mirror of git://gcc.gnu.org/git/gcc.git
PR libstdc++/83140 - assoc_legendre returns negated value when m is odd
2018-05-10 Edward Smith-Rowland <3dw4rd@verizon.net> PR libstdc++/83140 - assoc_legendre returns negated value when m is odd * include/tr1/legendre_function.tcc (__assoc_legendre_p): Add __phase argument defaulted to +1. Doxy comments on same. * testsuite/special_functions/02_assoc_legendre/ check_assoc_legendre.cc: Regen. * testsuite/tr1/5_numerical_facilities/special_functions/ 02_assoc_legendre/check_tr1_assoc_legendre.cc: Regen. From-SVN: r260115
This commit is contained in:
parent
daf6948991
commit
88bf4c34e3
|
|
@ -1,3 +1,13 @@
|
||||||
|
2018-05-10 Edward Smith-Rowland <3dw4rd@verizon.net>
|
||||||
|
|
||||||
|
PR libstdc++/83140 - assoc_legendre returns negated value when m is odd
|
||||||
|
* include/tr1/legendre_function.tcc (__assoc_legendre_p): Add __phase
|
||||||
|
argument defaulted to +1. Doxy comments on same.
|
||||||
|
* testsuite/special_functions/02_assoc_legendre/
|
||||||
|
check_assoc_legendre.cc: Regen.
|
||||||
|
* testsuite/tr1/5_numerical_facilities/special_functions/
|
||||||
|
02_assoc_legendre/check_tr1_assoc_legendre.cc: Regen.
|
||||||
|
|
||||||
2018-05-10 Jonathan Wakely <jwakely@redhat.com>
|
2018-05-10 Jonathan Wakely <jwakely@redhat.com>
|
||||||
|
|
||||||
PR libstdc++/85729
|
PR libstdc++/85729
|
||||||
|
|
|
||||||
|
|
@ -65,7 +65,7 @@ namespace tr1
|
||||||
namespace __detail
|
namespace __detail
|
||||||
{
|
{
|
||||||
/**
|
/**
|
||||||
* @brief Return the Legendre polynomial by recursion on order
|
* @brief Return the Legendre polynomial by recursion on degree
|
||||||
* @f$ l @f$.
|
* @f$ l @f$.
|
||||||
*
|
*
|
||||||
* The Legendre function of @f$ l @f$ and @f$ x @f$,
|
* The Legendre function of @f$ l @f$ and @f$ x @f$,
|
||||||
|
|
@ -74,7 +74,7 @@ namespace tr1
|
||||||
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
||||||
* @f]
|
* @f]
|
||||||
*
|
*
|
||||||
* @param l The order of the Legendre polynomial. @f$l >= 0@f$.
|
* @param l The degree of the Legendre polynomial. @f$l >= 0@f$.
|
||||||
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
||||||
*/
|
*/
|
||||||
template<typename _Tp>
|
template<typename _Tp>
|
||||||
|
|
@ -127,16 +127,19 @@ namespace tr1
|
||||||
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
||||||
* @f]
|
* @f]
|
||||||
*
|
*
|
||||||
* @param l The order of the associated Legendre function.
|
* @param l The degree of the associated Legendre function.
|
||||||
* @f$ l >= 0 @f$.
|
* @f$ l >= 0 @f$.
|
||||||
* @param m The order of the associated Legendre function.
|
* @param m The order of the associated Legendre function.
|
||||||
* @f$ m <= l @f$.
|
* @f$ m <= l @f$.
|
||||||
* @param x The argument of the associated Legendre function.
|
* @param x The argument of the associated Legendre function.
|
||||||
* @f$ |x| <= 1 @f$.
|
* @f$ |x| <= 1 @f$.
|
||||||
|
* @param phase The phase of the associated Legendre function.
|
||||||
|
* Use -1 for the Condon-Shortley phase convention.
|
||||||
*/
|
*/
|
||||||
template<typename _Tp>
|
template<typename _Tp>
|
||||||
_Tp
|
_Tp
|
||||||
__assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
|
__assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,
|
||||||
|
_Tp __phase = _Tp(+1))
|
||||||
{
|
{
|
||||||
|
|
||||||
if (__x < _Tp(-1) || __x > _Tp(+1))
|
if (__x < _Tp(-1) || __x > _Tp(+1))
|
||||||
|
|
@ -160,7 +163,7 @@ namespace tr1
|
||||||
_Tp __fact = _Tp(1);
|
_Tp __fact = _Tp(1);
|
||||||
for (unsigned int __i = 1; __i <= __m; ++__i)
|
for (unsigned int __i = 1; __i <= __m; ++__i)
|
||||||
{
|
{
|
||||||
__p_mm *= -__fact * __root;
|
__p_mm *= __phase * __fact * __root;
|
||||||
__fact += _Tp(2);
|
__fact += _Tp(2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -205,8 +208,10 @@ namespace tr1
|
||||||
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
||||||
* and so this function is stable for larger differences of @f$ l @f$
|
* and so this function is stable for larger differences of @f$ l @f$
|
||||||
* and @f$ m @f$.
|
* and @f$ m @f$.
|
||||||
|
* @note Unlike the case for __assoc_legendre_p the Condon-Shortley
|
||||||
|
* phase factor @f$ (-1)^m @f$ is present here.
|
||||||
*
|
*
|
||||||
* @param l The order of the spherical associated Legendre function.
|
* @param l The degree of the spherical associated Legendre function.
|
||||||
* @f$ l >= 0 @f$.
|
* @f$ l >= 0 @f$.
|
||||||
* @param m The order of the spherical associated Legendre function.
|
* @param m The order of the spherical associated Legendre function.
|
||||||
* @f$ m <= l @f$.
|
* @f$ m <= l @f$.
|
||||||
|
|
@ -265,19 +270,15 @@ namespace tr1
|
||||||
const _Tp __lnpre_val =
|
const _Tp __lnpre_val =
|
||||||
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
||||||
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
||||||
_Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
||||||
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
||||||
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
||||||
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
||||||
|
|
||||||
if (__l == __m)
|
if (__l == __m)
|
||||||
{
|
|
||||||
return __y_mm;
|
return __y_mm;
|
||||||
}
|
|
||||||
else if (__l == __m + 1)
|
else if (__l == __m + 1)
|
||||||
{
|
|
||||||
return __y_mp1m;
|
return __y_mp1m;
|
||||||
}
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
_Tp __y_lm = _Tp(0);
|
_Tp __y_lm = _Tp(0);
|
||||||
|
|
|
||||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue