||||
dest_y[x] += abase_n[x] * bbase_yn;
|
/* Computing MIN */
|
||||||
|
i4 = 256;
|
||||||
|
i5 = m - ii + 1;
|
||||||
|
isec = min(i4,i5);
|
||||||
|
uisec = isec - isec % 2;
|
||||||
|
i4 = ll + ulsec - 1;
|
||||||
|
for (l = ll; l <= i4; l += 2)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 2)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (l + 1) * a_dim1];
|
||||||
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
||||||
|
a[i + 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + l * a_dim1];
|
||||||
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
||||||
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ulsec < lsec)
|
||||||
|
{
|
||||||
|
i4 = ii + isec - 1;
|
||||||
|
for (i = ii; i<= i4; ++i)
|
||||||
|
{
|
||||||
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
||||||
|
a[i + (ll + lsec - 1) * a_dim1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uisec = isec - isec % 4;
|
||||||
|
i4 = jj + ujsec - 1;
|
||||||
|
for (j = jj; j <= i4; j += 4)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
||||||
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
||||||
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
||||||
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
||||||
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
||||||
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + j * b_dim1];
|
||||||
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 1) * b_dim1];
|
||||||
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 2) * b_dim1];
|
||||||
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
||||||
|
* b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
||||||
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
||||||
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
||||||
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
||||||
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
||||||
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
||||||
|
}
|
||||||
|
if (uisec < isec)
|
||||||
|
{
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f12 = c[i + (j + 1) * c_dim1];
|
||||||
|
f13 = c[i + (j + 2) * c_dim1];
|
||||||
|
f14 = c[i + (j + 3) * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 1) * b_dim1];
|
||||||
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 2) * b_dim1];
|
||||||
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + (j + 3) * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + (j + 1) * c_dim1] = f12;
|
||||||
|
c[i + (j + 2) * c_dim1] = f13;
|
||||||
|
c[i + (j + 3) * c_dim1] = f14;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ujsec < jsec)
|
||||||
|
{
|
||||||
|
i4 = jj + jsec - 1;
|
||||||
|
for (j = jj + ujsec; j <= i4; ++j)
|
||||||
|
{
|
||||||
|
i5 = ii + uisec - 1;
|
||||||
|
for (i = ii; i <= i5; i += 4)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
f21 = c[i + 1 + j * c_dim1];
|
||||||
|
f31 = c[i + 2 + j * c_dim1];
|
||||||
|
f41 = c[i + 3 + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
c[i + 1 + j * c_dim1] = f21;
|
||||||
|
c[i + 2 + j * c_dim1] = f31;
|
||||||
|
c[i + 3 + j * c_dim1] = f41;
|
||||||
|
}
|
||||||
|
i5 = ii + isec - 1;
|
||||||
|
for (i = ii + uisec; i <= i5; ++i)
|
||||||
|
{
|
||||||
|
f11 = c[i + j * c_dim1];
|
||||||
|
i6 = ll + lsec - 1;
|
||||||
|
for (l = ll; l <= i6; ++l)
|
||||||
|
{
|
||||||
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
||||||
|
257] * b[l + j * b_dim1];
|
||||||
|
}
|
||||||
|
c[i + j * c_dim1] = f11;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -336,7 +569,9 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||||
for (n = 0; n < count; n++)
|
for (n = 0; n < count; n++)
|
||||||
for (x = 0; x < xcount; x++)
|
for (x = 0; x < xcount; x++)
|
||||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
dest[x*rxstride + y*rystride] +=
|
||||||
|
abase[x*axstride + n*aystride] *
|
||||||
|
bbase[n*bxstride + y*bystride];
|
||||||
}
|
}
|
||||||
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||||
{
|
{
|
||||||
|
|
@ -373,6 +608,5 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}'
|
||||||
|
#endif
|
||||||
#endif'
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue