rs6000.c (map_to_integral_tree_type): New helper function.

[gcc]

2018-10-09  Will Schmidt <will_schmidt@vnet.ibm.com>

	* config/rs6000/rs6000.c (map_to_integral_tree_type): New helper
	function.
	(fold_mergeeo_helper): New helper function.
	(rs6000_gimple_fold_builtin): Add hooks for vec_mergee and vec_mergeo
	intrinsics.  Correct some whitespace indentation issues.

From-SVN: r265063
This commit is contained in:
Will Schmidt 2018-10-11 21:03:30 +00:00 committed by Will Schmidt
parent 5746195cdc
commit ea010af6b4
2 changed files with 186 additions and 123 deletions

View File

@ -1,3 +1,11 @@
2018-10-11 Will Schmidt <will_schmidt@vnet.ibm.com>
* config/rs6000/rs6000.c (map_to_integral_tree_type): New helper
function.
(fold_mergeeo_helper): New helper function.
(rs6000_gimple_fold_builtin): Add hooks for vec_mergee and vec_mergeo
intrinsics. Correct some whitespace indentation issues.
2018-10-11 Wilco Dijkstra <wdijkstr@arm.com>
PR target/87511

View File

@ -15238,6 +15238,25 @@ fold_compare_helper (gimple_stmt_iterator *gsi, tree_code code, gimple *stmt)
gsi_replace (gsi, g, true);
}
/* Helper function to map V2DF and V4SF types to their
integral equivalents (V2DI and V4SI). */
tree map_to_integral_tree_type (tree input_tree_type)
{
if (INTEGRAL_TYPE_P (TREE_TYPE (input_tree_type)))
return input_tree_type;
else
{
if (types_compatible_p (TREE_TYPE (input_tree_type),
TREE_TYPE (V2DF_type_node)))
return V2DI_type_node;
else if (types_compatible_p (TREE_TYPE (input_tree_type),
TREE_TYPE (V4SF_type_node)))
return V4SI_type_node;
else
gcc_unreachable ();
}
}
/* Helper function to handle the vector merge[hl] built-ins. The
implementation difference between h and l versions for this code are in
the values used when building of the permute vector for high word versus
@ -15260,19 +15279,7 @@ fold_mergehl_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_high)
float types, the permute type needs to map to the V2 or V4 type that
matches size. */
tree permute_type;
if (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
permute_type = lhs_type;
else
{
if (types_compatible_p (TREE_TYPE (lhs_type),
TREE_TYPE (V2DF_type_node)))
permute_type = V2DI_type_node;
else if (types_compatible_p (TREE_TYPE (lhs_type),
TREE_TYPE (V4SF_type_node)))
permute_type = V4SI_type_node;
else
gcc_unreachable ();
}
permute_type = map_to_integral_tree_type (lhs_type);
tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
for (int i = 0; i < midpoint; i++)
@ -15290,6 +15297,40 @@ fold_mergehl_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_high)
gsi_replace (gsi, g, true);
}
/* Helper function to handle the vector merge[eo] built-ins. */
static void
fold_mergeeo_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_odd)
{
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
tree lhs = gimple_call_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
int n_elts = TYPE_VECTOR_SUBPARTS (lhs_type);
/* The permute_type will match the lhs for integral types. For double and
float types, the permute type needs to map to the V2 or V4 type that
matches size. */
tree permute_type;
permute_type = map_to_integral_tree_type (lhs_type);
tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
/* Build the permute vector. */
for (int i = 0; i < n_elts / 2; i++)
{
elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
2*i + use_odd));
elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
2*i + use_odd + n_elts));
}
tree permute = elts.build ();
gimple *g = gimple_build_assign (lhs, VEC_PERM_EXPR, arg0, arg1, permute);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
}
/* Fold a machine-dependent built-in in GIMPLE. (For folding into
a constant, use rs6000_fold_builtin.) */
@ -15765,34 +15806,34 @@ rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
case VSX_BUILTIN_LXVD2X_V2DF:
case VSX_BUILTIN_LXVD2X_V2DI:
{
arg0 = gimple_call_arg (stmt, 0); // offset
arg1 = gimple_call_arg (stmt, 1); // address
lhs = gimple_call_lhs (stmt);
location_t loc = gimple_location (stmt);
/* Since arg1 may be cast to a different type, just use ptr_type_node
here instead of trying to enforce TBAA on pointer types. */
tree arg1_type = ptr_type_node;
tree lhs_type = TREE_TYPE (lhs);
/* In GIMPLE the type of the MEM_REF specifies the alignment. The
required alignment (power) is 4 bytes regardless of data type. */
tree align_ltype = build_aligned_type (lhs_type, 4);
/* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
the tree using the value from arg0. The resulting type will match
the type of arg1. */
gimple_seq stmts = NULL;
tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
arg0 = gimple_call_arg (stmt, 0); // offset
arg1 = gimple_call_arg (stmt, 1); // address
lhs = gimple_call_lhs (stmt);
location_t loc = gimple_location (stmt);
/* Since arg1 may be cast to a different type, just use ptr_type_node
here instead of trying to enforce TBAA on pointer types. */
tree arg1_type = ptr_type_node;
tree lhs_type = TREE_TYPE (lhs);
/* In GIMPLE the type of the MEM_REF specifies the alignment. The
required alignment (power) is 4 bytes regardless of data type. */
tree align_ltype = build_aligned_type (lhs_type, 4);
/* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
the tree using the value from arg0. The resulting type will match
the type of arg1. */
gimple_seq stmts = NULL;
tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
arg1_type, arg1, temp_offset);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
/* Use the build2 helper to set up the mem_ref. The MEM_REF could also
take an offset, but since we've already incorporated the offset
above, here we just pass in a zero. */
gimple *g;
g = gimple_build_assign (lhs, build2 (MEM_REF, align_ltype, temp_addr,
build_int_cst (arg1_type, 0)));
gimple_set_location (g, loc);
gsi_replace (gsi, g, true);
return true;
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
/* Use the build2 helper to set up the mem_ref. The MEM_REF could also
take an offset, but since we've already incorporated the offset
above, here we just pass in a zero. */
gimple *g;
g = gimple_build_assign (lhs, build2 (MEM_REF, align_ltype, temp_addr,
build_int_cst (arg1_type, 0)));
gimple_set_location (g, loc);
gsi_replace (gsi, g, true);
return true;
}
/* unaligned Vector stores. */
@ -15803,29 +15844,29 @@ rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
case VSX_BUILTIN_STXVD2X_V2DF:
case VSX_BUILTIN_STXVD2X_V2DI:
{
arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
arg1 = gimple_call_arg (stmt, 1); /* Offset. */
tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
location_t loc = gimple_location (stmt);
tree arg0_type = TREE_TYPE (arg0);
/* Use ptr_type_node (no TBAA) for the arg2_type. */
tree arg2_type = ptr_type_node;
/* In GIMPLE the type of the MEM_REF specifies the alignment. The
required alignment (power) is 4 bytes regardless of data type. */
tree align_stype = build_aligned_type (arg0_type, 4);
/* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
the tree using the value from arg1. */
gimple_seq stmts = NULL;
tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
arg1 = gimple_call_arg (stmt, 1); /* Offset. */
tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
location_t loc = gimple_location (stmt);
tree arg0_type = TREE_TYPE (arg0);
/* Use ptr_type_node (no TBAA) for the arg2_type. */
tree arg2_type = ptr_type_node;
/* In GIMPLE the type of the MEM_REF specifies the alignment. The
required alignment (power) is 4 bytes regardless of data type. */
tree align_stype = build_aligned_type (arg0_type, 4);
/* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
the tree using the value from arg1. */
gimple_seq stmts = NULL;
tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
arg2_type, arg2, temp_offset);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple *g;
g = gimple_build_assign (build2 (MEM_REF, align_stype, temp_addr,
build_int_cst (arg2_type, 0)), arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, true);
return true;
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple *g;
g = gimple_build_assign (build2 (MEM_REF, align_stype, temp_addr,
build_int_cst (arg2_type, 0)), arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, true);
return true;
}
/* Vector Fused multiply-add (fma). */
@ -15897,35 +15938,34 @@ rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
case ALTIVEC_BUILTIN_VSPLTISH:
case ALTIVEC_BUILTIN_VSPLTISW:
{
int size;
int size;
if (fn_code == ALTIVEC_BUILTIN_VSPLTISB)
size = 8;
else if (fn_code == ALTIVEC_BUILTIN_VSPLTISH)
size = 16;
else
size = 32;
if (fn_code == ALTIVEC_BUILTIN_VSPLTISB)
size = 8;
else if (fn_code == ALTIVEC_BUILTIN_VSPLTISH)
size = 16;
else
size = 32;
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
/* Only fold the vec_splat_*() if the lower bits of arg 0 is a
5-bit signed constant in range -16 to +15. */
if (TREE_CODE (arg0) != INTEGER_CST
|| !IN_RANGE (sext_hwi(TREE_INT_CST_LOW (arg0), size),
-16, 15))
return false;
gimple_seq stmts = NULL;
location_t loc = gimple_location (stmt);
tree splat_value = gimple_convert (&stmts, loc,
TREE_TYPE (TREE_TYPE (lhs)), arg0);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
tree splat_tree = build_vector_from_val (TREE_TYPE (lhs), splat_value);
g = gimple_build_assign (lhs, splat_tree);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
}
/* Only fold the vec_splat_*() if the lower bits of arg 0 is a
5-bit signed constant in range -16 to +15. */
if (TREE_CODE (arg0) != INTEGER_CST
|| !IN_RANGE (sext_hwi (TREE_INT_CST_LOW (arg0), size),
-16, 15))
return false;
gimple_seq stmts = NULL;
location_t loc = gimple_location (stmt);
tree splat_value = gimple_convert (&stmts, loc,
TREE_TYPE (TREE_TYPE (lhs)), arg0);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
tree splat_tree = build_vector_from_val (TREE_TYPE (lhs), splat_value);
g = gimple_build_assign (lhs, splat_tree);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
}
/* Flavors of vec_splat. */
/* a = vec_splat (b, 0x3) becomes a = { b[3],b[3],b[3],...}; */
@ -15977,8 +16017,8 @@ rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
case VSX_BUILTIN_VEC_MERGEL_V2DI:
case VSX_BUILTIN_XXMRGLW_4SF:
case VSX_BUILTIN_VEC_MERGEL_V2DF:
fold_mergehl_helper (gsi, stmt, 1);
return true;
fold_mergehl_helper (gsi, stmt, 1);
return true;
/* vec_mergeh (integrals). */
case ALTIVEC_BUILTIN_VMRGHH:
case ALTIVEC_BUILTIN_VMRGHW:
@ -15987,55 +16027,70 @@ rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
case VSX_BUILTIN_VEC_MERGEH_V2DI:
case VSX_BUILTIN_XXMRGHW_4SF:
case VSX_BUILTIN_VEC_MERGEH_V2DF:
fold_mergehl_helper (gsi, stmt, 0);
return true;
fold_mergehl_helper (gsi, stmt, 0);
return true;
/* Flavors of vec_mergee. */
case P8V_BUILTIN_VMRGEW_V4SI:
case P8V_BUILTIN_VMRGEW_V2DI:
case P8V_BUILTIN_VMRGEW_V4SF:
case P8V_BUILTIN_VMRGEW_V2DF:
fold_mergeeo_helper (gsi, stmt, 0);
return true;
/* Flavors of vec_mergeo. */
case P8V_BUILTIN_VMRGOW_V4SI:
case P8V_BUILTIN_VMRGOW_V2DI:
case P8V_BUILTIN_VMRGOW_V4SF:
case P8V_BUILTIN_VMRGOW_V2DF:
fold_mergeeo_helper (gsi, stmt, 1);
return true;
/* d = vec_pack (a, b) */
case P8V_BUILTIN_VPKUDUM:
case ALTIVEC_BUILTIN_VPKUHUM:
case ALTIVEC_BUILTIN_VPKUWUM:
{
arg0 = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
lhs = gimple_call_lhs (stmt);
gimple *g = gimple_build_assign (lhs, VEC_PACK_TRUNC_EXPR, arg0, arg1);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
arg0 = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
lhs = gimple_call_lhs (stmt);
gimple *g = gimple_build_assign (lhs, VEC_PACK_TRUNC_EXPR, arg0, arg1);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
}
/* d = vec_unpackh (a) */
/* Note that the UNPACK_{HI,LO}_EXPR used in the gimple_build_assign call
in this code is sensitive to endian-ness, and needs to be inverted to
handle both LE and BE targets. */
/* d = vec_unpackh (a) */
/* Note that the UNPACK_{HI,LO}_EXPR used in the gimple_build_assign call
in this code is sensitive to endian-ness, and needs to be inverted to
handle both LE and BE targets. */
case ALTIVEC_BUILTIN_VUPKHSB:
case ALTIVEC_BUILTIN_VUPKHSH:
case P8V_BUILTIN_VUPKHSW:
{
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
if (BYTES_BIG_ENDIAN)
g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
else
g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
if (BYTES_BIG_ENDIAN)
g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
else
g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
}
/* d = vec_unpackl (a) */
/* d = vec_unpackl (a) */
case ALTIVEC_BUILTIN_VUPKLSB:
case ALTIVEC_BUILTIN_VUPKLSH:
case P8V_BUILTIN_VUPKLSW:
{
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
if (BYTES_BIG_ENDIAN)
g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
else
g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
arg0 = gimple_call_arg (stmt, 0);
lhs = gimple_call_lhs (stmt);
if (BYTES_BIG_ENDIAN)
g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
else
g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
gimple_set_location (g, gimple_location (stmt));
gsi_replace (gsi, g, true);
return true;
}
/* There is no gimple type corresponding with pixel, so just return. */
case ALTIVEC_BUILTIN_VUPKHPX: