mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			436 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
// class template regex -*- C++ -*-
 | 
						|
 | 
						|
// Copyright (C) 2013-2015 Free Software Foundation, Inc.
 | 
						|
//
 | 
						|
// This file is part of the GNU ISO C++ Library.  This library is free
 | 
						|
// software; you can redistribute it and/or modify it under the
 | 
						|
// terms of the GNU General Public License as published by the
 | 
						|
// Free Software Foundation; either version 3, or (at your option)
 | 
						|
// any later version.
 | 
						|
 | 
						|
// This library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
// GNU General Public License for more details.
 | 
						|
 | 
						|
// Under Section 7 of GPL version 3, you are granted additional
 | 
						|
// permissions described in the GCC Runtime Library Exception, version
 | 
						|
// 3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
// You should have received a copy of the GNU General Public License and
 | 
						|
// a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
// <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file bits/regex_executor.tcc
 | 
						|
 *  This is an internal header file, included by other library headers.
 | 
						|
 *  Do not attempt to use it directly. @headername{regex}
 | 
						|
 */
 | 
						|
 | 
						|
namespace std _GLIBCXX_VISIBILITY(default)
 | 
						|
{
 | 
						|
namespace __detail
 | 
						|
{
 | 
						|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 | 
						|
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_search()
 | 
						|
    {
 | 
						|
      if (_M_search_from_first())
 | 
						|
	return true;
 | 
						|
      if (_M_flags & regex_constants::match_continuous)
 | 
						|
	return false;
 | 
						|
      _M_flags |= regex_constants::match_prev_avail;
 | 
						|
      while (_M_begin != _M_end)
 | 
						|
	{
 | 
						|
	  ++_M_begin;
 | 
						|
	  if (_M_search_from_first())
 | 
						|
	    return true;
 | 
						|
	}
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // The _M_main function operates in different modes, DFS mode or BFS mode,
 | 
						|
  // indicated by template parameter __dfs_mode, and dispatches to one of the
 | 
						|
  // _M_main_dispatch overloads.
 | 
						|
  //
 | 
						|
  // ------------------------------------------------------------
 | 
						|
  //
 | 
						|
  // DFS mode:
 | 
						|
  //
 | 
						|
  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
 | 
						|
  // string.
 | 
						|
  // At the very beginning the executor stands in the start state, then it
 | 
						|
  // tries every possible state transition in current state recursively. Some
 | 
						|
  // state transitions consume input string, say, a single-char-matcher or a
 | 
						|
  // back-reference matcher; some don't, like assertion or other anchor nodes.
 | 
						|
  // When the input is exhausted and/or the current state is an accepting
 | 
						|
  // state, the whole executor returns true.
 | 
						|
  //
 | 
						|
  // TODO: This approach is exponentially slow for certain input.
 | 
						|
  //       Try to compile the NFA to a DFA.
 | 
						|
  //
 | 
						|
  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
 | 
						|
  // Space complexity: \theta(match_results.size() + match_length)
 | 
						|
  //
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_main_dispatch(_Match_mode __match_mode, __dfs)
 | 
						|
    {
 | 
						|
      _M_has_sol = false;
 | 
						|
      *_M_states._M_get_sol_pos() = _BiIter();
 | 
						|
      _M_cur_results = _M_results;
 | 
						|
      _M_dfs(__match_mode, _M_states._M_start);
 | 
						|
      return _M_has_sol;
 | 
						|
    }
 | 
						|
 | 
						|
  // ------------------------------------------------------------
 | 
						|
  //
 | 
						|
  // BFS mode:
 | 
						|
  //
 | 
						|
  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
 | 
						|
  // explained this algorithm clearly.
 | 
						|
  //
 | 
						|
  // It first computes epsilon closure (states that can be achieved without
 | 
						|
  // consuming characters) for every state that's still matching,
 | 
						|
  // using the same DFS algorithm, but doesn't re-enter states (using
 | 
						|
  // _M_states._M_visited to check), nor follow _S_opcode_match.
 | 
						|
  //
 | 
						|
  // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
 | 
						|
  // as the start state.
 | 
						|
  //
 | 
						|
  // It significantly reduces potential duplicate states, so has a better
 | 
						|
  // upper bound; but it requires more overhead.
 | 
						|
  //
 | 
						|
  // Time complexity: \Omega(match_length * match_results.size())
 | 
						|
  //                  O(match_length * _M_nfa.size() * match_results.size())
 | 
						|
  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
 | 
						|
  //                   O(_M_nfa.size() * match_results.size())
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_main_dispatch(_Match_mode __match_mode, __bfs)
 | 
						|
    {
 | 
						|
      _M_states._M_queue(_M_states._M_start, _M_results);
 | 
						|
      bool __ret = false;
 | 
						|
      while (1)
 | 
						|
	{
 | 
						|
	  _M_has_sol = false;
 | 
						|
	  if (_M_states._M_match_queue.empty())
 | 
						|
	    break;
 | 
						|
	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
 | 
						|
	  auto __old_queue = std::move(_M_states._M_match_queue);
 | 
						|
	  for (auto& __task : __old_queue)
 | 
						|
	    {
 | 
						|
	      _M_cur_results = std::move(__task.second);
 | 
						|
	      _M_dfs(__match_mode, __task.first);
 | 
						|
	    }
 | 
						|
	  if (__match_mode == _Match_mode::_Prefix)
 | 
						|
	    __ret |= _M_has_sol;
 | 
						|
	  if (_M_current == _M_end)
 | 
						|
	    break;
 | 
						|
	  ++_M_current;
 | 
						|
	}
 | 
						|
      if (__match_mode == _Match_mode::_Exact)
 | 
						|
	__ret = _M_has_sol;
 | 
						|
      _M_states._M_match_queue.clear();
 | 
						|
      return __ret;
 | 
						|
    }
 | 
						|
 | 
						|
  // Return whether now match the given sub-NFA.
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_lookahead(_State<_TraitsT> __state)
 | 
						|
    {
 | 
						|
      _ResultsVec __what(_M_cur_results.size());
 | 
						|
      _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
 | 
						|
      __sub._M_states._M_start = __state._M_alt;
 | 
						|
      if (__sub._M_search_from_first())
 | 
						|
	{
 | 
						|
	  for (size_t __i = 0; __i < __what.size(); __i++)
 | 
						|
	    if (__what[__i].matched)
 | 
						|
	      _M_cur_results[__i] = __what[__i];
 | 
						|
	  return true;
 | 
						|
	}
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // __rep_count records how many times (__rep_count.second)
 | 
						|
  // this node is visited under certain input iterator
 | 
						|
  // (__rep_count.first). This prevent the executor from entering
 | 
						|
  // infinite loop by refusing to continue when it's already been
 | 
						|
  // visited more than twice. It's `twice` instead of `once` because
 | 
						|
  // we need to spare one more time for potential group capture.
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
    bool __dfs_mode>
 | 
						|
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
 | 
						|
    {
 | 
						|
      const auto& __state = _M_nfa[__i];
 | 
						|
      auto& __rep_count = _M_rep_count[__i];
 | 
						|
      if (__rep_count.second == 0 || __rep_count.first != _M_current)
 | 
						|
	{
 | 
						|
	  auto __back = __rep_count;
 | 
						|
	  __rep_count.first = _M_current;
 | 
						|
	  __rep_count.second = 1;
 | 
						|
	  _M_dfs(__match_mode, __state._M_alt);
 | 
						|
	  __rep_count = __back;
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  if (__rep_count.second < 2)
 | 
						|
	    {
 | 
						|
	      __rep_count.second++;
 | 
						|
	      _M_dfs(__match_mode, __state._M_alt);
 | 
						|
	      __rep_count.second--;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_dfs(_Match_mode __match_mode, _StateIdT __i)
 | 
						|
    {
 | 
						|
      if (_M_states._M_visited(__i))
 | 
						|
	return;
 | 
						|
 | 
						|
      const auto& __state = _M_nfa[__i];
 | 
						|
      // Every change on _M_cur_results and _M_current will be rolled back after
 | 
						|
      // finishing the recursion step.
 | 
						|
      switch (__state._M_opcode)
 | 
						|
	{
 | 
						|
	// _M_alt branch is "match once more", while _M_next is "get me out
 | 
						|
	// of this quantifier". Executing _M_next first or _M_alt first don't
 | 
						|
	// mean the same thing, and we need to choose the correct order under
 | 
						|
	// given greedy mode.
 | 
						|
	case _S_opcode_repeat:
 | 
						|
	  {
 | 
						|
	    // Greedy.
 | 
						|
	    if (!__state._M_neg)
 | 
						|
	      {
 | 
						|
		_M_rep_once_more(__match_mode, __i);
 | 
						|
		// If it's DFS executor and already accepted, we're done.
 | 
						|
		if (!__dfs_mode || !_M_has_sol)
 | 
						|
		  _M_dfs(__match_mode, __state._M_next);
 | 
						|
	      }
 | 
						|
	    else // Non-greedy mode
 | 
						|
	      {
 | 
						|
		if (__dfs_mode)
 | 
						|
		  {
 | 
						|
		    // vice-versa.
 | 
						|
		    _M_dfs(__match_mode, __state._M_next);
 | 
						|
		    if (!_M_has_sol)
 | 
						|
		      _M_rep_once_more(__match_mode, __i);
 | 
						|
		  }
 | 
						|
		else
 | 
						|
		  {
 | 
						|
		    // DON'T attempt anything, because there's already another
 | 
						|
		    // state with higher priority accepted. This state cannot
 | 
						|
		    // be better by attempting its next node.
 | 
						|
		    if (!_M_has_sol)
 | 
						|
		      {
 | 
						|
			_M_dfs(__match_mode, __state._M_next);
 | 
						|
			// DON'T attempt anything if it's already accepted. An
 | 
						|
			// accepted state *must* be better than a solution that
 | 
						|
			// matches a non-greedy quantifier one more time.
 | 
						|
			if (!_M_has_sol)
 | 
						|
			  _M_rep_once_more(__match_mode, __i);
 | 
						|
		      }
 | 
						|
		  }
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	  break;
 | 
						|
	case _S_opcode_subexpr_begin:
 | 
						|
	  {
 | 
						|
	    auto& __res = _M_cur_results[__state._M_subexpr];
 | 
						|
	    auto __back = __res.first;
 | 
						|
	    __res.first = _M_current;
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	    __res.first = __back;
 | 
						|
	  }
 | 
						|
	  break;
 | 
						|
	case _S_opcode_subexpr_end:
 | 
						|
	  {
 | 
						|
	    auto& __res = _M_cur_results[__state._M_subexpr];
 | 
						|
	    auto __back = __res;
 | 
						|
	    __res.second = _M_current;
 | 
						|
	    __res.matched = true;
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	    __res = __back;
 | 
						|
	  }
 | 
						|
	  break;
 | 
						|
	case _S_opcode_line_begin_assertion:
 | 
						|
	  if (_M_at_begin())
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	  break;
 | 
						|
	case _S_opcode_line_end_assertion:
 | 
						|
	  if (_M_at_end())
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	  break;
 | 
						|
	case _S_opcode_word_boundary:
 | 
						|
	  if (_M_word_boundary() == !__state._M_neg)
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	  break;
 | 
						|
	// Here __state._M_alt offers a single start node for a sub-NFA.
 | 
						|
	// We recursively invoke our algorithm to match the sub-NFA.
 | 
						|
	case _S_opcode_subexpr_lookahead:
 | 
						|
	  if (_M_lookahead(__state) == !__state._M_neg)
 | 
						|
	    _M_dfs(__match_mode, __state._M_next);
 | 
						|
	  break;
 | 
						|
	case _S_opcode_match:
 | 
						|
	  if (_M_current == _M_end)
 | 
						|
	    break;
 | 
						|
	  if (__dfs_mode)
 | 
						|
	    {
 | 
						|
	      if (__state._M_matches(*_M_current))
 | 
						|
		{
 | 
						|
		  ++_M_current;
 | 
						|
		  _M_dfs(__match_mode, __state._M_next);
 | 
						|
		  --_M_current;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    if (__state._M_matches(*_M_current))
 | 
						|
	      _M_states._M_queue(__state._M_next, _M_cur_results);
 | 
						|
	  break;
 | 
						|
	// First fetch the matched result from _M_cur_results as __submatch;
 | 
						|
	// then compare it with
 | 
						|
	// (_M_current, _M_current + (__submatch.second - __submatch.first)).
 | 
						|
	// If matched, keep going; else just return and try another state.
 | 
						|
	case _S_opcode_backref:
 | 
						|
	  {
 | 
						|
	    _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
 | 
						|
	    auto& __submatch = _M_cur_results[__state._M_backref_index];
 | 
						|
	    if (!__submatch.matched)
 | 
						|
	      break;
 | 
						|
	    auto __last = _M_current;
 | 
						|
	    for (auto __tmp = __submatch.first;
 | 
						|
		 __last != _M_end && __tmp != __submatch.second;
 | 
						|
		 ++__tmp)
 | 
						|
	      ++__last;
 | 
						|
	    if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
 | 
						|
							__submatch.second)
 | 
						|
		== _M_re._M_automaton->_M_traits.transform(_M_current, __last))
 | 
						|
	      {
 | 
						|
		if (__last != _M_current)
 | 
						|
		  {
 | 
						|
		    auto __backup = _M_current;
 | 
						|
		    _M_current = __last;
 | 
						|
		    _M_dfs(__match_mode, __state._M_next);
 | 
						|
		    _M_current = __backup;
 | 
						|
		  }
 | 
						|
		else
 | 
						|
		  _M_dfs(__match_mode, __state._M_next);
 | 
						|
	      }
 | 
						|
	  }
 | 
						|
	  break;
 | 
						|
	case _S_opcode_accept:
 | 
						|
	  if (__dfs_mode)
 | 
						|
	    {
 | 
						|
	      _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
 | 
						|
	      if (__match_mode == _Match_mode::_Exact)
 | 
						|
		_M_has_sol = _M_current == _M_end;
 | 
						|
	      else
 | 
						|
		_M_has_sol = true;
 | 
						|
	      if (_M_current == _M_begin
 | 
						|
		  && (_M_flags & regex_constants::match_not_null))
 | 
						|
		_M_has_sol = false;
 | 
						|
	      if (_M_has_sol)
 | 
						|
		{
 | 
						|
		  if (_M_nfa._M_flags & regex_constants::ECMAScript)
 | 
						|
		    _M_results = _M_cur_results;
 | 
						|
		  else // POSIX
 | 
						|
		    {
 | 
						|
		      _GLIBCXX_DEBUG_ASSERT(_M_states._M_get_sol_pos());
 | 
						|
		      // Here's POSIX's logic: match the longest one. However
 | 
						|
		      // we never know which one (lhs or rhs of "|") is longer
 | 
						|
		      // unless we try both of them and compare the results.
 | 
						|
		      // The member variable _M_sol_pos records the end
 | 
						|
		      // position of the last successful match. It's better
 | 
						|
		      // to be larger, because POSIX regex is always greedy.
 | 
						|
		      // TODO: This could be slow.
 | 
						|
		      if (*_M_states._M_get_sol_pos() == _BiIter()
 | 
						|
			  || std::distance(_M_begin,
 | 
						|
					   *_M_states._M_get_sol_pos())
 | 
						|
			     < std::distance(_M_begin, _M_current))
 | 
						|
			{
 | 
						|
			  *_M_states._M_get_sol_pos() = _M_current;
 | 
						|
			  _M_results = _M_cur_results;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      if (_M_current == _M_begin
 | 
						|
		  && (_M_flags & regex_constants::match_not_null))
 | 
						|
		break;
 | 
						|
	      if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
 | 
						|
		if (!_M_has_sol)
 | 
						|
		  {
 | 
						|
		    _M_has_sol = true;
 | 
						|
		    _M_results = _M_cur_results;
 | 
						|
		  }
 | 
						|
	    }
 | 
						|
	  break;
 | 
						|
	case _S_opcode_alternative:
 | 
						|
	  if (_M_nfa._M_flags & regex_constants::ECMAScript)
 | 
						|
	    {
 | 
						|
	      // TODO: Fix BFS support. It is wrong.
 | 
						|
	      _M_dfs(__match_mode, __state._M_alt);
 | 
						|
	      // Pick lhs if it matches. Only try rhs if it doesn't.
 | 
						|
	      if (!_M_has_sol)
 | 
						|
		_M_dfs(__match_mode, __state._M_next);
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      // Try both and compare the result.
 | 
						|
	      // See "case _S_opcode_accept:" handling above.
 | 
						|
	      _M_dfs(__match_mode, __state._M_alt);
 | 
						|
	      auto __has_sol = _M_has_sol;
 | 
						|
	      _M_has_sol = false;
 | 
						|
	      _M_dfs(__match_mode, __state._M_next);
 | 
						|
	      _M_has_sol |= __has_sol;
 | 
						|
	    }
 | 
						|
	  break;
 | 
						|
	default:
 | 
						|
	  _GLIBCXX_DEBUG_ASSERT(false);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  // Return whether now is at some word boundary.
 | 
						|
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
 | 
						|
	   bool __dfs_mode>
 | 
						|
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 | 
						|
    _M_word_boundary() const
 | 
						|
    {
 | 
						|
      bool __left_is_word = false;
 | 
						|
      if (_M_current != _M_begin
 | 
						|
	  || (_M_flags & regex_constants::match_prev_avail))
 | 
						|
	{
 | 
						|
	  auto __prev = _M_current;
 | 
						|
	  if (_M_is_word(*std::prev(__prev)))
 | 
						|
	    __left_is_word = true;
 | 
						|
	}
 | 
						|
      bool __right_is_word =
 | 
						|
        _M_current != _M_end && _M_is_word(*_M_current);
 | 
						|
 | 
						|
      if (__left_is_word == __right_is_word)
 | 
						|
	return false;
 | 
						|
      if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
 | 
						|
	return true;
 | 
						|
      if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
 | 
						|
	return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
_GLIBCXX_END_NAMESPACE_VERSION
 | 
						|
} // namespace __detail
 | 
						|
} // namespace
 |