mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)k_sin.c 1.3 95/01/18 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* __kernel_sin( x, y, iy)
 | |
|  * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 | |
|  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 | |
|  * Input y is the tail of x.
 | |
|  * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). 
 | |
|  *
 | |
|  * Algorithm
 | |
|  *	1. Since sin(-x) = -sin(x), we need only to consider positive x. 
 | |
|  *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 | |
|  *	3. sin(x) is approximated by a polynomial of degree 13 on
 | |
|  *	   [0,pi/4]
 | |
|  *		  	         3            13
 | |
|  *	   	sin(x) ~ x + S1*x + ... + S6*x
 | |
|  *	   where
 | |
|  *	
 | |
|  * 	|sin(x)         2     4     6     8     10     12  |     -58
 | |
|  * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 | |
|  * 	|  x 					           | 
 | |
|  * 
 | |
|  *	4. sin(x+y) = sin(x) + sin'(x')*y
 | |
|  *		    ~ sin(x) + (1-x*x/2)*y
 | |
|  *	   For better accuracy, let 
 | |
|  *		     3      2      2      2      2
 | |
|  *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 | |
|  *	   then                   3    2
 | |
|  *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double 
 | |
| #else
 | |
| static double 
 | |
| #endif
 | |
| half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
 | |
| S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
 | |
| S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
 | |
| S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
 | |
| S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
 | |
| S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
 | |
| S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __kernel_sin(double x, double y, int iy)
 | |
| #else
 | |
| 	double __kernel_sin(x, y, iy)
 | |
| 	double x,y; int iy;		/* iy=0 if y is zero */
 | |
| #endif
 | |
| {
 | |
| 	double z,r,v;
 | |
| 	int32_t ix;
 | |
| 	GET_HIGH_WORD(ix,x);
 | |
| 	ix &=0x7fffffff;	/* high word of x */
 | |
| 	if(ix<0x3e400000)			/* |x| < 2**-27 */
 | |
| 	   {if((int)x==0) return x;}		/* generate inexact */
 | |
| 	z	=  x*x;
 | |
| 	v	=  z*x;
 | |
| 	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
 | |
| 	if(iy==0) return x+v*(S1+z*r);
 | |
| 	else      return x-((z*(half*y-v*r)-y)-v*S1);
 | |
| }
 | |
| #endif /* defined(_DOUBLE_IS_32BITS) */
 |