mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			237 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2011 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package math
 | 
						|
 | 
						|
/*
 | 
						|
	Floating-point sine and cosine.
 | 
						|
*/
 | 
						|
 | 
						|
// The original C code, the long comment, and the constants
 | 
						|
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
 | 
						|
// available from http://www.netlib.org/cephes/cmath.tgz.
 | 
						|
// The go code is a simplified version of the original C.
 | 
						|
//
 | 
						|
//      sin.c
 | 
						|
//
 | 
						|
//      Circular sine
 | 
						|
//
 | 
						|
// SYNOPSIS:
 | 
						|
//
 | 
						|
// double x, y, sin();
 | 
						|
// y = sin( x );
 | 
						|
//
 | 
						|
// DESCRIPTION:
 | 
						|
//
 | 
						|
// Range reduction is into intervals of pi/4.  The reduction error is nearly
 | 
						|
// eliminated by contriving an extended precision modular arithmetic.
 | 
						|
//
 | 
						|
// Two polynomial approximating functions are employed.
 | 
						|
// Between 0 and pi/4 the sine is approximated by
 | 
						|
//      x  +  x**3 P(x**2).
 | 
						|
// Between pi/4 and pi/2 the cosine is represented as
 | 
						|
//      1  -  x**2 Q(x**2).
 | 
						|
//
 | 
						|
// ACCURACY:
 | 
						|
//
 | 
						|
//                      Relative error:
 | 
						|
// arithmetic   domain      # trials      peak         rms
 | 
						|
//    DEC       0, 10       150000       3.0e-17     7.8e-18
 | 
						|
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
 | 
						|
//
 | 
						|
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
 | 
						|
// is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
 | 
						|
// be meaningless for x > 2**49 = 5.6e14.
 | 
						|
//
 | 
						|
//      cos.c
 | 
						|
//
 | 
						|
//      Circular cosine
 | 
						|
//
 | 
						|
// SYNOPSIS:
 | 
						|
//
 | 
						|
// double x, y, cos();
 | 
						|
// y = cos( x );
 | 
						|
//
 | 
						|
// DESCRIPTION:
 | 
						|
//
 | 
						|
// Range reduction is into intervals of pi/4.  The reduction error is nearly
 | 
						|
// eliminated by contriving an extended precision modular arithmetic.
 | 
						|
//
 | 
						|
// Two polynomial approximating functions are employed.
 | 
						|
// Between 0 and pi/4 the cosine is approximated by
 | 
						|
//      1  -  x**2 Q(x**2).
 | 
						|
// Between pi/4 and pi/2 the sine is represented as
 | 
						|
//      x  +  x**3 P(x**2).
 | 
						|
//
 | 
						|
// ACCURACY:
 | 
						|
//
 | 
						|
//                      Relative error:
 | 
						|
// arithmetic   domain      # trials      peak         rms
 | 
						|
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
 | 
						|
//    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18
 | 
						|
//
 | 
						|
// Cephes Math Library Release 2.8:  June, 2000
 | 
						|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
 | 
						|
//
 | 
						|
// The readme file at http://netlib.sandia.gov/cephes/ says:
 | 
						|
//    Some software in this archive may be from the book _Methods and
 | 
						|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
 | 
						|
// International, 1989) or from the Cephes Mathematical Library, a
 | 
						|
// commercial product. In either event, it is copyrighted by the author.
 | 
						|
// What you see here may be used freely but it comes with no support or
 | 
						|
// guarantee.
 | 
						|
//
 | 
						|
//   The two known misprints in the book are repaired here in the
 | 
						|
// source listings for the gamma function and the incomplete beta
 | 
						|
// integral.
 | 
						|
//
 | 
						|
//   Stephen L. Moshier
 | 
						|
//   moshier@na-net.ornl.gov
 | 
						|
 | 
						|
// sin coefficients
 | 
						|
var _sin = [...]float64{
 | 
						|
	1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
 | 
						|
	-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
 | 
						|
	2.75573136213857245213E-6,  // 0x3ec71de3567d48a1
 | 
						|
	-1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
 | 
						|
	8.33333333332211858878E-3,  // 0x3f8111111110f7d0
 | 
						|
	-1.66666666666666307295E-1, // 0xbfc5555555555548
 | 
						|
}
 | 
						|
 | 
						|
// cos coefficients
 | 
						|
var _cos = [...]float64{
 | 
						|
	-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
 | 
						|
	2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05
 | 
						|
	-2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6
 | 
						|
	2.48015872888517045348E-5,   // 0x3efa01a019c844f5
 | 
						|
	-1.38888888888730564116E-3,  // 0xbf56c16c16c14f91
 | 
						|
	4.16666666666665929218E-2,   // 0x3fa555555555554b
 | 
						|
}
 | 
						|
 | 
						|
// Cos returns the cosine of the radian argument x.
