a-numaux-vms.ads, [...]: New files.

2011-12-15  Arnaud Charlet  <charlet@adacore.com>

        * a-numaux-vms.ads, s-asthan-vms-ia64.adb, s-auxdec-vms-ia64.adb,       
        s-memory-vms_64.adb, s-memory-vms_64.ads, s-osinte-vms-ia64.adb,
        s-osinte-vms-ia64.ads, s-tasdeb-vms.adb: New files.

From-SVN: r182374
This commit is contained in:
Arnaud Charlet 2011-12-15 15:28:47 +00:00 committed by Arnaud Charlet
parent 0c5c7b003e
commit 90376fadb8
9 changed files with 4521 additions and 0 deletions

View File

@ -1,3 +1,9 @@
2011-12-15 Arnaud Charlet <charlet@adacore.com>
* a-numaux-vms.ads, s-asthan-vms-ia64.adb, s-auxdec-vms-ia64.adb,
s-memory-vms_64.adb, s-memory-vms_64.ads, s-osinte-vms-ia64.adb,
s-osinte-vms-ia64.ads, s-tasdeb-vms.adb: New files.
2011-12-15 Vincent Pucci <pucci@adacore.com>
* aspects.adb, aspects.ads Aspect_Dimension and

104
gcc/ada/a-numaux-vms.ads Normal file
View File

@ -0,0 +1,104 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- S p e c --
-- (VMS Version) --
-- --
-- Copyright (C) 2003-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library, and is thus quite portable, although it may
-- not necessarily meet the requirements for accuracy in the numerics annex.
-- This is the VMS version
package Ada.Numerics.Aux is
pragma Pure;
type Double is digits 15;
pragma Float_Representation (IEEE_Float, Double);
-- Type Double is the type used to call the C routines. Note that this
-- is IEEE format even when running on VMS with VAX_Native representation
-- since we use the IEEE version of the C library with VMS.
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure!
function Sin (X : Double) return Double;
pragma Import (C, Sin, "MATH$SIN_T");
pragma Pure_Function (Sin);
function Cos (X : Double) return Double;
pragma Import (C, Cos, "MATH$COS_T");
pragma Pure_Function (Cos);
function Tan (X : Double) return Double;
pragma Import (C, Tan, "MATH$TAN_T");
pragma Pure_Function (Tan);
function Exp (X : Double) return Double;
pragma Import (C, Exp, "MATH$EXP_T");
pragma Pure_Function (Exp);
function Sqrt (X : Double) return Double;
pragma Import (C, Sqrt, "MATH$SQRT_T");
pragma Pure_Function (Sqrt);
function Log (X : Double) return Double;
pragma Import (C, Log, "DECC$TLOG_2");
pragma Pure_Function (Log);
function Acos (X : Double) return Double;
pragma Import (C, Acos, "MATH$ACOS_T");
pragma Pure_Function (Acos);
function Asin (X : Double) return Double;
pragma Import (C, Asin, "MATH$ASIN_T");
pragma Pure_Function (Asin);
function Atan (X : Double) return Double;
pragma Import (C, Atan, "MATH$ATAN_T");
pragma Pure_Function (Atan);
function Sinh (X : Double) return Double;
pragma Import (C, Sinh, "MATH$SINH_T");
pragma Pure_Function (Sinh);
function Cosh (X : Double) return Double;
pragma Import (C, Cosh, "MATH$COSH_T");
pragma Pure_Function (Cosh);
function Tanh (X : Double) return Double;
pragma Import (C, Tanh, "MATH$TANH_T");
pragma Pure_Function (Tanh);
function Pow (X, Y : Double) return Double;
pragma Import (C, Pow, "DECC$TPOW_2");
pragma Pure_Function (Pow);
end Ada.Numerics.Aux;

View File

@ -0,0 +1,608 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . A S T _ H A N D L I N G --
-- --
-- B o d y --
-- --
-- Copyright (C) 1996-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This is the OpenVMS/IA64 version
with System; use System;
with System.IO;
with System.Machine_Code;
with System.Parameters;
with System.Tasking;
with System.Tasking.Rendezvous;
with System.Tasking.Initialization;
with System.Tasking.Utilities;
with System.Task_Primitives;
with System.Task_Primitives.Operations;
with System.Task_Primitives.Operations.DEC;
with Ada.Finalization;
with Ada.Task_Attributes;
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Unchecked_Conversion;
with Ada.Unchecked_Deallocation;
package body System.AST_Handling is
package ATID renames Ada.Task_Identification;
package SP renames System.Parameters;
package ST renames System.Tasking;
package STR renames System.Tasking.Rendezvous;
package STI renames System.Tasking.Initialization;
package STU renames System.Tasking.Utilities;
package STPO renames System.Task_Primitives.Operations;
package STPOD renames System.Task_Primitives.Operations.DEC;
AST_Lock : aliased System.Task_Primitives.RTS_Lock;
-- This is a global lock; it is used to execute in mutual exclusion
-- from all other AST tasks. It is only used by Lock_AST and
-- Unlock_AST.
procedure Lock_AST (Self_ID : ST.Task_Id);
-- Locks out other AST tasks. Preceding a section of code by Lock_AST and
-- following it by Unlock_AST creates a critical region.
procedure Unlock_AST (Self_ID : ST.Task_Id);
-- Releases lock previously set by call to Lock_AST.
-- All nested locks must be released before other tasks competing for the
-- tasking lock are released.
--------------
-- Lock_AST --
--------------
procedure Lock_AST (Self_ID : ST.Task_Id) is
begin
STI.Defer_Abort_Nestable (Self_ID);
STPO.Write_Lock (AST_Lock'Access, Global_Lock => True);
end Lock_AST;
----------------
-- Unlock_AST --
----------------
procedure Unlock_AST (Self_ID : ST.Task_Id) is
begin
STPO.Unlock (AST_Lock'Access, Global_Lock => True);
STI.Undefer_Abort_Nestable (Self_ID);
end Unlock_AST;
---------------------------------
-- AST_Handler Data Structures --
---------------------------------
-- As noted in the private part of the spec of System.Aux_DEC, the
-- AST_Handler type is simply a pointer to a procedure that takes
-- a single 64bit parameter. The following is a local copy
-- of that definition.
-- We need our own copy because we need to get our hands on this
-- and we cannot see the private part of System.Aux_DEC. We don't
-- want to be a child of Aux_Dec because of complications resulting
-- from the use of pragma Extend_System. We will use unchecked
-- conversions between the two versions of the declarations.
type AST_Handler is access procedure (Param : Long_Integer);
-- However, this declaration is somewhat misleading, since the values
-- referenced by AST_Handler values (all produced in this package by
-- calls to Create_AST_Handler) are highly stylized.
-- The first point is that in VMS/I64, procedure pointers do not in
-- fact point to code, but rather to a procedure descriptor.
-- So a value of type AST_Handler is in fact a pointer to one of
-- descriptors.
type Descriptor_Type is
record
Entry_Point : System.Address;
GP_Value : System.Address;
end record;
for Descriptor_Type'Alignment use Standard'Maximum_Alignment;
-- pragma Warnings (Off, Descriptor_Type);
-- Suppress harmless warnings about alignment.
-- Should explain why this warning is harmless ???
type Descriptor_Ref is access all Descriptor_Type;
-- Normally, there is only one such descriptor for a given procedure, but
-- it works fine to make a copy of the single allocated descriptor, and
-- use the copy itself, and we take advantage of this in the design here.
-- The idea is that AST_Handler values will all point to a record with the
-- following structure:
-- Note: When we say it works fine, there is one delicate point, which
-- is that the code for the AST procedure itself requires the original
-- descriptor address. We handle this by saving the orignal descriptor
-- address in this structure and restoring in Process_AST.
type AST_Handler_Data is record
Descriptor : Descriptor_Type;
Original_Descriptor_Ref : Descriptor_Ref;
Taskid : ATID.Task_Id;
Entryno : Natural;
end record;
type AST_Handler_Data_Ref is access all AST_Handler_Data;
function To_AST_Handler is new Ada.Unchecked_Conversion
(AST_Handler_Data_Ref, System.Aux_DEC.AST_Handler);
-- Each time Create_AST_Handler is called, a new value of this record
-- type is created, containing a copy of the procedure descriptor for
-- the routine used to handle all AST's (Process_AST), and the Task_Id
-- and entry number parameters identifying the task entry involved.
-- The AST_Handler value returned is a pointer to this record. Since
-- the record starts with the procedure descriptor, it can be used
-- by the system in the normal way to call the procedure. But now
-- when the procedure gets control, it can determine the address of
-- the procedure descriptor used to call it (since the ABI specifies
-- that this is left sitting in register r27 on entry), and then use
-- that address to retrieve the Task_Id and entry number so that it
-- knows on which entry to queue the AST request.
-- The next issue is where are these records placed. Since we intend
-- to pass pointers to these records to asynchronous system service
-- routines, they have to be on the heap, which means we have to worry
-- about when to allocate them and deallocate them.
-- We solve this problem by introducing a task attribute that points to
-- a vector, indexed by the entry number, of AST_Handler_Data records
-- for a given task. The pointer itself is a controlled object allowing
-- us to write a finalization routine that frees the referenced vector.
-- An entry in this vector is either initialized (Entryno non-zero) and
-- can be used for any subsequent reference to the same entry, or it is
-- unused, marked by the Entryno value being zero.
type AST_Handler_Vector is array (Natural range <>) of AST_Handler_Data;
type AST_Handler_Vector_Ref is access all AST_Handler_Vector;
type AST_Vector_Ptr is new Ada.Finalization.Controlled with record
Vector : AST_Handler_Vector_Ref;
end record;
procedure Finalize (Obj : in out AST_Vector_Ptr);
-- Override Finalize so that the AST Vector gets freed.
procedure Finalize (Obj : in out AST_Vector_Ptr) is
procedure Free is new
Ada.Unchecked_Deallocation (AST_Handler_Vector, AST_Handler_Vector_Ref);
begin
if Obj.Vector /= null then
Free (Obj.Vector);
end if;
end Finalize;
AST_Vector_Init : AST_Vector_Ptr;
-- Initial value, treated as constant, Vector will be null
package AST_Attribute is new Ada.Task_Attributes
(Attribute => AST_Vector_Ptr,
Initial_Value => AST_Vector_Init);
use AST_Attribute;
-----------------------
-- AST Service Queue --
-----------------------
-- The following global data structures are used to queue pending
-- AST requests. When an AST is signalled, the AST service routine
-- Process_AST is called, and it makes an entry in this structure.
type AST_Instance is record
Taskid : ATID.Task_Id;
Entryno : Natural;
Param : Long_Integer;
end record;
-- The Taskid and Entryno indicate the entry on which this AST is to
-- be queued, and Param is the parameter provided from the AST itself.
AST_Service_Queue_Size : constant := 256;
AST_Service_Queue_Limit : constant := 250;
type AST_Service_Queue_Index is mod AST_Service_Queue_Size;
-- Index used to refer to entries in the circular buffer which holds
-- active AST_Instance values. The upper bound reflects the maximum
-- number of AST instances that can be stored in the buffer. Since
-- these entries are immediately serviced by the high priority server
-- task that does the actual entry queuing, it is very unusual to have
-- any significant number of entries simulaneously queued.
AST_Service_Queue : array (AST_Service_Queue_Index) of AST_Instance;
pragma Volatile_Components (AST_Service_Queue);
-- The circular buffer used to store active AST requests
AST_Service_Queue_Put : AST_Service_Queue_Index := 0;
AST_Service_Queue_Get : AST_Service_Queue_Index := 0;
pragma Atomic (AST_Service_Queue_Put);
pragma Atomic (AST_Service_Queue_Get);
-- These two variables point to the next slots in the AST_Service_Queue
-- to be used for putting a new entry in and taking an entry out. This
-- is a circular buffer, so these pointers wrap around. If the two values
-- are equal the buffer is currently empty. The pointers are atomic to
-- ensure proper synchronization between the single producer (namely the
-- Process_AST procedure), and the single consumer (the AST_Service_Task).
--------------------------------
-- AST Server Task Structures --
--------------------------------
-- The basic approach is that when an AST comes in, a call is made to
-- the Process_AST procedure. It queues the request in the service queue
-- and then wakes up an AST server task to perform the actual call to the
-- required entry. We use this intermediate server task, since the AST
-- procedure itself cannot wait to return, and we need some caller for
-- the rendezvous so that we can use the normal rendezvous mechanism.
-- It would work to have only one AST server task, but then we would lose
-- all overlap in AST processing, and furthermore, we could get priority
-- inversion effects resulting in starvation of AST requests.
-- We therefore maintain a small pool of AST server tasks. We adjust
-- the size of the pool dynamically to reflect traffic, so that we have
-- a sufficient number of server tasks to avoid starvation.
Max_AST_Servers : constant Natural := 16;
-- Maximum number of AST server tasks that can be allocated
Num_AST_Servers : Natural := 0;
-- Number of AST server tasks currently active
Num_Waiting_AST_Servers : Natural := 0;
-- This is the number of AST server tasks that are either waiting for
-- work, or just about to go to sleep and wait for work.
Is_Waiting : array (1 .. Max_AST_Servers) of Boolean := (others => False);
-- An array of flags showing which AST server tasks are currently waiting
AST_Task_Ids : array (1 .. Max_AST_Servers) of ST.Task_Id;
-- Task Id's of allocated AST server tasks
task type AST_Server_Task (Num : Natural) is
pragma Priority (Priority'Last);
end AST_Server_Task;
-- Declaration for AST server task. This task has no entries, it is
-- controlled by sleep and wakeup calls at the task primitives level.
type AST_Server_Task_Ptr is access all AST_Server_Task;
-- Type used to allocate server tasks
-----------------------
-- Local Subprograms --
-----------------------
procedure Allocate_New_AST_Server;
-- Allocate an additional AST server task
procedure Process_AST (Param : Long_Integer);
-- This is the central routine for processing all AST's, it is referenced
-- as the code address of all created AST_Handler values. See detailed
-- description in body to understand how it works to have a single such
-- procedure for all AST's even though it does not get any indication of
-- the entry involved passed as an explicit parameter. The single explicit
-- parameter Param is the parameter passed by the system with the AST.
-----------------------------
-- Allocate_New_AST_Server --
-----------------------------
procedure Allocate_New_AST_Server is
Dummy : AST_Server_Task_Ptr;
pragma Unreferenced (Dummy);
begin
if Num_AST_Servers = Max_AST_Servers then
return;
else
-- Note: it is safe to increment Num_AST_Servers immediately, since
-- no one will try to activate this task until it indicates that it
-- is sleeping by setting its entry in Is_Waiting to True.
Num_AST_Servers := Num_AST_Servers + 1;
Dummy := new AST_Server_Task (Num_AST_Servers);
end if;
end Allocate_New_AST_Server;
---------------------
-- AST_Server_Task --
---------------------
task body AST_Server_Task is
Taskid : ATID.Task_Id;
Entryno : Natural;
Param : aliased Long_Integer;
Self_Id : constant ST.Task_Id := ST.Self;
pragma Volatile (Param);
begin
-- By making this task independent of master, when the environment
-- task is finalizing, the AST_Server_Task will be notified that it
-- should terminate.
STU.Make_Independent;
-- Record our task Id for access by Process_AST
AST_Task_Ids (Num) := Self_Id;
-- Note: this entire task operates with the main task lock set, except
-- when it is sleeping waiting for work, or busy doing a rendezvous
-- with an AST server. This lock protects the data structures that
-- are shared by multiple instances of the server task.
Lock_AST (Self_Id);
-- This is the main infinite loop of the task. We go to sleep and
-- wait to be woken up by Process_AST when there is some work to do.
loop
Num_Waiting_AST_Servers := Num_Waiting_AST_Servers + 1;
Unlock_AST (Self_Id);
STI.Defer_Abort (Self_Id);
if SP.Single_Lock then
STPO.Lock_RTS;
end if;
STPO.Write_Lock (Self_Id);
Is_Waiting (Num) := True;
Self_Id.Common.State := ST.AST_Server_Sleep;
STPO.Sleep (Self_Id, ST.AST_Server_Sleep);
Self_Id.Common.State := ST.Runnable;
STPO.Unlock (Self_Id);
if SP.Single_Lock then
STPO.Unlock_RTS;
end if;
-- If the process is finalizing, Undefer_Abort will simply end
-- this task.
STI.Undefer_Abort (Self_Id);
-- We are awake, there is something to do!
Lock_AST (Self_Id);
Num_Waiting_AST_Servers := Num_Waiting_AST_Servers - 1;
-- Loop here to service outstanding requests. We are always
-- locked on entry to this loop.
while AST_Service_Queue_Get /= AST_Service_Queue_Put loop
Taskid := AST_Service_Queue (AST_Service_Queue_Get).Taskid;
Entryno := AST_Service_Queue (AST_Service_Queue_Get).Entryno;
Param := AST_Service_Queue (AST_Service_Queue_Get).Param;
AST_Service_Queue_Get := AST_Service_Queue_Get + 1;
-- This is a manual expansion of the normal call simple code
declare
type AA is access all Long_Integer;
P : AA := Param'Unrestricted_Access;
function To_ST_Task_Id is new Ada.Unchecked_Conversion
(ATID.Task_Id, ST.Task_Id);
begin
Unlock_AST (Self_Id);
STR.Call_Simple
(Acceptor => To_ST_Task_Id (Taskid),
E => ST.Task_Entry_Index (Entryno),
Uninterpreted_Data => P'Address);
exception
when E : others =>
System.IO.Put_Line ("%Debugging event");
System.IO.Put_Line (Exception_Name (E) &
" raised when trying to deliver an AST.");
if Exception_Message (E)'Length /= 0 then
System.IO.Put_Line (Exception_Message (E));
end if;
System.IO.Put_Line ("Task type is " & "Receiver_Type");
System.IO.Put_Line ("Task id is " & ATID.Image (Taskid));
end;
Lock_AST (Self_Id);
end loop;
end loop;
end AST_Server_Task;
------------------------
-- Create_AST_Handler --
------------------------
function Create_AST_Handler
(Taskid : ATID.Task_Id;
Entryno : Natural) return System.Aux_DEC.AST_Handler
is
Attr_Ref : Attribute_Handle;
Process_AST_Ptr : constant AST_Handler := Process_AST'Access;
-- Reference to standard procedure descriptor for Process_AST
function To_Descriptor_Ref is new Ada.Unchecked_Conversion
(AST_Handler, Descriptor_Ref);
Original_Descriptor_Ref : constant Descriptor_Ref :=
To_Descriptor_Ref (Process_AST_Ptr);
begin
if ATID.Is_Terminated (Taskid) then
raise Program_Error;
end if;
Attr_Ref := Reference (Taskid);
-- Allocate another server if supply is getting low
if Num_Waiting_AST_Servers < 2 then
Allocate_New_AST_Server;
end if;
-- No point in creating more if we have zillions waiting to
-- be serviced.
while AST_Service_Queue_Put - AST_Service_Queue_Get
> AST_Service_Queue_Limit
loop
delay 0.01;
end loop;
-- If no AST vector allocated, or the one we have is too short, then
-- allocate one of right size and initialize all entries except the
-- one we will use to unused. Note that the assignment automatically
-- frees the old allocated table if there is one.
if Attr_Ref.Vector = null
or else Attr_Ref.Vector'Length < Entryno
then
Attr_Ref.Vector := new AST_Handler_Vector (1 .. Entryno);
for E in 1 .. Entryno loop
Attr_Ref.Vector (E).Descriptor.Entry_Point :=
Original_Descriptor_Ref.Entry_Point;
Attr_Ref.Vector (E).Descriptor.GP_Value :=
Attr_Ref.Vector (E)'Address;
Attr_Ref.Vector (E).Original_Descriptor_Ref :=
Original_Descriptor_Ref;
Attr_Ref.Vector (E).Taskid := Taskid;
Attr_Ref.Vector (E).Entryno := E;
end loop;
end if;
return To_AST_Handler (Attr_Ref.Vector (Entryno)'Unrestricted_Access);
end Create_AST_Handler;
----------------------------
-- Expand_AST_Packet_Pool --
----------------------------
procedure Expand_AST_Packet_Pool
(Requested_Packets : Natural;
Actual_Number : out Natural;
Total_Number : out Natural)
is
pragma Unreferenced (Requested_Packets);
begin
-- The AST implementation of GNAT does not permit dynamic expansion
-- of the pool, so we simply add no entries and return the total. If
-- it is necessary to expand the allocation, then this package body
-- must be recompiled with a larger value for AST_Service_Queue_Size.
Actual_Number := 0;
Total_Number := AST_Service_Queue_Size;
end Expand_AST_Packet_Pool;
-----------------
-- Process_AST --
-----------------
procedure Process_AST (Param : Long_Integer) is
Handler_Data_Ptr : AST_Handler_Data_Ref;
-- This variable is set to the address of the descriptor through
-- which Process_AST is called. Since the descriptor is part of
-- an AST_Handler value, this is also the address of this value,
-- from which we can obtain the task and entry number information.
function To_Address is new Ada.Unchecked_Conversion
(ST.Task_Id, System.Task_Primitives.Task_Address);
begin
-- Move the contrived GP into place so Taskid and Entryno
-- become available, then restore the true GP.
System.Machine_Code.Asm
(Template => "mov %0 = r1",
Outputs => AST_Handler_Data_Ref'Asm_Output
("=r", Handler_Data_Ptr),
Volatile => True);
System.Machine_Code.Asm
(Template => "ld8 r1 = %0;;",
Inputs => System.Address'Asm_Input
("m", Handler_Data_Ptr.Original_Descriptor_Ref.GP_Value),
Volatile => True);
AST_Service_Queue (AST_Service_Queue_Put) := AST_Instance'
(Taskid => Handler_Data_Ptr.Taskid,
Entryno => Handler_Data_Ptr.Entryno,
Param => Param);
-- OpenVMS Programming Concepts manual, chapter 8.2.3:
-- "Implicit synchronization can be achieved for data that is shared
-- for write by using only AST routines to write the data, since only
-- one AST can be running at any one time."
-- This subprogram runs at AST level so is guaranteed to be
-- called sequentially at a given access level.
AST_Service_Queue_Put := AST_Service_Queue_Put + 1;
-- Need to wake up processing task. If there is no waiting server
-- then we have temporarily run out, but things should still be
-- OK, since one of the active ones will eventually pick up the
-- service request queued in the AST_Service_Queue.
for J in 1 .. Num_AST_Servers loop
if Is_Waiting (J) then
Is_Waiting (J) := False;
-- Sleeps are handled by ASTs on VMS, so don't call Wakeup
STPOD.Interrupt_AST_Handler (To_Address (AST_Task_Ids (J)));
exit;
end if;
end loop;
end Process_AST;
begin
STPO.Initialize_Lock (AST_Lock'Access, STPO.Global_Task_Level);
end System.AST_Handling;

