Range snap bitmasks as they are set.

Range bounds adjustments based on a bitmask were lazily set.  This lead
to some inconsitencies which were causing problems. Improve the bounds,
and do it every time the bitmask is adjusted.

	PR tree-optimization/121468
	PR tree-optimization/121206
	PR tree-optimization/122200
	gcc/
	* value-range.cc (irange_bitmask::range_from_mask): New.
	(irange::snap): Add explicit overflow flag.
	(irange::snap_subranges): Use overflow flag.
	(irange::set_range_from_bitmask): Use range_from_mask.
	(test_irange_snap_bounds): Adjust for improved ranges.
	* value-range.h (irange::range_from_mask): Add prototype.
	(irange::snap): Adjust prototype.

	gcc/testsuite/
	* gcc.dg/pr121468.c: New.
	* gcc.dg/pr122200.c: New.
This commit is contained in:
Andrew MacLeod 2025-10-07 11:56:08 -04:00
parent fa9008b8a7
commit 9e04a43012
4 changed files with 187 additions and 132 deletions

View File

@ -0,0 +1,30 @@
/* { dg-do compile } */
/* { dg-options "-Os" } */
int e, f, n;
static int a () { return e; }
void b () { while (a()); }
static int d () { return e; }
static void g (int h) {
if (e)
c:
if (d())
goto i;
do {
if (f)
goto c;
goto k;
i:
h = 2147483647;
k:
e = 2147483646;
e = 6 + e;
do {
b ();
} while (1784828957 / f + e + (808 + h) > 0);
} while (1 % h);
}
void m () { g (-2); }
int main () {
if (n)
g (-1);
}

View File

@ -0,0 +1,23 @@
/* { dg-do compile } */
/* { dg-options "-O3" } */
/* { dg-additional-options "-mavx" { target { x86_64-*-* i?86-*-* } } } */
int a, b;
void f(float g[][5]) {
int c;
for (c = 0; c != a; c++)
g[1][c] = c;
for (int d; d; d++)
for (int e = 1; e != b; e++) {
for (c = 0; c != a; c++) {
g[0][1] = 1;
if (g[1][c])
g[1][c] = 1;
}
}
}

View File

@ -55,6 +55,93 @@ irange_bitmask::irange_bitmask (tree type,
} }
} }
// Return a range in R of TYPE for this bitmask which encompasses
// a set of valid values which are allowable for this bitmask/value
// combination. If false is returned, no range was set.
bool
irange_bitmask::range_from_mask (irange &r, tree type) const
{
if (unknown_p ())
return false;
gcc_checking_assert ((value () & mask ()) == 0);
unsigned popcount = wi::popcount (mask ());
// For 0, 1 or 2 bits set, create a range with only the allowed values.
if (popcount <= 2)
{
// VALUE is always a valid range.
r.set (type, value (), value ());
// If there are bits in mask, (VALUE | MASK) is also valid.
if (popcount >= 1)
r.union_ (int_range<1> (type, value () | mask (), value () | mask ()));
// If there are 2 bits set, add the other 2 possible values.
if (popcount == 2)
{
// Extract the two 1-bit masks into lb and ub.
wide_int lb = mask () & -mask (); // Lowest set bit.
wide_int ub = mask () & (mask () - 1); // The other bit.
r.union_ (int_range<1> (type, value () | lb, value () | lb));
r.union_ (int_range<1> (type, value () | ub, value () | ub));
}
return true;
}
// Otherwise, calculate the valid range allowed by the bitmask.
int prec = TYPE_PRECISION (type);
wide_int ub = mask () | value ();
wide_int sign_bit = wi::one (prec) << (prec - 1);
wide_int sign_mask = mask () & sign_bit;
wide_int sign_value = value () & sign_bit;
// Create a lower and upper bound.
// If unsigned, or the sign is known to be positive, create [lb, ub]
if (TYPE_SIGN (type) == UNSIGNED || (sign_mask == 0 && sign_value == 0))
r.set (type, value (), mask () | value ());
// If the sign bit is KNOWN to be 1, we have a completely negative range.
else if (sign_mask == 0 && sign_value != 0)
r.set (type, value (), value () | (mask () & ~sign_bit));
else
{
// Otherwise there are 2 ranges, a negative and positive interval.
wide_int neg_base = value () | sign_bit;
wide_int pos_mask = mask () & ~sign_bit;
r.set (type, neg_base , neg_base | pos_mask);
r.union_ (int_range<1> (type, value (), value () | pos_mask));
}
// If the mask doesn't have a trailing zero, there is nothing else to filter.
int z = wi::ctz (mask ());
if (z == 0)
return true;
// Remove the [0, X] values which the trailing-zero mask rules out.
// For example, if z == 4, the mask is 0xFFF0, and the lowest 4 bits
// define the range [0, 15]. Only (value & low_mask) is allowed.
ub = (wi::one (prec) << z) - 1; // Upper bound of range.
int_range<4> mask_range (type, wi::zero (prec), ub);
// Remove the valid value from the excluded range and form an anti-range.
wide_int allow = value () & ub;
mask_range.intersect (int_range<2> (type, allow, allow, VR_ANTI_RANGE));
mask_range.invert ();
r.intersect (mask_range);
if (TYPE_SIGN (type) == SIGNED)
{
// For signed negative values, find the lowest value with trailing zeros.
// This forms a range such as [-512, -1] for z=9.
wide_int lb = -(wi::one (prec) << z);
int_range<4> mask_range (type, lb, wi::minus_one (prec));
// Remove the one allowed value from that set.
wide_int allow = value () | lb;
mask_range.intersect (int_range<2> (type, allow, allow, VR_ANTI_RANGE));
mask_range.invert ();
r.intersect (mask_range);
}
return true;
}
void void
irange::accept (const vrange_visitor &v) const irange::accept (const vrange_visitor &v) const
{ {
@ -2275,47 +2362,57 @@ irange::invert ()
// This routine will take the bounds [LB, UB], and apply the bitmask to those // This routine will take the bounds [LB, UB], and apply the bitmask to those
// values such that both bounds satisfy the bitmask. TRUE is returned // values such that both bounds satisfy the bitmask. TRUE is returned
// if either bound changes, and they are returned as [NEW_LB, NEW_UB]. // if either bound changes, and they are returned as [NEW_LB, NEW_UB].
// if NEW_UB < NEW_LB, then the entire bound is to be removed as none of // If there is an overflow, or if (NEW_UB < NEW_LB), then the entire bound is
// the values are valid. // to be removed as none of the values are valid. This is indicated by
// teturning TRUE in OVF. False indicates the bounds are fine.
// ie, [4, 14] MASK 0xFFFE VALUE 0x1 // ie, [4, 14] MASK 0xFFFE VALUE 0x1
// means all values must be odd, the new bounds returned will be [5, 13]. // means all values must be odd, the new bounds returned will be [5, 13] with
// OVF set to FALSE.
// ie, [4, 4] MASK 0xFFFE VALUE 0x1 // ie, [4, 4] MASK 0xFFFE VALUE 0x1
// would return [1, 0] and as the LB < UB, the entire subrange is invalid // would return TRUE and OVF == TRUE. The entire subrange should be removed.
// and should be removed.
bool bool
irange::snap (const wide_int &lb, const wide_int &ub, irange::snap (const wide_int &lb, const wide_int &ub,
wide_int &new_lb, wide_int &new_ub) wide_int &new_lb, wide_int &new_ub, bool &ovf)
{ {
ovf = false;
int z = wi::ctz (m_bitmask.mask ()); int z = wi::ctz (m_bitmask.mask ());
if (z == 0) if (z == 0)
return false; return false;
// Shortcircuit check for values that are already good.
if ((((lb ^ m_bitmask.value ()) | (ub ^ m_bitmask.value ()))
& ~m_bitmask.mask ()) == 0)
return false;
const wide_int step = (wi::one (TYPE_PRECISION (type ())) << z); const wide_int step = (wi::one (TYPE_PRECISION (type ())) << z);
const wide_int match_mask = step - 1; const wide_int match_mask = step - 1;
const wide_int value = m_bitmask.value () & match_mask; const wide_int value = m_bitmask.value () & match_mask;
bool ovf = false;
wide_int rem_lb = lb & match_mask; wide_int rem_lb = lb & match_mask;
wide_int offset = (value - rem_lb) & match_mask; wide_int offset = (value - rem_lb) & match_mask;
new_lb = lb + offset; new_lb = lb + offset;
// Check for overflows at +INF // Check for overflows at +INF
if (wi::lt_p (new_lb, lb, TYPE_SIGN (type ()))) if (wi::lt_p (new_lb, lb, TYPE_SIGN (type ())))
ovf = true; {
ovf = true;
return true;
}
wide_int rem_ub = ub & match_mask; wide_int rem_ub = ub & match_mask;
wide_int offset_ub = (rem_ub - value) & match_mask; wide_int offset_ub = (rem_ub - value) & match_mask;
new_ub = ub - offset_ub; new_ub = ub - offset_ub;
// Check for underflows at -INF // Check for underflows at -INF
if (wi::gt_p (new_ub, ub, TYPE_SIGN (type ()))) if (wi::gt_p (new_ub, ub, TYPE_SIGN (type ())))
ovf = true;
// Overflow or inverted range = invalid
if (ovf || wi::lt_p (new_ub, new_lb, TYPE_SIGN (type ())))
{ {
new_lb = wi::one (lb.get_precision ()); ovf = true;
new_ub = wi::zero (ub.get_precision ()); return true;
}
// If inverted range is invalid, set overflow to TRUE.
if (wi::lt_p (new_ub, new_lb, TYPE_SIGN (type ())))
{
ovf = true;
return true; return true;
} }
return (new_lb != lb) || (new_ub != ub); return (new_lb != lb) || (new_ub != ub);
@ -2334,11 +2431,12 @@ irange::snap_subranges ()
wide_int lb, ub; wide_int lb, ub;
for (x = 0; x < m_num_ranges; x++) for (x = 0; x < m_num_ranges; x++)
{ {
if (snap (lower_bound (x), upper_bound (x), lb, ub)) bool ovf;
if (snap (lower_bound (x), upper_bound (x), lb, ub, ovf))
{ {
changed = true; changed = true;
// This subrange is to be completely removed. // Check if this subrange is to be completely removed.
if (wi::lt_p (ub, lb, TYPE_SIGN (type ()))) if (ovf)
{ {
int_range<1> tmp (type (), lower_bound (x), upper_bound (x)); int_range<1> tmp (type (), lower_bound (x), upper_bound (x));
invalid.union_ (tmp); invalid.union_ (tmp);
@ -2359,109 +2457,25 @@ irange::snap_subranges ()
return changed; return changed;
} }
// If the mask can be trivially converted to a range, do so. // If the bitmask has a range representation, intersect this range with
// Otherwise attempt to remove the lower bits from the range. // the bitmasks range. Then ensure all enpoints match the bitmask.
// Return true if the range changed in any way. // Return TRUE if the range changes at all.
bool bool
irange::set_range_from_bitmask () irange::set_range_from_bitmask ()
{ {
gcc_checking_assert (!undefined_p ()); gcc_checking_assert (!undefined_p ());
if (m_bitmask.unknown_p ()) // Snap subranmges when bitmask is first set.
snap_subranges ();
if (undefined_p ())
return true;
// Calculate the set of ranges valid for the bitmask.
int_range_max allow;
if (!m_bitmask.range_from_mask (allow, m_type))
return false; return false;
// And intersect that set of ranges with the current set.
// If all the bits are known, this is a singleton. return intersect (allow);
if (m_bitmask.mask () == 0)
{
// Make sure the singleton is within the range.
if (contains_p (m_bitmask.value ()))
set (m_type, m_bitmask.value (), m_bitmask.value ());
else
set_undefined ();
return true;
}
unsigned popcount = wi::popcount (m_bitmask.get_nonzero_bits ());
// If we have only one bit set in the mask, we can figure out the
// range immediately.
if (popcount == 1)
{
// Make sure we don't pessimize the range.
if (!contains_p (m_bitmask.get_nonzero_bits ()))
return false;
bool has_zero = contains_zero_p (*this);
wide_int nz = m_bitmask.get_nonzero_bits ();
set (m_type, nz, nz);
m_bitmask.set_nonzero_bits (nz);
if (has_zero)
{
int_range<2> zero;
zero.set_zero (m_type);
union_ (zero);
}
if (flag_checking)
verify_range ();
return true;
}
else if (popcount == 0)
{
set_zero (m_type);
return true;
}
// If the mask doesn't have a trailing zero, theres nothing to filter.
int z = wi::ctz (m_bitmask.mask ());
if (!z)
return false;
int prec = TYPE_PRECISION (m_type);
wide_int value = m_bitmask.value ();
wide_int mask = m_bitmask.mask ();
// Remove the [0, X] values which the trailing-zero mask rules out.
// For example, if z == 4, the mask is 0xFFF0, and the lowest 4 bits
// define the range [0, 15]. Only one of which (value & low_mask) is allowed.
wide_int ub = (wi::one (prec) << z) - 1; // Upper bound of affected range.
int_range_max mask_range (m_type, wi::zero (prec), ub);
// Remove the one valid value from the excluded range and form an anti-range.
wide_int allow = value & ub;
mask_range.intersect (int_range<2> (m_type, allow, allow, VR_ANTI_RANGE));
// Invert it to get the allowed values and intersect it with the main range.
mask_range.invert ();
bool changed = intersect (mask_range);
// Now handle the rest of the domain — the upper side for positive values,
// or [-X, -1] for signed negatives.
// Compute the maximum value representable under the mask/value constraint.
ub = mask | value;
// If value is non-negative, adjust the upper limit to remove values above
// UB that conflict with known fixed bits.
if (TYPE_SIGN (m_type) == UNSIGNED || wi::clz (ub) > 0)
mask_range = int_range<1> (m_type, wi::zero (prec), ub);
else
{
// For signed negative values, find the lowest value with trailing zeros.
// This forms a range such as [-512, -1] for z=9.
wide_int lb = -(wi::one (prec) << z);
mask_range = int_range<2> (m_type, lb, wi::minus_one (prec));
// Remove the one allowed value from that set.
allow = value | lb;
mask_range.intersect (int_range<2> (m_type, allow, allow, VR_ANTI_RANGE));
mask_range.invert ();
}
// Make sure we call intersect, so do it first.
changed = intersect (mask_range) | changed;
// Now make sure each subrange endpoint matches the bitmask.
changed |= snap_subranges ();
return changed;
} }
void void
@ -2932,7 +2946,7 @@ test_irange_snap_bounds ()
tree u1 = build_nonstandard_integer_type (1, /*unsigned=*/ 1); tree u1 = build_nonstandard_integer_type (1, /*unsigned=*/ 1);
// Basic aligned range: even-only // Basic aligned range: even-only
assert_snap_result (5, 15, 6, 14, 0xFFFFFFFE, 0x0, u32); assert_snap_result (5, 15, 6, 14, 0xE, 0x0, u32);
// Singleton that doesn't match mask: undefined. // Singleton that doesn't match mask: undefined.
assert_snap_result (7, 7, 1, 0, 0xFFFFFFFE, 0x0, u32); assert_snap_result (7, 7, 1, 0, 0xFFFFFFFE, 0x0, u32);
// 8-bit signed char, mask 0xF0 (i.e. step of 16). // 8-bit signed char, mask 0xF0 (i.e. step of 16).
@ -3204,15 +3218,12 @@ range_tests_misc ()
static void static void
range_tests_nonzero_bits () range_tests_nonzero_bits ()
{ {
int_range<2> r0, r1; int_range<8> r0, r1;
// Adding nonzero bits to a varying drops the varying. // Adding nonzero bits to a varying drops the varying.
r0.set_varying (integer_type_node); r0.set_varying (integer_type_node);
r0.set_nonzero_bits (INT (255)); r0.set_nonzero_bits (INT (255));
ASSERT_TRUE (!r0.varying_p ()); ASSERT_TRUE (!r0.varying_p ());
// Dropping the nonzero bits brings us back to varying.
r0.set_nonzero_bits (INT (-1));
ASSERT_TRUE (r0.varying_p ());
// Test contains_p with nonzero bits. // Test contains_p with nonzero bits.
r0.set_zero (integer_type_node); r0.set_zero (integer_type_node);
@ -3244,17 +3255,6 @@ range_tests_nonzero_bits ()
r0.intersect (r1); r0.intersect (r1);
ASSERT_TRUE (r0.get_nonzero_bits () == 0xff); ASSERT_TRUE (r0.get_nonzero_bits () == 0xff);
// The union of a mask of 0xff..ffff00 with a mask of 0xff spans the
// entire domain, and makes the range a varying.
r0.set_varying (integer_type_node);
wide_int x = wi::shwi (0xff, TYPE_PRECISION (integer_type_node));
x = wi::bit_not (x);
r0.set_nonzero_bits (x); // 0xff..ff00
r1.set_varying (integer_type_node);
r1.set_nonzero_bits (INT (0xff));
r0.union_ (r1);
ASSERT_TRUE (r0.varying_p ());
// Test that setting a nonzero bit of 1 does not pessimize the range. // Test that setting a nonzero bit of 1 does not pessimize the range.
r0.set_zero (integer_type_node); r0.set_zero (integer_type_node);
r0.set_nonzero_bits (INT (1)); r0.set_nonzero_bits (INT (1));

View File

@ -150,6 +150,7 @@ public:
bool operator!= (const irange_bitmask &src) const { return !(*this == src); } bool operator!= (const irange_bitmask &src) const { return !(*this == src); }
void verify_mask () const; void verify_mask () const;
void dump (FILE *) const; void dump (FILE *) const;
bool range_from_mask (irange &r, tree type) const;
bool member_p (const wide_int &val) const; bool member_p (const wide_int &val) const;
@ -346,7 +347,8 @@ private:
bool union_bitmask (const irange &r); bool union_bitmask (const irange &r);
bool set_range_from_bitmask (); bool set_range_from_bitmask ();
bool snap_subranges (); bool snap_subranges ();
bool snap (const wide_int &, const wide_int &, wide_int &, wide_int &); bool snap (const wide_int &, const wide_int &, wide_int &, wide_int &,
bool &);
bool intersect (const wide_int& lb, const wide_int& ub); bool intersect (const wide_int& lb, const wide_int& ub);
bool union_append (const irange &r); bool union_append (const irange &r);