 | 
						|
//
 | 
						|
// Special cases are:
 | 
						|
//	Cos(±Inf) = NaN
 | 
						|
//	Cos(NaN) = NaN
 | 
						|
 | 
						|
//extern cos
 | 
						|
func libc_cos(float64) float64
 | 
						|
 | 
						|
func Cos(x float64) float64 {
 | 
						|
	return libc_cos(x)
 | 
						|
}
 | 
						|
 | 
						|
func cos(x float64) float64 {
 | 
						|
	const (
 | 
						|
		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
 | 
						|
		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
 | 
						|
		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
 | 
						|
		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
 | 
						|
	)
 | 
						|
	// special cases
 | 
						|
	switch {
 | 
						|
	case IsNaN(x) || IsInf(x, 0):
 | 
						|
		return NaN()
 | 
						|
	}
 | 
						|
 | 
						|
	// make argument positive
 | 
						|
	sign := false
 | 
						|
	if x < 0 {
 | 
						|
		x = -x
 | 
						|
	}
 | 
						|
 | 
						|
	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
 | 
						|
	y := float64(j)      // integer part of x/(Pi/4), as float
 | 
						|
 | 
						|
	// map zeros to origin
 | 
						|
	if j&1 == 1 {
 | 
						|
		j++
 | 
						|
		y++
 | 
						|
	}
 | 
						|
	j &= 7 // octant modulo 2Pi radians (360 degrees)
 | 
						|
	if j > 3 {
 | 
						|
		j -= 4
 | 
						|
		sign = !sign
 | 
						|
	}
 | 
						|
	if j > 1 {
 | 
						|
		sign = !sign
 | 
						|
	}
 | 
						|
 | 
						|
	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
 | 
						|
	zz := z * z
 | 
						|
	if j == 1 || j == 2 {
 | 
						|
		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
 | 
						|
	} else {
 | 
						|
		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
 | 
						|
	}
 | 
						|
	if sign {
 | 
						|
		y = -y
 | 
						|
	}
 | 
						|
	return y
 | 
						|
}
 | 
						|
 | 
						|
// Sin returns the sine of the radian argument x.
 | 
						|
//
 | 
						|
// Special cases are:
 | 
						|
//	Sin(±0) = ±0
 | 
						|
//	Sin(±Inf) = NaN
 | 
						|
//	Sin(NaN) = NaN
 | 
						|
 | 
						|
//extern sin
 | 
						|
func libc_sin(float64) float64
 | 
						|
 | 
						|
func Sin(x float64) float64 {
 | 
						|
	return libc_sin(x)
 | 
						|
}
 | 
						|
 | 
						|
func sin(x float64) float64 {
 | 
						|
	const (
 | 
						|
		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
 | 
						|
		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
 | 
						|
		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
 | 
						|
		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
 | 
						|
	)
 | 
						|
	// special cases
 | 
						|
	switch {
 | 
						|
	case x == 0 || IsNaN(x):
 | 
						|
		return x // return ±0 || NaN()
 | 
						|
	case IsInf(x, 0):
 | 
						|
		return NaN()
 | 
						|
	}
 | 
						|
 | 
						|
	// make argument positive but save the sign
 | 
						|
	sign := false
 | 
						|
	if x < 0 {
 | 
						|
		x = -x
 | 
						|
		sign = true
 | 
						|
	}
 | 
						|
 | 
						|
	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
 | 
						|
	y := float64(j)      // integer part of x/(Pi/4), as float
 | 
						|
 | 
						|
	// map zeros to origin
 | 
						|
	if j&1 == 1 {
 | 
						|
		j++
 | 
						|
		y++
 | 
						|
	}
 | 
						|
	j &= 7 // octant modulo 2Pi radians (360 degrees)
 | 
						|
	// reflect in x axis
 | 
						|
	if j > 3 {
 | 
						|
		sign = !sign
 | 
						|
		j -= 4
 | 
						|
	}
 | 
						|
 | 
						|
	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
 | 
						|
	zz := z * z
 | 
						|
	if j == 1 || j == 2 {
 | 
						|
		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
 | 
						|
	} else {
 | 
						|
		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
 | 
						|
	}
 | 
						|
	if sign {
 | 
						|
		y = -y
 | 
						|
	}
 | 
						|
	return y
 | 
						|
}
 |