View File

@ -0,0 +1,576 @@
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . A U X _ D E C --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This is the Itanium/VMS version.
-- The Add,Clear_Interlocked subprograms are dubiously implmented due to
-- the lack of a single bit sync_lock_test_and_set builtin.
-- The "Retry" parameter is ignored due to the lack of retry builtins making
-- the subprograms identical to the non-retry versions.
pragma Style_Checks (All_Checks);
-- Turn off alpha ordering check on subprograms, this unit is laid
-- out to correspond to the declarations in the DEC 83 System unit.
with Interfaces;
package body System.Aux_DEC is
use type Interfaces.Unsigned_8;
------------------------
-- Fetch_From_Address --
------------------------
function Fetch_From_Address (A : Address) return Target is
type T_Ptr is access all Target;
function To_T_Ptr is new Ada.Unchecked_Conversion (Address, T_Ptr);
Ptr : constant T_Ptr := To_T_Ptr (A);
begin
return Ptr.all;
end Fetch_From_Address;
-----------------------
-- Assign_To_Address --
-----------------------
procedure Assign_To_Address (A : Address; T : Target) is
type T_Ptr is access all Target;
function To_T_Ptr is new Ada.Unchecked_Conversion (Address, T_Ptr);
Ptr : constant T_Ptr := To_T_Ptr (A);
begin
Ptr.all := T;
end Assign_To_Address;
-----------------------
-- Clear_Interlocked --
-----------------------
procedure Clear_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean)
is
Clr_Bit : Boolean := Bit;
Old_Uns : Interfaces.Unsigned_8;
function Sync_Lock_Test_And_Set
(Ptr : Address;
Value : Interfaces.Unsigned_8) return Interfaces.Unsigned_8;
pragma Import (Intrinsic, Sync_Lock_Test_And_Set,
"__sync_lock_test_and_set_1");
begin
Old_Uns := Sync_Lock_Test_And_Set (Clr_Bit'Address, 0);
Bit := Clr_Bit;
Old_Value := Old_Uns /= 0;
end Clear_Interlocked;
procedure Clear_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean;
Retry_Count : Natural;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
Clr_Bit : Boolean := Bit;
Old_Uns : Interfaces.Unsigned_8;
function Sync_Lock_Test_And_Set
(Ptr : Address;
Value : Interfaces.Unsigned_8) return Interfaces.Unsigned_8;
pragma Import (Intrinsic, Sync_Lock_Test_And_Set,
"__sync_lock_test_and_set_1");
begin
Old_Uns := Sync_Lock_Test_And_Set (Clr_Bit'Address, 0);
Bit := Clr_Bit;
Old_Value := Old_Uns /= 0;
Success_Flag := True;
end Clear_Interlocked;
---------------------
-- Set_Interlocked --
---------------------
procedure Set_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean)
is
Set_Bit : Boolean := Bit;
Old_Uns : Interfaces.Unsigned_8;
function Sync_Lock_Test_And_Set
(Ptr : Address;
Value : Interfaces.Unsigned_8) return Interfaces.Unsigned_8;
pragma Import (Intrinsic, Sync_Lock_Test_And_Set,
"__sync_lock_test_and_set_1");
begin
Old_Uns := Sync_Lock_Test_And_Set (Set_Bit'Address, 1);
Bit := Set_Bit;
Old_Value := Old_Uns /= 0;
end Set_Interlocked;
procedure Set_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean;
Retry_Count : Natural;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
Set_Bit : Boolean := Bit;
Old_Uns : Interfaces.Unsigned_8;
function Sync_Lock_Test_And_Set
(Ptr : Address;
Value : Interfaces.Unsigned_8) return Interfaces.Unsigned_8;
pragma Import (Intrinsic, Sync_Lock_Test_And_Set,
"__sync_lock_test_and_set_1");
begin
Old_Uns := Sync_Lock_Test_And_Set (Set_Bit'Address, 1);
Bit := Set_Bit;
Old_Value := Old_Uns /= 0;
Success_Flag := True;
end Set_Interlocked;
---------------------
-- Add_Interlocked --
---------------------
procedure Add_Interlocked
(Addend : Short_Integer;
Augend : in out Aligned_Word;
Sign : out Integer)
is
Overflowed : Boolean := False;
Former : Aligned_Word;
function Sync_Fetch_And_Add
(Ptr : Address;
Value : Short_Integer) return Short_Integer;
pragma Import (Intrinsic, Sync_Fetch_And_Add, "__sync_fetch_and_add_2");
begin
Former.Value := Sync_Fetch_And_Add (Augend.Value'Address, Addend);
if Augend.Value < 0 then
Sign := -1;
elsif Augend.Value > 0 then
Sign := 1;
else
Sign := 0;
end if;
if Former.Value > 0 and then Augend.Value <= 0 then
Overflowed := True;
end if;
if Overflowed then
raise Constraint_Error;
end if;
end Add_Interlocked;
----------------
-- Add_Atomic --
----------------
procedure Add_Atomic
(To : in out Aligned_Integer;
Amount : Integer)
is
procedure Sync_Add_And_Fetch
(Ptr : Address;
Value : Integer);
pragma Import (Intrinsic, Sync_Add_And_Fetch, "__sync_add_and_fetch_4");
begin
Sync_Add_And_Fetch (To.Value'Address, Amount);
end Add_Atomic;
procedure Add_Atomic
(To : in out Aligned_Integer;
Amount : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_Add
(Ptr : Address;
Value : Integer) return Integer;
pragma Import (Intrinsic, Sync_Fetch_And_Add, "__sync_fetch_and_add_4");
begin
Old_Value := Sync_Fetch_And_Add (To.Value'Address, Amount);
Success_Flag := True;
end Add_Atomic;
procedure Add_Atomic
(To : in out Aligned_Long_Integer;
Amount : Long_Integer)
is
procedure Sync_Add_And_Fetch
(Ptr : Address;
Value : Long_Integer);
pragma Import (Intrinsic, Sync_Add_And_Fetch, "__sync_add_and_fetch_8");
begin
Sync_Add_And_Fetch (To.Value'Address, Amount);
end Add_Atomic;
procedure Add_Atomic
(To : in out Aligned_Long_Integer;
Amount : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_Add
(Ptr : Address;
Value : Long_Integer) return Long_Integer;
pragma Import (Intrinsic, Sync_Fetch_And_Add, "__sync_fetch_and_add_8");
-- Why do we keep importing this over and over again???
begin
Old_Value := Sync_Fetch_And_Add (To.Value'Address, Amount);
Success_Flag := True;
end Add_Atomic;
----------------
-- And_Atomic --
----------------
procedure And_Atomic
(To : in out Aligned_Integer;
From : Integer)
is
procedure Sync_And_And_Fetch
(Ptr : Address;
Value : Integer);
pragma Import (Intrinsic, Sync_And_And_Fetch, "__sync_and_and_fetch_4");
begin
Sync_And_And_Fetch (To.Value'Address, From);
end And_Atomic;
procedure And_Atomic
(To : in out Aligned_Integer;
From : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_And
(Ptr : Address;
Value : Integer) return Integer;
pragma Import (Intrinsic, Sync_Fetch_And_And, "__sync_fetch_and_and_4");
begin
Old_Value := Sync_Fetch_And_And (To.Value'Address, From);
Success_Flag := True;
end And_Atomic;
procedure And_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer)
is
procedure Sync_And_And_Fetch
(Ptr : Address;
Value : Long_Integer);
pragma Import (Intrinsic, Sync_And_And_Fetch, "__sync_and_and_fetch_8");
begin
Sync_And_And_Fetch (To.Value'Address, From);
end And_Atomic;
procedure And_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_And
(Ptr : Address;
Value : Long_Integer) return Long_Integer;
pragma Import (Intrinsic, Sync_Fetch_And_And, "__sync_fetch_and_and_8");
begin
Old_Value := Sync_Fetch_And_And (To.Value'Address, From);
Success_Flag := True;
end And_Atomic;
---------------
-- Or_Atomic --
---------------
procedure Or_Atomic
(To : in out Aligned_Integer;
From : Integer)
is
procedure Sync_Or_And_Fetch
(Ptr : Address;
Value : Integer);
pragma Import (Intrinsic, Sync_Or_And_Fetch, "__sync_or_and_fetch_4");
begin
Sync_Or_And_Fetch (To.Value'Address, From);
end Or_Atomic;
procedure Or_Atomic
(To : in out Aligned_Integer;
From : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_Or
(Ptr : Address;
Value : Integer) return Integer;
pragma Import (Intrinsic, Sync_Fetch_And_Or, "__sync_fetch_and_or_4");
begin
Old_Value := Sync_Fetch_And_Or (To.Value'Address, From);
Success_Flag := True;
end Or_Atomic;
procedure Or_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer)
is
procedure Sync_Or_And_Fetch
(Ptr : Address;
Value : Long_Integer);
pragma Import (Intrinsic, Sync_Or_And_Fetch, "__sync_or_and_fetch_8");
begin
Sync_Or_And_Fetch (To.Value'Address, From);
end Or_Atomic;
procedure Or_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean)
is
pragma Unreferenced (Retry_Count);
function Sync_Fetch_And_Or
(Ptr : Address;
Value : Long_Integer) return Long_Integer;
pragma Import (Intrinsic, Sync_Fetch_And_Or, "__sync_fetch_and_or_8");
begin
Old_Value := Sync_Fetch_And_Or (To.Value'Address, From);
Success_Flag := True;
end Or_Atomic;
------------
-- Insqhi --
------------
procedure Insqhi
(Item : Address;
Header : Address;
Status : out Insq_Status) is
procedure SYS_PAL_INSQHIL
(STATUS : out Integer; Header : Address; ITEM : Address);
pragma Interface (External, SYS_PAL_INSQHIL);
pragma Import_Valued_Procedure (SYS_PAL_INSQHIL, "SYS$PAL_INSQHIL",
(Integer, Address, Address),
(Value, Value, Value));
Istat : Integer;
begin
SYS_PAL_INSQHIL (Istat, Header, Item);
if Istat = 0 then
Status := OK_Not_First;
elsif Istat = 1 then
Status := OK_First;
else
-- This status is never returned on IVMS
Status := Fail_No_Lock;
end if;
end Insqhi;
------------
-- Remqhi --
------------
procedure Remqhi
(Header : Address;
Item : out Address;
Status : out Remq_Status)
is
-- The removed item is returned in the second function return register,
-- R9 on IVMS. The VMS ABI calls for "small" records to be returned in
-- these registers, so inventing this odd looking record type makes that
-- all work.
type Remq is record
Status : Long_Integer;
Item : Address;
end record;
procedure SYS_PAL_REMQHIL
(Remret : out Remq; Header : Address);
pragma Interface (External, SYS_PAL_REMQHIL);
pragma Import_Valued_Procedure
(SYS_PAL_REMQHIL, "SYS$PAL_REMQHIL",
(Remq, Address),
(Value, Value));
-- Following variables need documentation???
Rstat : Long_Integer;
Remret : Remq;
begin
SYS_PAL_REMQHIL (Remret, Header);
Rstat := Remret.Status;
Item := Remret.Item;
if Rstat = 0 then
Status := Fail_Was_Empty;
elsif Rstat = 1 then
Status := OK_Not_Empty;
elsif Rstat = 2 then
Status := OK_Empty;
else
-- This status is never returned on IVMS
Status := Fail_No_Lock;
end if;
end Remqhi;
------------
-- Insqti --
------------
procedure Insqti
(Item : Address;
Header : Address;
Status : out Insq_Status) is
procedure SYS_PAL_INSQTIL
(STATUS : out Integer; Header : Address; ITEM : Address);
pragma Interface (External, SYS_PAL_INSQTIL);
pragma Import_Valued_Procedure (SYS_PAL_INSQTIL, "SYS$PAL_INSQTIL",
(Integer, Address, Address),
(Value, Value, Value));
Istat : Integer;
begin
SYS_PAL_INSQTIL (Istat, Header, Item);
if Istat = 0 then
Status := OK_Not_First;
elsif Istat = 1 then
Status := OK_First;
else
-- This status is never returned on IVMS
Status := Fail_No_Lock;
end if;
end Insqti;
------------
-- Remqti --
------------
procedure Remqti
(Header : Address;
Item : out Address;
Status : out Remq_Status)
is
-- The removed item is returned in the second function return register,
-- R9 on IVMS. The VMS ABI calls for "small" records to be returned in
-- these registers, so inventing (where is rest of this comment???)
type Remq is record
Status : Long_Integer;
Item : Address;
end record;
procedure SYS_PAL_REMQTIL
(Remret : out Remq; Header : Address);
pragma Interface (External, SYS_PAL_REMQTIL);
pragma Import_Valued_Procedure (SYS_PAL_REMQTIL, "SYS$PAL_REMQTIL",
(Remq, Address),
(Value, Value));
Rstat : Long_Integer;
Remret : Remq;
begin
SYS_PAL_REMQTIL (Remret, Header);
Rstat := Remret.Status;
Item := Remret.Item;
-- Wouldn't case be nicer here, and in previous similar cases ???
if Rstat = 0 then
Status := Fail_Was_Empty;
elsif Rstat = 1 then
Status := OK_Not_Empty;
elsif Rstat = 2 then
Status := OK_Empty;
else
-- This status is never returned on IVMS
Status := Fail_No_Lock;
end if;
end Remqti;
end System.Aux_DEC;

230
gcc/ada/s-memory-vms_64.adb Normal file
View File

@ -0,0 +1,230 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . M E M O R Y --
-- --
-- B o d y --
-- --
-- Copyright (C) 2001-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This is the VMS 64 bit implementation of this package
-- This implementation assumes that the underlying malloc/free/realloc
-- implementation is thread safe, and thus, no additional lock is required.
-- Note that we still need to defer abort because on most systems, an
-- asynchronous signal (as used for implementing asynchronous abort of
-- task) cannot safely be handled while malloc is executing.
-- If you are not using Ada constructs containing the "abort" keyword, then
-- you can remove the calls to Abort_Defer.all and Abort_Undefer.all from
-- this unit.
pragma Compiler_Unit;
with Ada.Exceptions;
with System.Soft_Links;
with System.Parameters;
with System.CRTL;
package body System.Memory is
use Ada.Exceptions;
use System.Soft_Links;
function c_malloc (Size : System.CRTL.size_t) return System.Address
renames System.CRTL.malloc;
procedure c_free (Ptr : System.Address)
renames System.CRTL.free;
function c_realloc
(Ptr : System.Address; Size : System.CRTL.size_t) return System.Address
renames System.CRTL.realloc;
Gnat_Heap_Size : Integer;
pragma Import (C, Gnat_Heap_Size, "__gl_heap_size");
-- Set by Feature logical GNAT$NO_MALLOC_64 and/or Binder switch -Hnn
-----------
-- Alloc --
-----------
function Alloc (Size : size_t) return System.Address is
Result : System.Address;
Actual_Size : size_t := Size;
begin
if Gnat_Heap_Size = 32 then
return Alloc32 (Size);
end if;
if Size = size_t'Last then
Raise_Exception (Storage_Error'Identity, "object too large");
end if;
-- Change size from zero to non-zero. We still want a proper pointer
-- for the zero case because pointers to zero length objects have to
-- be distinct, but we can't just go ahead and allocate zero bytes,
-- since some malloc's return zero for a zero argument.
if Size = 0 then
Actual_Size := 1;
end if;
if Parameters.No_Abort then
Result := c_malloc (System.CRTL.size_t (Actual_Size));
else
Abort_Defer.all;
Result := c_malloc (System.CRTL.size_t (Actual_Size));
Abort_Undefer.all;
end if;
if Result = System.Null_Address then
Raise_Exception (Storage_Error'Identity, "heap exhausted");
end if;
return Result;
end Alloc;
-------------
-- Alloc32 --
-------------
function Alloc32 (Size : size_t) return System.Address is
Result : System.Address;
Actual_Size : size_t := Size;
begin
if Size = size_t'Last then
Raise_Exception (Storage_Error'Identity, "object too large");
end if;
-- Change size from zero to non-zero. We still want a proper pointer
-- for the zero case because pointers to zero length objects have to
-- be distinct, but we can't just go ahead and allocate zero bytes,
-- since some malloc's return zero for a zero argument.
if Size = 0 then
Actual_Size := 1;
end if;
if Parameters.No_Abort then
Result := C_malloc32 (Actual_Size);
else
Abort_Defer.all;
Result := C_malloc32 (Actual_Size);
Abort_Undefer.all;
end if;
if Result = System.Null_Address then
Raise_Exception (Storage_Error'Identity, "heap exhausted");
end if;
return Result;
end Alloc32;
----------
-- Free --
----------
procedure Free (Ptr : System.Address) is
begin
if Parameters.No_Abort then
c_free (Ptr);
else
Abort_Defer.all;
c_free (Ptr);
Abort_Undefer.all;
end if;
end Free;
-------------
-- Realloc --
-------------
function Realloc
(Ptr : System.Address;
Size : size_t)
return System.Address
is
Result : System.Address;
Actual_Size : constant size_t := Size;
begin
if Gnat_Heap_Size = 32 then
return Realloc32 (Ptr, Size);
end if;
if Size = size_t'Last then
Raise_Exception (Storage_Error'Identity, "object too large");
end if;
if Parameters.No_Abort then
Result := c_realloc (Ptr, System.CRTL.size_t (Actual_Size));
else
Abort_Defer.all;
Result := c_realloc (Ptr, System.CRTL.size_t (Actual_Size));
Abort_Undefer.all;
end if;
if Result = System.Null_Address then
Raise_Exception (Storage_Error'Identity, "heap exhausted");
end if;
return Result;
end Realloc;
---------------
-- Realloc32 --
---------------
function Realloc32
(Ptr : System.Address;
Size : size_t)
return System.Address
is
Result : System.Address;
Actual_Size : constant size_t := Size;
begin
if Size = size_t'Last then
Raise_Exception (Storage_Error'Identity, "object too large");
end if;
if Parameters.No_Abort then
Result := C_realloc32 (Ptr, Actual_Size);
else
Abort_Defer.all;
Result := C_realloc32 (Ptr, Actual_Size);
Abort_Undefer.all;
end if;
if Result = System.Null_Address then
Raise_Exception (Storage_Error'Identity, "heap exhausted");
end if;
return Result;
end Realloc32;
end System.Memory;

129
gcc/ada/s-memory-vms_64.ads Normal file
View File

@ -0,0 +1,129 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . M E M O R Y --
-- --
-- S p e c --
-- --
-- Copyright (C) 2001-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides the low level memory allocation/deallocation
-- mechanisms used by GNAT for VMS 64 bit.
-- To provide an alternate implementation, simply recompile the modified
-- body of this package with gnatmake -u -a -g s-memory.adb and make sure
-- that the ali and object files for this unit are found in the object
-- search path.
-- This unit may be used directly from an application program by providing
-- an appropriate WITH, and the interface can be expected to remain stable.
pragma Compiler_Unit;
package System.Memory is
pragma Elaborate_Body;
type size_t is mod 2 ** Standard'Address_Size;
-- Note: the reason we redefine this here instead of using the
-- definition in Interfaces.C is that we do not want to drag in
-- all of Interfaces.C just because System.Memory is used.
function Alloc (Size : size_t) return System.Address;
-- This is the low level allocation routine. Given a size in storage
-- units, it returns the address of a maximally aligned block of
-- memory. The implementation of this routine is guaranteed to be
-- task safe, and also aborts are deferred if necessary.
--
-- If size_t is set to size_t'Last on entry, then a Storage_Error
-- exception is raised with a message "object too large".
--
-- If size_t is set to zero on entry, then a minimal (but non-zero)
-- size block is allocated.
--
-- Note: this is roughly equivalent to the standard C malloc call
-- with the additional semantics as described above.
function Alloc32 (Size : size_t) return System.Address;
-- Equivalent to Alloc except on VMS 64 bit where it invokes
-- 32 bit malloc.
procedure Free (Ptr : System.Address);
-- This is the low level free routine. It frees a block previously
-- allocated with a call to Alloc. As in the case of Alloc, this
-- call is guaranteed task safe, and aborts are deferred.
--
-- Note: this is roughly equivalent to the standard C free call
-- with the additional semantics as described above.
function Realloc
(Ptr : System.Address;
Size : size_t) return System.Address;
-- This is the low level reallocation routine. It takes an existing
-- block address returned by a previous call to Alloc or Realloc,
-- and reallocates the block. The size can either be increased or
-- decreased. If possible the reallocation is done in place, so that
-- the returned result is the same as the value of Ptr on entry.
-- However, it may be necessary to relocate the block to another
-- address, in which case the information is copied to the new
-- block, and the old block is freed. The implementation of this
-- routine is guaranteed to be task safe, and also aborts are
-- deferred as necessary.
--
-- If size_t is set to size_t'Last on entry, then a Storage_Error
-- exception is raised with a message "object too large".
--
-- If size_t is set to zero on entry, then a minimal (but non-zero)
-- size block is allocated.
--
-- Note: this is roughly equivalent to the standard C realloc call
-- with the additional semantics as described above.
function Realloc32
(Ptr : System.Address;
Size : size_t) return System.Address;
-- Equivalent to Realloc except on VMS 64 bit where it invokes
-- 32 bit realloc.
private
-- The following names are used from the generated compiler code
pragma Export (C, Alloc, "__gnat_malloc");
pragma Export (C, Alloc32, "__gnat_malloc32");
pragma Export (C, Free, "__gnat_free");
pragma Export (C, Realloc, "__gnat_realloc");
pragma Export (C, Realloc32, "__gnat_realloc32");
function C_malloc32 (Size : size_t) return System.Address;
pragma Import (C, C_malloc32, "_malloc32");
-- An alias for malloc for allocating 32bit memory on 64bit VMS
function C_realloc32
(Ptr : System.Address;
Size : size_t) return System.Address;
pragma Import (C, C_realloc32, "_realloc32");
-- An alias for realloc for allocating 32bit memory on 64bit VMS
end System.Memory;

View File

@ -0,0 +1,58 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . O S _ I N T E R F A C E --
-- --
-- B o d y --
-- --
-- Copyright (C) 2003-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is a OpenVMS/IA64 version of this package
-- This package encapsulates all direct interfaces to OS services
-- that are needed by children of System.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with Interfaces.C; use Interfaces.C;
package body System.OS_Interface is
-----------------
-- sched_yield --
-----------------
function sched_yield return int is
procedure sched_yield_base;
pragma Import (C, sched_yield_base, "PTHREAD_YIELD_NP");
begin
sched_yield_base;
return 0;
end sched_yield;
end System.OS_Interface;

View File

@ -0,0 +1,652 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . O S _ I N T E R F A C E --
-- --
-- S p e c --
-- --
-- Copyright (C) 1991-1994, Florida State University --
-- Copyright (C) 1995-2010, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is a OpenVMS/IA64 version of this package
-- This package encapsulates all direct interfaces to OS services
-- that are needed by the tasking run-time (libgnarl).
-- PLEASE DO NOT add any with-clauses to this package or remove the pragma
-- Preelaborate. This package is designed to be a bottom-level (leaf) package.
with Interfaces.C;
with Ada.Unchecked_Conversion;
with System.Aux_DEC;
package System.OS_Interface is
pragma Preelaborate;
pragma Linker_Options ("--for-linker=ia64$library:pthread$rtl.exe");
-- Link in the DEC threads library
-- pragma Linker_Options ("--for-linker=/threads_enable");
-- Enable upcalls and multiple kernel threads.
subtype int is Interfaces.C.int;
subtype short is Interfaces.C.short;
subtype long is Interfaces.C.long;
subtype unsigned is Interfaces.C.unsigned;
subtype unsigned_short is Interfaces.C.unsigned_short;
subtype unsigned_long is Interfaces.C.unsigned_long;
subtype unsigned_char is Interfaces.C.unsigned_char;
subtype plain_char is Interfaces.C.plain_char;
subtype size_t is Interfaces.C.size_t;
-----------------------------
-- Signals (Interrupt IDs) --
-----------------------------
-- Type signal has an arbitrary limit of 31
Max_Interrupt : constant := 31;
type Signal is new unsigned range 0 .. Max_Interrupt;
for Signal'Size use unsigned'Size;
type sigset_t is array (Signal) of Boolean;
pragma Pack (sigset_t);
-- Interrupt_Number_Type
-- Unsigned long integer denoting the number of an interrupt
subtype Interrupt_Number_Type is unsigned_long;
-- OpenVMS system services return values of type Cond_Value_Type
subtype Cond_Value_Type is unsigned_long;
subtype Short_Cond_Value_Type is unsigned_short;
type IO_Status_Block_Type is record
Status : Short_Cond_Value_Type;
Count : unsigned_short;
Dev_Info : unsigned_long;
end record;
type AST_Handler is access procedure (Param : Address);
pragma Convention (C, AST_Handler);
No_AST_Handler : constant AST_Handler := null;
CMB_M_READONLY : constant := 16#00000001#;
CMB_M_WRITEONLY : constant := 16#00000002#;
AGN_M_READONLY : constant := 16#00000001#;
AGN_M_WRITEONLY : constant := 16#00000002#;
IO_WRITEVBLK : constant := 48; -- WRITE VIRTUAL BLOCK
IO_READVBLK : constant := 49; -- READ VIRTUAL BLOCK
----------------
-- Sys_Assign --
----------------
--
-- Assign I/O Channel
--
-- Status = returned status
-- Devnam = address of device name or logical name string
-- descriptor
-- Chan = address of word to receive channel number assigned
-- Acmode = access mode associated with channel
-- Mbxnam = address of mailbox logical name string descriptor, if
-- mailbox associated with device
-- Flags = optional channel flags longword for specifying options
-- for the $ASSIGN operation
--
procedure Sys_Assign
(Status : out Cond_Value_Type;
Devnam : String;
Chan : out unsigned_short;
Acmode : unsigned_short := 0;
Mbxnam : String := String'Null_Parameter;
Flags : unsigned_long := 0);
pragma Interface (External, Sys_Assign);
pragma Import_Valued_Procedure
(Sys_Assign, "SYS$ASSIGN",
(Cond_Value_Type, String, unsigned_short,
unsigned_short, String, unsigned_long),
(Value, Descriptor (s), Reference,
Value, Descriptor (s), Value),
Flags);
----------------
-- Sys_Cantim --
----------------
--
-- Cancel Timer
--
-- Status = returned status
-- Reqidt = ID of timer to be cancelled
-- Acmode = Access mode
--
procedure Sys_Cantim
(Status : out Cond_Value_Type;
Reqidt : Address;
Acmode : unsigned);
pragma Interface (External, Sys_Cantim);
pragma Import_Valued_Procedure
(Sys_Cantim, "SYS$CANTIM",
(Cond_Value_Type, Address, unsigned),
(Value, Value, Value));
----------------
-- Sys_Crembx --
----------------
--
-- Create mailbox
--
-- Status = returned status
-- Prmflg = permanent flag
-- Chan = channel
-- Maxmsg = maximum message
-- Bufquo = buufer quote
-- Promsk = protection mast
-- Acmode = access mode
-- Lognam = logical name
-- Flags = flags
--
procedure Sys_Crembx
(Status : out Cond_Value_Type;
Prmflg : unsigned_char;
Chan : out unsigned_short;
Maxmsg : unsigned_long := 0;
Bufquo : unsigned_long := 0;
Promsk : unsigned_short := 0;
Acmode : unsigned_short := 0;
Lognam : String;
Flags : unsigned_long := 0);
pragma Interface (External, Sys_Crembx);
pragma Import_Valued_Procedure
(Sys_Crembx, "SYS$CREMBX",
(Cond_Value_Type, unsigned_char, unsigned_short,
unsigned_long, unsigned_long, unsigned_short,
unsigned_short, String, unsigned_long),
(Value, Value, Reference,
Value, Value, Value,
Value, Descriptor (s), Value));
-------------
-- Sys_QIO --
-------------
--
-- Queue I/O
--
-- Status = Returned status of call
-- EFN = event flag to be set when I/O completes
-- Chan = channel
-- Func = function
-- Iosb = I/O status block
-- Astadr = system trap to be generated when I/O completes
-- Astprm = AST parameter
-- P1-6 = optional parameters
procedure Sys_QIO
(Status : out Cond_Value_Type;
EFN : unsigned_long := 0;
Chan : unsigned_short;
Func : unsigned_long := 0;
Iosb : out IO_Status_Block_Type;
Astadr : AST_Handler := No_AST_Handler;
Astprm : Address := Null_Address;
P1 : unsigned_long := 0;
P2 : unsigned_long := 0;
P3 : unsigned_long := 0;
P4 : unsigned_long := 0;
P5 : unsigned_long := 0;
P6 : unsigned_long := 0);
procedure Sys_QIO
(Status : out Cond_Value_Type;
EFN : unsigned_long := 0;
Chan : unsigned_short;
Func : unsigned_long := 0;
Iosb : Address := Null_Address;
Astadr : AST_Handler := No_AST_Handler;
Astprm : Address := Null_Address;
P1 : unsigned_long := 0;
P2 : unsigned_long := 0;
P3 : unsigned_long := 0;
P4 : unsigned_long := 0;
P5 : unsigned_long := 0;
P6 : unsigned_long := 0);
pragma Interface (External, Sys_QIO);
pragma Import_Valued_Procedure
(Sys_QIO, "SYS$QIO",
(Cond_Value_Type, unsigned_long, unsigned_short, unsigned_long,
IO_Status_Block_Type, AST_Handler, Address,
unsigned_long, unsigned_long, unsigned_long,
unsigned_long, unsigned_long, unsigned_long),
(Value, Value, Value, Value,
Reference, Value, Value,
Value, Value, Value,
Value, Value, Value));
pragma Import_Valued_Procedure
(Sys_QIO, "SYS$QIO",
(Cond_Value_Type, unsigned_long, unsigned_short, unsigned_long,
Address, AST_Handler, Address,
unsigned_long, unsigned_long, unsigned_long,
unsigned_long, unsigned_long, unsigned_long),
(Value, Value, Value, Value,
Value, Value, Value,
Value, Value, Value,
Value, Value, Value));
----------------
-- Sys_Setimr --
----------------
--
-- Set Timer
--
-- Status = Returned status of call
-- EFN = event flag to be set when timer expires
-- Tim = expiration time
-- AST = system trap to be generated when timer expires
-- Redidt = returned ID of timer (e.g. to cancel timer)
-- Flags = flags
--
procedure Sys_Setimr
(Status : out Cond_Value_Type;
EFN : unsigned_long;
Tim : Long_Integer;
AST : AST_Handler;
Reqidt : Address;
Flags : unsigned_long);
pragma Interface (External, Sys_Setimr);
pragma Import_Valued_Procedure
(Sys_Setimr, "SYS$SETIMR",
(Cond_Value_Type, unsigned_long, Long_Integer,
AST_Handler, Address, unsigned_long),
(Value, Value, Reference,
Value, Value, Value));
Interrupt_ID_0 : constant := 0;
Interrupt_ID_1 : constant := 1;
Interrupt_ID_2 : constant := 2;
Interrupt_ID_3 : constant := 3;
Interrupt_ID_4 : constant := 4;
Interrupt_ID_5 : constant := 5;
Interrupt_ID_6 : constant := 6;
Interrupt_ID_7 : constant := 7;
Interrupt_ID_8 : constant := 8;
Interrupt_ID_9 : constant := 9;
Interrupt_ID_10 : constant := 10;
Interrupt_ID_11 : constant := 11;
Interrupt_ID_12 : constant := 12;
Interrupt_ID_13 : constant := 13;
Interrupt_ID_14 : constant := 14;
Interrupt_ID_15 : constant := 15;
Interrupt_ID_16 : constant := 16;
Interrupt_ID_17 : constant := 17;
Interrupt_ID_18 : constant := 18;
Interrupt_ID_19 : constant := 19;
Interrupt_ID_20 : constant := 20;
Interrupt_ID_21 : constant := 21;
Interrupt_ID_22 : constant := 22;
Interrupt_ID_23 : constant := 23;
Interrupt_ID_24 : constant := 24;
Interrupt_ID_25 : constant := 25;
Interrupt_ID_26 : constant := 26;
Interrupt_ID_27 : constant := 27;
Interrupt_ID_28 : constant := 28;
Interrupt_ID_29 : constant := 29;
Interrupt_ID_30 : constant := 30;
Interrupt_ID_31 : constant := 31;
-----------
-- Errno --
-----------
function errno return int;
pragma Import (C, errno, "__get_errno");
EINTR : constant := 4; -- Interrupted system call
EAGAIN : constant := 11; -- No more processes
ENOMEM : constant := 12; -- Not enough core
-------------------------
-- Priority Scheduling --
-------------------------
SCHED_FIFO : constant := 1;
SCHED_RR : constant := 2;
SCHED_OTHER : constant := 3;
SCHED_BG : constant := 4;
SCHED_LFI : constant := 5;
SCHED_LRR : constant := 6;
-------------
-- Process --
-------------
type pid_t is private;
function kill (pid : pid_t; sig : Signal) return int;
pragma Import (C, kill);
function getpid return pid_t;
pragma Import (C, getpid);
-------------
-- Threads --
-------------
type Thread_Body is access
function (arg : System.Address) return System.Address;
pragma Convention (C, Thread_Body);
function Thread_Body_Access is new
Ada.Unchecked_Conversion (System.Aux_DEC.Short_Address, Thread_Body);
type pthread_t is private;
subtype Thread_Id is pthread_t;
type pthread_mutex_t is limited private;
type pthread_cond_t is limited private;
type pthread_attr_t is limited private;
type pthread_mutexattr_t is limited private;
type pthread_condattr_t is limited private;
type pthread_key_t is private;
PTHREAD_CREATE_JOINABLE : constant := 0;
PTHREAD_CREATE_DETACHED : constant := 1;
PTHREAD_CANCEL_DISABLE : constant := 0;
PTHREAD_CANCEL_ENABLE : constant := 1;
PTHREAD_CANCEL_DEFERRED : constant := 0;
PTHREAD_CANCEL_ASYNCHRONOUS : constant := 1;
-- Don't use ERRORCHECK mutexes, they don't work when a thread is not
-- the owner. AST's, at least, unlock others threads mutexes. Even
-- if the error is ignored, they don't work.
PTHREAD_MUTEX_NORMAL_NP : constant := 0;
PTHREAD_MUTEX_RECURSIVE_NP : constant := 1;
PTHREAD_MUTEX_ERRORCHECK_NP : constant := 2;
PTHREAD_INHERIT_SCHED : constant := 0;
PTHREAD_EXPLICIT_SCHED : constant := 1;
function pthread_cancel (thread : pthread_t) return int;
pragma Import (C, pthread_cancel, "PTHREAD_CANCEL");
procedure pthread_testcancel;
pragma Import (C, pthread_testcancel, "PTHREAD_TESTCANCEL");
function pthread_setcancelstate
(newstate : int; oldstate : access int) return int;
pragma Import (C, pthread_setcancelstate, "PTHREAD_SETCANCELSTATE");
function pthread_setcanceltype
(newtype : int; oldtype : access int) return int;
pragma Import (C, pthread_setcanceltype, "PTHREAD_SETCANCELTYPE");
-------------------------
-- POSIX.1c Section 3 --
-------------------------
function pthread_lock_global_np return int;
pragma Import (C, pthread_lock_global_np, "PTHREAD_LOCK_GLOBAL_NP");
function pthread_unlock_global_np return int;
pragma Import (C, pthread_unlock_global_np, "PTHREAD_UNLOCK_GLOBAL_NP");
--------------------------
-- POSIX.1c Section 11 --
--------------------------
function pthread_mutexattr_init
(attr : access pthread_mutexattr_t) return int;
pragma Import (C, pthread_mutexattr_init, "PTHREAD_MUTEXATTR_INIT");
function pthread_mutexattr_destroy
(attr : access pthread_mutexattr_t) return int;
pragma Import (C, pthread_mutexattr_destroy, "PTHREAD_MUTEXATTR_DESTROY");
function pthread_mutexattr_settype_np
(attr : access pthread_mutexattr_t;
mutextype : int) return int;
pragma Import (C, pthread_mutexattr_settype_np,
"PTHREAD_MUTEXATTR_SETTYPE_NP");
function pthread_mutex_init
(mutex : access pthread_mutex_t;
attr : access pthread_mutexattr_t) return int;
pragma Import (C, pthread_mutex_init, "PTHREAD_MUTEX_INIT");
function pthread_mutex_destroy (mutex : access pthread_mutex_t) return int;
pragma Import (C, pthread_mutex_destroy, "PTHREAD_MUTEX_DESTROY");
function pthread_mutex_lock (mutex : access pthread_mutex_t) return int;
pragma Import (C, pthread_mutex_lock, "PTHREAD_MUTEX_LOCK");
function pthread_mutex_unlock (mutex : access pthread_mutex_t) return int;
pragma Import (C, pthread_mutex_unlock, "PTHREAD_MUTEX_UNLOCK");
function pthread_condattr_init
(attr : access pthread_condattr_t) return int;
pragma Import (C, pthread_condattr_init, "PTHREAD_CONDATTR_INIT");
function pthread_condattr_destroy
(attr : access pthread_condattr_t) return int;
pragma Import (C, pthread_condattr_destroy, "PTHREAD_CONDATTR_DESTROY");
function pthread_cond_init
(cond : access pthread_cond_t;
attr : access pthread_condattr_t) return int;
pragma Import (C, pthread_cond_init, "PTHREAD_COND_INIT");
function pthread_cond_destroy (cond : access pthread_cond_t) return int;
pragma Import (C, pthread_cond_destroy, "PTHREAD_COND_DESTROY");
function pthread_cond_signal (cond : access pthread_cond_t) return int;
pragma Import (C, pthread_cond_signal, "PTHREAD_COND_SIGNAL");
function pthread_cond_signal_int_np
(cond : access pthread_cond_t) return int;
pragma Import (C, pthread_cond_signal_int_np,
"PTHREAD_COND_SIGNAL_INT_NP");
function pthread_cond_wait
(cond : access pthread_cond_t;
mutex : access pthread_mutex_t) return int;
pragma Import (C, pthread_cond_wait, "PTHREAD_COND_WAIT");
--------------------------
-- POSIX.1c Section 13 --
--------------------------
function pthread_mutexattr_setprotocol
(attr : access pthread_mutexattr_t; protocol : int) return int;
pragma Import (C, pthread_mutexattr_setprotocol,
"PTHREAD_MUTEXATTR_SETPROTOCOL");
type struct_sched_param is record
sched_priority : int; -- scheduling priority
end record;
for struct_sched_param'Size use 8*4;
pragma Convention (C, struct_sched_param);
function pthread_setschedparam
(thread : pthread_t;
policy : int;
param : access struct_sched_param) return int;
pragma Import (C, pthread_setschedparam, "PTHREAD_SETSCHEDPARAM");
function pthread_attr_setscope
(attr : access pthread_attr_t;
contentionscope : int) return int;
pragma Import (C, pthread_attr_setscope, "PTHREAD_ATTR_SETSCOPE");
function pthread_attr_setinheritsched
(attr : access pthread_attr_t;
inheritsched : int) return int;
pragma Import (C, pthread_attr_setinheritsched,
"PTHREAD_ATTR_SETINHERITSCHED");
function pthread_attr_setschedpolicy
(attr : access pthread_attr_t; policy : int) return int;
pragma Import (C, pthread_attr_setschedpolicy,
"PTHREAD_ATTR_SETSCHEDPOLICY");
function pthread_attr_setschedparam
(attr : access pthread_attr_t;
sched_param : int) return int;
pragma Import (C, pthread_attr_setschedparam, "PTHREAD_ATTR_SETSCHEDPARAM");
function sched_yield return int;
--------------------------
-- P1003.1c Section 16 --
--------------------------
function pthread_attr_init (attributes : access pthread_attr_t) return int;
pragma Import (C, pthread_attr_init, "PTHREAD_ATTR_INIT");
function pthread_attr_destroy
(attributes : access pthread_attr_t) return int;
pragma Import (C, pthread_attr_destroy, "PTHREAD_ATTR_DESTROY");
function pthread_attr_setdetachstate
(attr : access pthread_attr_t;
detachstate : int) return int;
pragma Import (C, pthread_attr_setdetachstate,
"PTHREAD_ATTR_SETDETACHSTATE");
function pthread_attr_setstacksize
(attr : access pthread_attr_t;
stacksize : size_t) return int;
pragma Import (C, pthread_attr_setstacksize, "PTHREAD_ATTR_SETSTACKSIZE");
function pthread_create
(thread : access pthread_t;
attributes : access pthread_attr_t;
start_routine : Thread_Body;
arg : System.Address) return int;
pragma Import (C, pthread_create, "PTHREAD_CREATE");
procedure pthread_exit (status : System.Address);
pragma Import (C, pthread_exit, "PTHREAD_EXIT");
function pthread_self return pthread_t;
pragma Import (C, pthread_self, "PTHREAD_SELF");
-- ??? This can be inlined, see pthread.h
--------------------------
-- POSIX.1c Section 17 --
--------------------------
function pthread_setspecific
(key : pthread_key_t;
value : System.Address) return int;
pragma Import (C, pthread_setspecific, "PTHREAD_SETSPECIFIC");
function pthread_getspecific (key : pthread_key_t) return System.Address;
pragma Import (C, pthread_getspecific, "PTHREAD_GETSPECIFIC");
type destructor_pointer is access procedure (arg : System.Address);
pragma Convention (C, destructor_pointer);
function pthread_key_create
(key : access pthread_key_t;
destructor : destructor_pointer) return int;
pragma Import (C, pthread_key_create, "PTHREAD_KEY_CREATE");
private
type pid_t is new int;
type pthreadLongAddr_p is mod 2 ** Long_Integer'Size;
type pthreadLongAddr_t is mod 2 ** Long_Integer'Size;
type pthreadLongAddr_t_ptr is mod 2 ** Long_Integer'Size;
type pthreadLongString_t is mod 2 ** Long_Integer'Size;
type pthreadLongUint_t is mod 2 ** Long_Integer'Size;
type pthreadLongUint_array is array (Natural range <>)
of pthreadLongUint_t;
type pthread_t is mod 2 ** Long_Integer'Size;
type pthread_cond_t is record
state : unsigned;
valid : unsigned;
name : pthreadLongString_t;
arg : unsigned;
sequence : unsigned;
block : pthreadLongAddr_t_ptr;
end record;
for pthread_cond_t'Size use 8*32;
pragma Convention (C, pthread_cond_t);
type pthread_attr_t is record
valid : long;
name : pthreadLongString_t;
arg : pthreadLongUint_t;
reserved : pthreadLongUint_array (0 .. 18);
end record;
for pthread_attr_t'Size use 8*176;
pragma Convention (C, pthread_attr_t);
type pthread_mutex_t is record
lock : unsigned;
valid : unsigned;
name : pthreadLongString_t;
arg : unsigned;
sequence : unsigned;
block : pthreadLongAddr_p;
owner : unsigned;
depth : unsigned;
end record;
for pthread_mutex_t'Size use 8*40;
pragma Convention (C, pthread_mutex_t);
type pthread_mutexattr_t is record
valid : long;
reserved : pthreadLongUint_array (0 .. 14);
end record;
for pthread_mutexattr_t'Size use 8*128;
pragma Convention (C, pthread_mutexattr_t);
type pthread_condattr_t is record
valid : long;
reserved : pthreadLongUint_array (0 .. 12);
end record;
for pthread_condattr_t'Size use 8*112;
pragma Convention (C, pthread_condattr_t);
type pthread_key_t is new unsigned;
pragma Inline (pthread_self);
end System.OS_Interface;

2158
gcc/ada/s-tasdeb-vms.adb Normal file

File diff suppressed because it is too large Load Diff