/* Helper functions in C for IEEE modules Copyright (C) 2013 Free Software Foundation, Inc. Contributed by Francois-Xavier Coudert This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" /* Prototypes. */ extern int ieee_class_helper_4 (GFC_REAL_4 *); internal_proto(ieee_class_helper_4); extern int ieee_class_helper_8 (GFC_REAL_8 *); internal_proto(ieee_class_helper_8); extern int ieee_is_finite_4_ (GFC_REAL_4 *); export_proto(ieee_is_finite_4_); extern int ieee_is_finite_8_ (GFC_REAL_8 *); export_proto(ieee_is_finite_8_); extern int ieee_is_nan_4_ (GFC_REAL_4 *); export_proto(ieee_is_nan_4_); extern int ieee_is_nan_8_ (GFC_REAL_8 *); export_proto(ieee_is_nan_8_); extern int ieee_is_negative_4_ (GFC_REAL_4 *); export_proto(ieee_is_negative_4_); extern int ieee_is_negative_8_ (GFC_REAL_8 *); export_proto(ieee_is_negative_8_); extern int ieee_is_normal_4_ (GFC_REAL_4 *); export_proto(ieee_is_normal_4_); extern int ieee_is_normal_8_ (GFC_REAL_8 *); export_proto(ieee_is_normal_8_); /* Enumeration of the possible floating-point types. These values correspond to the hidden arguments of the IEEE_CLASS_TYPE derived-type of IEEE_ARITHMETIC. */ enum { IEEE_OTHER_VALUE = 0, IEEE_SIGNALING_NAN, IEEE_QUIET_NAN, IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF }; #define CLASSMACRO(TYPE) \ int ieee_class_helper_ ## TYPE (GFC_REAL_ ## TYPE *value) \ { \ int res = __builtin_fpclassify (IEEE_QUIET_NAN, IEEE_POSITIVE_INF, \ IEEE_POSITIVE_NORMAL, \ IEEE_POSITIVE_DENORMAL, \ IEEE_POSITIVE_ZERO, *value); \ \ if (__builtin_signbit (*value)) \ { \ if (res == IEEE_POSITIVE_NORMAL) \ return IEEE_NEGATIVE_NORMAL; \ else if (res == IEEE_POSITIVE_DENORMAL) \ return IEEE_NEGATIVE_DENORMAL; \ else if (res == IEEE_POSITIVE_ZERO) \ return IEEE_NEGATIVE_ZERO; \ else if (res == IEEE_POSITIVE_INF) \ return IEEE_NEGATIVE_INF; \ } \ \ if (res == IEEE_QUIET_NAN) \ { \ /* TODO: Handle signaling NaNs */ \ return res; \ } \ \ return res; \ } CLASSMACRO(4) CLASSMACRO(8) /* Testing functions. */ int ieee_is_finite_4_ (GFC_REAL_4 *val) { return __builtin_isfinite(*val) ? 1 : 0; } int ieee_is_finite_8_ (GFC_REAL_8 *val) { return __builtin_isfinite(*val) ? 1 : 0; } int ieee_is_nan_4_ (GFC_REAL_4 *val) { return __builtin_isnan(*val) ? 1 : 0; } int ieee_is_nan_8_ (GFC_REAL_8 *val) { return __builtin_isnan(*val) ? 1 : 0; } int ieee_is_negative_4_ (GFC_REAL_4 *val) { return (__builtin_signbit(*val) && !__builtin_isnan(*val)) ? 1 : 0; } int ieee_is_negative_8_ (GFC_REAL_8 *val) { return (__builtin_signbit(*val) && !__builtin_isnan(*val)) ? 1 : 0; } int ieee_is_normal_4_ (GFC_REAL_4 *val) { return (__builtin_isnormal(*val) || *val == 0) ? 1 : 0; } int ieee_is_normal_8_ (GFC_REAL_8 *val) { return (__builtin_isnormal(*val) || *val == 0) ? 1 : 0; } GFC_REAL_4 ieee_copy_sign_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *); export_proto(ieee_copy_sign_4_4_); GFC_REAL_4 ieee_copy_sign_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y) { GFC_REAL_4 s = __builtin_signbit(*y) ? -1 : 1; return __builtin_copysign(*x, s); } GFC_REAL_4 ieee_copy_sign_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *); export_proto(ieee_copy_sign_4_8_); GFC_REAL_4 ieee_copy_sign_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y) { GFC_REAL_4 s = __builtin_signbit(*y) ? -1 : 1; return __builtin_copysign(*x, s); } GFC_REAL_8 ieee_copy_sign_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *); export_proto(ieee_copy_sign_8_4_); GFC_REAL_8 ieee_copy_sign_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y) { GFC_REAL_8 s = __builtin_signbit(*y) ? -1 : 1; return __builtin_copysign(*x, s); } GFC_REAL_8 ieee_copy_sign_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *); export_proto(ieee_copy_sign_8_8_); GFC_REAL_8 ieee_copy_sign_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y) { GFC_REAL_8 s = __builtin_signbit(*y) ? -1 : 1; return __builtin_copysign(*x, s); } int ieee_unordered_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *); export_proto(ieee_unordered_4_4_); int ieee_unordered_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y) { return __builtin_isunordered(*x, *y); } int ieee_unordered_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *); export_proto(ieee_unordered_4_8_); int ieee_unordered_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y) { return __builtin_isunordered(*x, *y); } int ieee_unordered_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *); export_proto(ieee_unordered_8_4_); int ieee_unordered_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y) { return __builtin_isunordered(*x, *y); } int ieee_unordered_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *); export_proto(ieee_unordered_8_8_); int ieee_unordered_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y) { return __builtin_isunordered(*x, *y); } /* Arithmetic functions (LOGB, NEXT_AFTER, REM, RINT, SCALB). */ GFC_REAL_4 ieee_logb_4_ (GFC_REAL_4 *); export_proto(ieee_logb_4_); GFC_REAL_4 ieee_logb_4_ (GFC_REAL_4 *x) { GFC_REAL_4 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_logb (*x); set_fpu_state (buffer); return res; } GFC_REAL_8 ieee_logb_8_ (GFC_REAL_8 *); export_proto(ieee_logb_8_); GFC_REAL_8 ieee_logb_8_ (GFC_REAL_8 *x) { GFC_REAL_8 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_logb (*x); set_fpu_state (buffer); return res; } GFC_REAL_4 ieee_next_after_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *); export_proto(ieee_next_after_4_4_); GFC_REAL_4 ieee_next_after_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y) { return __builtin_nextafterf (*x, *y); } GFC_REAL_4 ieee_next_after_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *); export_proto(ieee_next_after_4_8_); GFC_REAL_4 ieee_next_after_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y) { return __builtin_nextafterf (*x, *y); } GFC_REAL_8 ieee_next_after_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *); export_proto(ieee_next_after_8_4_); GFC_REAL_8 ieee_next_after_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y) { return __builtin_nextafter (*x, *y); } GFC_REAL_8 ieee_next_after_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *); export_proto(ieee_next_after_8_8_); GFC_REAL_8 ieee_next_after_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y) { return __builtin_nextafter (*x, *y); } GFC_REAL_4 ieee_rem_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *); export_proto(ieee_rem_4_4_); GFC_REAL_4 ieee_rem_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y) { GFC_REAL_4 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_remainderf (*x, *y); set_fpu_state (buffer); return res; } GFC_REAL_8 ieee_rem_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *); export_proto(ieee_rem_4_8_); GFC_REAL_8 ieee_rem_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y) { GFC_REAL_8 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_remainder (*x, *y); set_fpu_state (buffer); return res; } GFC_REAL_8 ieee_rem_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *); export_proto(ieee_rem_8_4_); GFC_REAL_8 ieee_rem_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y) { GFC_REAL_8 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_remainder (*x, *y); set_fpu_state (buffer); return res; } GFC_REAL_8 ieee_rem_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *); export_proto(ieee_rem_8_8_); GFC_REAL_8 ieee_rem_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y) { GFC_REAL_8 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_remainder (*x, *y); set_fpu_state (buffer); return res; } GFC_REAL_4 ieee_rint_4_ (GFC_REAL_4 *); export_proto(ieee_rint_4_); GFC_REAL_4 ieee_rint_4_ (GFC_REAL_4 *x) { GFC_REAL_4 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_rint (*x); set_fpu_state (buffer); return res; } GFC_REAL_8 ieee_rint_8_ (GFC_REAL_8 *); export_proto(ieee_rint_8_); GFC_REAL_8 ieee_rint_8_ (GFC_REAL_8 *x) { GFC_REAL_8 res; char buffer[GFC_FPE_STATE_BUFFER_SIZE]; get_fpu_state (buffer); res = __builtin_rint (*x); set_fpu_state (buffer); return res; } GFC_REAL_4 ieee_scalb_4_ (GFC_REAL_4 *, int *); export_proto(ieee_scalb_4_); GFC_REAL_4 ieee_scalb_4_ (GFC_REAL_4 *x, int *i) { return __builtin_scalbnf (*x, *i); } GFC_REAL_8 ieee_scalb_8_ (GFC_REAL_8 *, int *); export_proto(ieee_scalb_8_); GFC_REAL_8 ieee_scalb_8_ (GFC_REAL_8 *x, int *i) { return __builtin_scalbn (*x, *i); } #define GFC_FPE_ALL (GFC_FPE_INVALID | GFC_FPE_DENORMAL | \ GFC_FPE_ZERO | GFC_FPE_OVERFLOW | \ GFC_FPE_UNDERFLOW | GFC_FPE_INEXACT) /* Functions to save and restore floating-point state, clear and restore exceptions on procedure entry/exit. The rules we follow are set in Fortran 2008's 14.3 paragraph 3, note 14.4, 14.4 paragraph 4, 14.5 paragraph 2, and 14.6 paragraph 1. */ void ieee_procedure_entry (void *); export_proto(ieee_procedure_entry); void ieee_procedure_entry (void *state) { /* Save the floating-point state in the space provided by the caller. */ get_fpu_state (state); /* Clear the floating-point exceptions. */ set_fpu_except_flags (0, GFC_FPE_ALL); } void ieee_procedure_exit (void *); export_proto(ieee_procedure_exit); void ieee_procedure_exit (void *state) { /* Get the flags currently signaling. */ int flags = get_fpu_except_flags (); /* Restore the floating-point state we had on entry. */ set_fpu_state (state); /* And re-raised the flags that were raised since entry. */ set_fpu_except_flags (flags, 0); }