// class template regex -*- C++ -*-
// Copyright (C) 2013-2014 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// .
/**
 *  @file bits/regex_executor.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{regex}
 */
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
  template
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_search()
    {
      if (_M_flags & regex_constants::match_continuous)
	return _M_search_from_first();
      auto __cur = _M_begin;
      do
	{
	  _M_current = __cur;
	  if (_M_main(_Match_mode::_Prefix))
	    return true;
	}
      // Continue when __cur == _M_end
      while (__cur++ != _M_end);
      return false;
    }
  // The _M_main function operates in different modes, DFS mode or BFS mode,
  // indicated by template parameter __dfs_mode, and dispatches to one of the
  // _M_main_dispatch overloads.
  //
  // ------------------------------------------------------------
  //
  // DFS mode:
  //
  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
  // string.
  // At the very beginning the executor stands in the start state, then it
  // tries every possible state transition in current state recursively. Some
  // state transitions consume input string, say, a single-char-matcher or a
  // back-reference matcher; some don't, like assertion or other anchor nodes.
  // When the input is exhausted and/or the current state is an accepting
  // state, the whole executor returns true.
  //
  // TODO: This approach is exponentially slow for certain input.
  //       Try to compile the NFA to a DFA.
  //
  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
  // Space complexity: \theta(match_results.size() + match_length)
  //
  template
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_main_dispatch(_Match_mode __match_mode, __dfs)
    {
      _M_has_sol = false;
      _M_cur_results = _M_results;
      _M_dfs(__match_mode, _M_states._M_start);
      return _M_has_sol;
    }
  // ------------------------------------------------------------
  //
  // BFS mode:
  //
  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
  // explained this algorithm clearly.
  //
  // It first computes epsilon closure (states that can be achieved without
  // consuming characters) for every state that's still matching,
  // using the same DFS algorithm, but doesn't re-enter states (using
  // _M_states._M_visited to check), nor follow _S_opcode_match.
  //
  // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
  // as the start state.
  //
  // It significantly reduces potential duplicate states, so has a better
  // upper bound; but it requires more overhead.
  //
  // Time complexity: \Omega(match_length * match_results.size())
  //                  O(match_length * _M_nfa.size() * match_results.size())
  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
  //                   O(_M_nfa.size() * match_results.size())
  template
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_main_dispatch(_Match_mode __match_mode, __bfs)
    {
      _M_states._M_queue(_M_states._M_start, _M_results);
      bool __ret = false;
      while (1)
	{
	  _M_has_sol = false;
	  if (_M_states._M_match_queue.empty())
	    break;
	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
	  auto __old_queue = std::move(_M_states._M_match_queue);
	  for (auto& __task : __old_queue)
	    {
	      _M_cur_results = std::move(__task.second);
	      _M_dfs(__match_mode, __task.first);
	    }
	  if (__match_mode == _Match_mode::_Prefix)
	    __ret |= _M_has_sol;
	  if (_M_current == _M_end)
	    break;
	  ++_M_current;
	}
      if (__match_mode == _Match_mode::_Exact)
	__ret = _M_has_sol;
      return __ret;
    }
  // Return whether now match the given sub-NFA.
  template
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_lookahead(_State<_TraitsT> __state)
    {
      _ResultsVec __what(_M_cur_results.size());
      _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
      __sub._M_states._M_start = __state._M_alt;
      if (__sub._M_search_from_first())
	{
	  for (size_t __i = 0; __i < __what.size(); __i++)
	    if (__what[__i].matched)
	      _M_cur_results[__i] = __what[__i];
	  return true;
	}
      return false;
    }
  // __rep_count records how many times (__rep_count.second)
  // this node is visited under certain input iterator
  // (__rep_count.first). This prevent the executor from entering
  // infinite loop by refusing to continue when it's already been
  // visited more than twice. It's `twice` instead of `once` because
  // we need to spare one more time for potential group capture.
  template
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      auto& __rep_count = _M_rep_count[__i];
      if (__rep_count.second == 0 || __rep_count.first != _M_current)
	{
	  auto __back = __rep_count;
	  __rep_count.first = _M_current;
	  __rep_count.second = 1;
	  _M_dfs(__match_mode, __state._M_alt);
	  __rep_count = __back;
	}
      else
	{
	  if (__rep_count.second < 2)
	    {
	      __rep_count.second++;
	      _M_dfs(__match_mode, __state._M_alt);
	      __rep_count.second--;
	    }
	}
    };
  template
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_dfs(_Match_mode __match_mode, _StateIdT __i)
    {
      if (_M_states._M_visited(__i))
	return;
      const auto& __state = _M_nfa[__i];
      // Every change on _M_cur_results and _M_current will be rolled back after
      // finishing the recursion step.
      switch (__state._M_opcode)
	{
	// _M_alt branch is "match once more", while _M_next is "get me out
	// of this quantifier". Executing _M_next first or _M_alt first don't
	// mean the same thing, and we need to choose the correct order under
	// given greedy mode.
	case _S_opcode_repeat:
	  {
	    // Greedy.
	    if (!__state._M_neg)
	      {
		_M_rep_once_more(__match_mode, __i);
		// If it's DFS executor and already accepted, we're done.
		if (!__dfs_mode || !_M_has_sol)
		  _M_dfs(__match_mode, __state._M_next);
	      }
	    else // Non-greedy mode
	      {
		if (__dfs_mode)
		  {
		    // vice-versa.
		    _M_dfs(__match_mode, __state._M_next);
		    if (!_M_has_sol)
		      _M_rep_once_more(__match_mode, __i);
		  }
		else
		  {
		    // DON'T attempt anything, because there's already another
		    // state with higher priority accepted. This state cannot
		    // be better by attempting its next node.
		    if (!_M_has_sol)
		      {
			_M_dfs(__match_mode, __state._M_next);
			// DON'T attempt anything if it's already accepted. An
			// accepted state *must* be better than a solution that
			// matches a non-greedy quantifier one more time.
			if (!_M_has_sol)
			  _M_rep_once_more(__match_mode, __i);
		      }
		  }
	      }
	    }
	  break;
	case _S_opcode_subexpr_begin:
	  {
	    auto& __res = _M_cur_results[__state._M_subexpr];
	    auto __back = __res.first;
	    __res.first = _M_current;
	    _M_dfs(__match_mode, __state._M_next);
	    __res.first = __back;
	  }
	  break;
	case _S_opcode_subexpr_end:
	  {
	    auto& __res = _M_cur_results[__state._M_subexpr];
	    auto __back = __res;
	    __res.second = _M_current;
	    __res.matched = true;
	    _M_dfs(__match_mode, __state._M_next);
	    __res = __back;
	  }
	  break;
	case _S_opcode_line_begin_assertion:
	  if (_M_at_begin())
	    _M_dfs(__match_mode, __state._M_next);
	  break;
	case _S_opcode_line_end_assertion:
	  if (_M_at_end())
	    _M_dfs(__match_mode, __state._M_next);
	  break;
	case _S_opcode_word_boundary:
	  if (_M_word_boundary(__state) == !__state._M_neg)
	    _M_dfs(__match_mode, __state._M_next);
	  break;
	// Here __state._M_alt offers a single start node for a sub-NFA.
	// We recursively invoke our algorithm to match the sub-NFA.
	case _S_opcode_subexpr_lookahead:
	  if (_M_lookahead(__state) == !__state._M_neg)
	    _M_dfs(__match_mode, __state._M_next);
	  break;
	case _S_opcode_match:
	  if (__dfs_mode)
	    {
	      if (_M_current != _M_end && __state._M_matches(*_M_current))
		{
		  ++_M_current;
		  _M_dfs(__match_mode, __state._M_next);
		  --_M_current;
		}
	    }
	  else
	    if (__state._M_matches(*_M_current))
	      _M_states._M_queue(__state._M_next, _M_cur_results);
	  break;
	// First fetch the matched result from _M_cur_results as __submatch;
	// then compare it with
	// (_M_current, _M_current + (__submatch.second - __submatch.first)).
	// If matched, keep going; else just return and try another state.
	case _S_opcode_backref:
	  {
	    _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
	    auto& __submatch = _M_cur_results[__state._M_backref_index];
	    if (!__submatch.matched)
	      break;
	    auto __last = _M_current;
	    for (auto __tmp = __submatch.first;
		 __last != _M_end && __tmp != __submatch.second;
		 ++__tmp)
	      ++__last;
	    if (_M_re._M_traits.transform(__submatch.first,
						__submatch.second)
		== _M_re._M_traits.transform(_M_current, __last))
	      {
		if (__last != _M_current)
		  {
		    auto __backup = _M_current;
		    _M_current = __last;
		    _M_dfs(__match_mode, __state._M_next);
		    _M_current = __backup;
		  }
		else
		  _M_dfs(__match_mode, __state._M_next);
	      }
	  }
	  break;
	case _S_opcode_accept:
	  if (__dfs_mode)
	    {
	      _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
	      if (__match_mode == _Match_mode::_Exact)
		_M_has_sol = _M_current == _M_end;
	      else
		_M_has_sol = true;
	      if (_M_current == _M_begin
		  && (_M_flags & regex_constants::match_not_null))
		_M_has_sol = false;
	      if (_M_has_sol)
		_M_results = _M_cur_results;
	    }
	  else
	    {
	      if (_M_current == _M_begin
		  && (_M_flags & regex_constants::match_not_null))
		break;
	      if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
		if (!_M_has_sol)
		  {
		    _M_has_sol = true;
		    _M_results = _M_cur_results;
		  }
	    }
	  break;
	case _S_opcode_alternative:
	  _M_dfs(__match_mode, __state._M_alt);
	  if (!__dfs_mode || !_M_has_sol)
	    _M_dfs(__match_mode, __state._M_next);
	  break;
	default:
	  _GLIBCXX_DEBUG_ASSERT(false);
	}
    }
  // Return whether now is at some word boundary.
  template
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_word_boundary(_State<_TraitsT> __state) const
    {
      // By definition.
      bool __ans = false;
      auto __pre = _M_current;
      --__pre;
      if (!(_M_at_begin() && _M_at_end()))
	{
	  if (_M_at_begin())
	    __ans = _M_is_word(*_M_current)
	      && !(_M_flags & regex_constants::match_not_bow);
	  else if (_M_at_end())
	    __ans = _M_is_word(*__pre)
	      && !(_M_flags & regex_constants::match_not_eow);
	  else
	    __ans = _M_is_word(*_M_current)
	      != _M_is_word(*__pre);
	}
      return __ans;
    }
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace