mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1089 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			1089 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* java.util.GregorianCalendar
 | |
|    Copyright (C) 1998, 1999, 2001, 2002 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 | |
| 02111-1307 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.util;
 | |
| 
 | |
| /**
 | |
|  * This class represents the Gregorian calendar, that is used in most
 | |
|  * countries all over the world.  It does also handle the Julian calendar
 | |
|  * for dates smaller than the date of the change to the Gregorian calendar.
 | |
|  * This change date is different from country to country, you can set it with
 | |
|  * <code>setGregorianChange</code>
 | |
|  *
 | |
|  * The Gregorian calendar differs from the Julian calendar by a different
 | |
|  * leap year rule (no leap year every 100 years, except if year is divisible
 | |
|  * by 400).  The non existing days that were omited when the change took
 | |
|  * place are interpreted as gregorian date
 | |
|  *
 | |
|  * There are to eras available for the Gregorian calendar, namely BC and AD.
 | |
|  *
 | |
|  * @see Calendar
 | |
|  * @see TimeZone
 | |
|  */
 | |
| public class GregorianCalendar extends Calendar
 | |
| {
 | |
|   /**
 | |
|    * Constant representing the era BC (before Christ).
 | |
|    */
 | |
|   public static final int BC = 0;
 | |
|   
 | |
|   /**
 | |
|    * Constant representing the era AD (Anno Domini).
 | |
|    */
 | |
|   public static final int AD = 1;
 | |
| 
 | |
|   /**
 | |
|    * The point at which the Gregorian calendar rules were used.
 | |
|    * This is locale dependent; the default for most catholic
 | |
|    * countries is midnight (UTC) on October 5, 1582 (Julian),
 | |
|    * or October 15, 1582 (Gregorian).
 | |
|    */
 | |
|   private long gregorianCutover;
 | |
| 
 | |
|   static final long serialVersionUID = -8125100834729963327L;
 | |
| 
 | |
|   /**
 | |
|    * The name of the resource bundle.
 | |
|    */
 | |
|   private static final String bundleName = "gnu.java.locale.Calendar";
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new GregorianCalender representing the current
 | |
|    * time, using the default time zone and the default locale.  
 | |
|    */
 | |
|   public GregorianCalendar()
 | |
|   {
 | |
|     this(TimeZone.getDefault(), Locale.getDefault());
 | |
|   }
 | |
|   
 | |
|   /**
 | |
|    * Constructs a new GregorianCalender representing the current
 | |
|    * time, using the specified time zone and the default locale.  
 | |
|    * @param zone a time zone.
 | |
|    */
 | |
|   public GregorianCalendar(TimeZone zone)
 | |
|   {
 | |
|     this(zone, Locale.getDefault());
 | |
|   }
 | |
|   
 | |
|   /**
 | |
|    * Constructs a new GregorianCalender representing the current
 | |
|    * time, using the default time zone and the specified locale.  
 | |
|    * @param locale a locale.
 | |
|    */
 | |
|   public GregorianCalendar(Locale locale)
 | |
|   {
 | |
|     this(TimeZone.getDefault(), locale);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new GregorianCalender representing the current
 | |
|    * time with the given time zone and the given locale.
 | |
|    * @param zone a time zone.  
 | |
|    * @param locale a locale.  
 | |
|    */
 | |
|   public GregorianCalendar(TimeZone zone, Locale locale)
 | |
|   {
 | |
|     super(zone, locale);
 | |
|     ResourceBundle rb = ResourceBundle.getBundle(bundleName, locale);
 | |
|     gregorianCutover = ((Date) rb.getObject("gregorianCutOver")).getTime();
 | |
|     setTimeInMillis(System.currentTimeMillis());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new GregorianCalendar representing midnight on the
 | |
|    * given date with the default time zone and locale.
 | |
|    * @param year corresponds to the YEAR time field.
 | |
|    * @param month corresponds to the MONTH time field.
 | |
|    * @param day corresponds to the DAY time field.
 | |
|    */
 | |
|   public GregorianCalendar(int year, int month, int day)
 | |
|   {
 | |
|     super();
 | |
|     set(year, month, day);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new GregorianCalendar representing midnight on the
 | |
|    * given date with the default time zone and locale.
 | |
|    * @param year corresponds to the YEAR time field.
 | |
|    * @param month corresponds to the MONTH time field.
 | |
|    * @param day corresponds to the DAY time field.
 | |
|    * @param hour corresponds to the HOUR_OF_DAY time field.
 | |
|    * @param minute corresponds to the MINUTE time field.
 | |
|    */
 | |
|   public GregorianCalendar(int year, int month, int day, int hour, int minute)
 | |
|   {
 | |
|     super();
 | |
|     set(year, month, day, hour, minute);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new GregorianCalendar representing midnight on the
 | |
|    * given date with the default time zone and locale.
 | |
|    * @param year corresponds to the YEAR time field.
 | |
|    * @param month corresponds to the MONTH time field.
 | |
|    * @param day corresponds to the DAY time field.
 | |
|    * @param hour corresponds to the HOUR_OF_DAY time field.
 | |
|    * @param minute corresponds to the MINUTE time field.
 | |
|    * @param second corresponds to the SECOND time field.
 | |
|    */
 | |
|   public GregorianCalendar(int year, int month, int day,
 | |
| 			   int hour, int minute, int second)
 | |
|   {
 | |
|     super();
 | |
|     set(year, month, day, hour, minute, second);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Sets the date of the switch from Julian dates to Gregorian dates.
 | |
|    * You can use <code>new Date(Long.MAX_VALUE)</code> to use a pure
 | |
|    * Julian calendar, or <code>Long.MIN_VALUE</code> for a pure Gregorian
 | |
|    * calendar.
 | |
|    * @param date the date of the change.
 | |
|    */
 | |
|   public void setGregorianChange(Date date)
 | |
|   {
 | |
|     gregorianCutover = date.getTime();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Gets the date of the switch from Julian dates to Gregorian dates.
 | |
|    * @return the date of the change.
 | |
|    */
 | |
|   public final Date getGregorianChange()
 | |
|   {
 | |
|     return new Date(gregorianCutover);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the given year is a leap year.  The result is
 | |
|    * undefined if the gregorian change took place in 1800, so that
 | |
|    * the end of february is skiped and you give that year
 | |
|    * (well...).<br>
 | |
|    *
 | |
|    * The year should be positive and you can't give an ERA.  But
 | |
|    * remember that before 4 BC there wasn't a consistent leap year
 | |
|    * rule, so who cares.
 | |
|    *
 | |
|    * @param year a year use nonnegative value for BC.
 | |
|    * @return true, if the given year is a leap year, false otherwise.  */
 | |
|   public boolean isLeapYear(int year)
 | |
|   {
 | |
|     if ((year & 3) != 0)
 | |
|       // Only years divisible by 4 can be leap years
 | |
|       return false;
 | |
| 
 | |
|     // compute the linear day of the 29. February of that year.
 | |
|     // The 13 is the number of days, that were omitted in the Gregorian
 | |
|     // Calender until the epoch.
 | |
|     int julianDay = (((year-1) * (365*4+1)) >> 2) + (31+29 - 
 | |
|         (((1970-1) * (365*4+1)) / 4 + 1 - 13));
 | |
|     
 | |
|     // If that day is smaller than the gregorianChange the julian
 | |
|     // rule applies:  This is a leap year since it is divisible by 4.
 | |
|     if (julianDay * (24 * 60 * 60 * 1000L) < gregorianCutover)
 | |
|       return true;
 | |
| 
 | |
|     return ((year % 100) != 0 || (year % 400) == 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Get the linear time in milliseconds since the epoch.  If you
 | |
|    * specify a nonpositive year it is interpreted as BC as
 | |
|    * following: 0 is 1 BC, -1 is 2 BC and so on.  The date is
 | |
|    * interpreted as gregorian if the change occurred before that date.
 | |
|    *
 | |
|    * @param year the year of the date.
 | |
|    * @param dayOfYear the day of year of the date; 1 based.
 | |
|    * @param millis the millisecond in that day.
 | |
|    * @return the days since the epoch, may be negative.  */
 | |
|   private long getLinearTime(int year, int dayOfYear, int millis)
 | |
|   {
 | |
|     // The 13 is the number of days, that were omitted in the Gregorian
 | |
|     // Calender until the epoch.
 | |
|     // We shift right by 2 instead of dividing by 4, to get correct
 | |
|     // results for negative years (and this is even more efficient).
 | |
|     int julianDay = ((year * (365 * 4 + 1)) >> 2) + dayOfYear -
 | |
|       ((1970 * (365 * 4 + 1)) / 4 + 1 - 13);
 | |
|     long time = julianDay * (24 * 60 * 60 * 1000L) + millis;
 | |
| 
 | |
|     if (time >= gregorianCutover)
 | |
|       {
 | |
| 	// subtract the days that are missing in gregorian calendar
 | |
| 	// with respect to julian calendar.
 | |
| 	//
 | |
| 	// Okay, here we rely on the fact that the gregorian
 | |
| 	// calendar was introduced in the AD era.  This doesn't work
 | |
| 	// with negative years.
 | |
| 	//
 | |
| 	// The additional leap year factor accounts for the fact that
 | |
| 	// a leap day is not seen on Jan 1 of the leap year.
 | |
| 	int gregOffset = (year / 400) - (year / 100) + 2;
 | |
| 	if (isLeapYear (year, true) && dayOfYear < 31 + 29)
 | |
| 	  --gregOffset;
 | |
| 	time += gregOffset * (24 * 60 * 60 * 1000L);
 | |
|       }
 | |
|     return time;
 | |
|   }
 | |
| 
 | |
|   private int getWeekDay(int year, int dayOfYear)
 | |
|   {
 | |
|     int day =
 | |
|       (int) (getLinearTime(year, dayOfYear, 0) / (24 * 60 * 60 * 1000L));
 | |
| 
 | |
|     // The epoch was a thursday.
 | |
|     int weekday = (day + THURSDAY) % 7;
 | |
|     if (weekday <= 0)
 | |
|       weekday += 7;
 | |
|     return weekday;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculate the dayOfYear from the fields array.  
 | |
|    * The relativeDays is used, to account for weeks that begin before
 | |
|    * the gregorian change and end after it.<br>
 | |
|    *
 | |
|    * We return two values, the first is used to determine, if we
 | |
|    * should use Gregorian calendar or Julian calendar, in case of
 | |
|    * the change year, the second is a relative day after the given
 | |
|    * day.  This is necessary for week calculation in the year in
 | |
|    * which gregorian change occurs. <br>
 | |
|    *
 | |
|    * @param year the year, negative for BC.
 | |
|    * @return an array of two int values, the first containing a reference
 | |
|    * day of current year, the second a relative count since this reference
 | |
|    * day.  */
 | |
|   private int[] getDayOfYear(int year)
 | |
|   {
 | |
|     if (isSet[MONTH])
 | |
|       {
 | |
| 	int dayOfYear;
 | |
| 	if (fields[MONTH] > FEBRUARY)
 | |
| 	  {
 | |
| 
 | |
| 	    // The months after February are regular:
 | |
| 	    // 9 is an offset found by try and error.
 | |
| 	    dayOfYear = (fields[MONTH] * (31 + 30 + 31 + 30 + 31) - 9) / 5;
 | |
| 	    if (isLeapYear(year))
 | |
| 	      dayOfYear++;
 | |
| 	  }
 | |
| 	else
 | |
| 	    dayOfYear = 31 * fields[MONTH];
 | |
| 
 | |
| 	if (isSet[DAY_OF_MONTH])
 | |
| 	  {
 | |
| 	    return new int[]
 | |
| 	    {
 | |
| 	    dayOfYear + fields[DAY_OF_MONTH], 0};
 | |
| 	  }
 | |
| 	if (isSet[WEEK_OF_MONTH] && isSet[DAY_OF_WEEK])
 | |
| 	  {
 | |
| 	    // the weekday of the first day in that month is:
 | |
| 	    int weekday = getWeekDay(year, ++dayOfYear);
 | |
| 
 | |
| 	    return new int[]
 | |
| 	    {
 | |
| 	      dayOfYear,
 | |
| 		// the day of week in the first week
 | |
| 		// (weeks starting on sunday) is:
 | |
| 	      fields[DAY_OF_WEEK] - weekday +
 | |
| 		// Now jump to the right week and correct the possible
 | |
| 		// error made by assuming sunday is the first week day.
 | |
| 	      7 * (fields[WEEK_OF_MONTH]
 | |
| 		   + (fields[DAY_OF_WEEK] < getFirstDayOfWeek()? 0 : -1)
 | |
| 		   + (weekday < getFirstDayOfWeek()? -1 : 0))};
 | |
| 	  }
 | |
| 	if (isSet[DAY_OF_WEEK] && isSet[DAY_OF_WEEK_IN_MONTH])
 | |
| 	  {
 | |
| 	    // the weekday of the first day in that month is:
 | |
| 	    int weekday = getWeekDay(year, ++dayOfYear);
 | |
| 	    return new int[] { 
 | |
| 		  dayOfYear,
 | |
| 		  fields[DAY_OF_WEEK] - weekday +
 | |
| 		  7 * (fields[DAY_OF_WEEK_IN_MONTH]
 | |
| 		       + (fields[DAY_OF_WEEK] < weekday ? 0 : -1))};
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|     // MONTH + something did not succeed.
 | |
|     if (isSet[DAY_OF_YEAR])
 | |
|       {
 | |
| 	return new int[] {0, fields[DAY_OF_YEAR]};
 | |
|       }
 | |
|       
 | |
|     if (isSet[DAY_OF_WEEK] && isSet[WEEK_OF_YEAR])
 | |
|       {
 | |
| 	int dayOfYear = getMinimalDaysInFirstWeek();
 | |
| 	// the weekday of the day, that begins the first week 
 | |
| 	// in that year is:
 | |
| 	int weekday = getWeekDay(year, dayOfYear);
 | |
| 
 | |
| 	return new int[] { 
 | |
| 	    dayOfYear,
 | |
| 	      // the day of week in the first week
 | |
| 	      // (weeks starting on sunday) is:
 | |
| 	    fields[DAY_OF_WEEK] - weekday
 | |
| 	      // Now jump to the right week and correct the possible
 | |
| 	      // error made by assuming sunday is the first week day.
 | |
| 	    + 7 * (fields[WEEK_OF_YEAR]
 | |
| 		   + (fields[DAY_OF_WEEK] < getFirstDayOfWeek()? 0 : -1)
 | |
| 		   + (weekday < getFirstDayOfWeek()? -1 : 0))};
 | |
|       }
 | |
| 
 | |
|     // As last resort return Jan, 1st.
 | |
|     return new int[] {1, 0};
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Converts the time field values (<code>fields</code>) to
 | |
|    * milliseconds since the epoch UTC (<code>time</code>). 
 | |
|    */
 | |
|   protected synchronized void computeTime()
 | |
|   {
 | |
|     int era = isSet[ERA] ? fields[ERA] : AD;
 | |
|     int year = isSet[YEAR] ? fields[YEAR] : 1970;
 | |
|     if (era == BC)
 | |
|       year = 1 - year;
 | |
| 
 | |
|     int[] daysOfYear = getDayOfYear(year);
 | |
| 
 | |
|     int hour = 0;
 | |
|     if (isSet[HOUR_OF_DAY])
 | |
|       hour = fields[HOUR_OF_DAY];
 | |
|     else if (isSet[HOUR])
 | |
|       {
 | |
| 	hour = fields[HOUR];
 | |
|         if (isSet[AM_PM] && fields[AM_PM] == PM)
 | |
| 	  hour += 12;
 | |
|       }
 | |
| 
 | |
|     int minute = isSet[MINUTE] ? fields[MINUTE] : 0;
 | |
|     int second = isSet[SECOND] ? fields[SECOND] : 0;
 | |
|     int millis = isSet[MILLISECOND] ? fields[MILLISECOND] : 0;
 | |
|     int millisInDay;
 | |
| 
 | |
|     if (isLenient())
 | |
|       {
 | |
| 	// prevent overflow
 | |
| 	long allMillis = (((hour * 60L) + minute) * 60L + second) * 1000L
 | |
| 	  + millis;
 | |
| 	daysOfYear[1] += allMillis / (24 * 60 * 60 * 1000L);
 | |
| 	millisInDay = (int) (allMillis % (24 * 60 * 60 * 1000L));
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	if (hour < 0 || hour >= 24 || minute < 0 || minute > 59
 | |
| 	    || second < 0 || second > 59 || millis < 0 || millis >= 1000)
 | |
| 	  throw new IllegalArgumentException();
 | |
| 	millisInDay = (((hour * 60) + minute) * 60 + second) * 1000 + millis;
 | |
|       }
 | |
|     time = getLinearTime(year, daysOfYear[0], millisInDay);
 | |
| 
 | |
|     // Add the relative days after calculating the linear time, to
 | |
|     // get right behaviour when jumping over the gregorianCutover.
 | |
|     time += daysOfYear[1] * (24 * 60 * 60 * 1000L);
 | |
| 
 | |
| 
 | |
|     TimeZone zone = getTimeZone();
 | |
|     int rawOffset = isSet[ZONE_OFFSET]
 | |
|       ? fields[ZONE_OFFSET] : zone.getRawOffset();
 | |
| 
 | |
|     int dayOfYear = daysOfYear[0] + daysOfYear[1];
 | |
|     int month = (dayOfYear * 5 + 3) / (31 + 30 + 31 + 30 + 31);
 | |
|     int day = (6 + (dayOfYear * 5 + 3) % (31 + 30 + 31 + 30 + 31)) / 5;
 | |
|     int weekday = ((int) (time / (24 * 60 * 60 * 1000L)) + THURSDAY) % 7;
 | |
|     if (weekday <= 0)
 | |
|       weekday += 7;
 | |
|     int dstOffset = isSet[DST_OFFSET]
 | |
|       ? fields[DST_OFFSET] : (zone.getOffset((year < 0) ? BC : AD,
 | |
| 					     (year < 0) ? 1 - year : year,
 | |
| 					     month, day, weekday, millisInDay)
 | |
| 			      - zone.getRawOffset());
 | |
|     time -= rawOffset + dstOffset;
 | |
|     isTimeSet = true;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the given year is a leap year.  
 | |
|    *
 | |
|    * The year should be positive and you can't give an ERA.  But
 | |
|    * remember that before 4 BC there wasn't a consistent leap year
 | |
|    * rule, so who cares.
 | |
|    *
 | |
|    * @param year a year use nonnegative value for BC.
 | |
|    * @param gregorian if true, use gregorian leap year rule.
 | |
|    * @return true, if the given year is a leap year, false otherwise.  */
 | |
|   private boolean isLeapYear(int year, boolean gregorian)
 | |
|   {
 | |
|     if ((year & 3) != 0)
 | |
|       // Only years divisible by 4 can be leap years
 | |
|       return false;
 | |
| 
 | |
|     if (!gregorian)
 | |
|       return true;
 | |
| 
 | |
|     // We rely on AD area here.
 | |
|     return ((year % 100) != 0 || (year % 400) == 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Get the linear day in days since the epoch, using the
 | |
|    * Julian or Gregorian calendar as specified.  If you specify a
 | |
|    * nonpositive year it is interpreted as BC as following: 0 is 1
 | |
|    * BC, -1 is 2 BC and so on.  
 | |
|    *
 | |
|    * @param year the year of the date.
 | |
|    * @param dayOfYear the day of year of the date; 1 based.
 | |
|    * @param gregorian True, if we should use Gregorian rules.
 | |
|    * @return the days since the epoch, may be negative.  */
 | |
|   private int getLinearDay(int year, int dayOfYear, boolean gregorian)
 | |
|   {
 | |
|     // The 13 is the number of days, that were omitted in the Gregorian
 | |
|     // Calender until the epoch.
 | |
|     // We shift right by 2 instead of dividing by 4, to get correct
 | |
|     // results for negative years (and this is even more efficient).
 | |
|     int julianDay = ((year * (365 * 4 + 1)) >> 2) + dayOfYear -
 | |
|       ((1970 * (365 * 4 + 1)) / 4 + 1 - 13);
 | |
| 
 | |
|     if (gregorian)
 | |
|       {
 | |
| 	// subtract the days that are missing in gregorian calendar
 | |
| 	// with respect to julian calendar.
 | |
| 	//
 | |
| 	// Okay, here we rely on the fact that the gregorian
 | |
| 	// calendar was introduced in the AD era.  This doesn't work
 | |
| 	// with negative years.
 | |
| 	//
 | |
| 	// The additional leap year factor accounts for the fact that
 | |
| 	// a leap day is not seen on Jan 1 of the leap year.
 | |
| 	int gregOffset = (year / 400) - (year / 100) + 2;
 | |
| 	if (isLeapYear (year, true) && dayOfYear < 31 + 29)
 | |
| 	  --gregOffset;
 | |
| 	julianDay += gregOffset;
 | |
|       }
 | |
|     return julianDay;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Converts the given linear day into era, year, month,
 | |
|    * day_of_year, day_of_month, day_of_week, and writes the result
 | |
|    * into the fields array.
 | |
|    * @param day the linear day.  
 | |
|    */
 | |
|   private void calculateDay(int day, boolean gregorian)
 | |
|   {
 | |
|     // the epoch is a Thursday.
 | |
|     int weekday = (day + THURSDAY) % 7;
 | |
|     if (weekday <= 0)
 | |
|       weekday += 7;
 | |
|     fields[DAY_OF_WEEK] = weekday;
 | |
| 
 | |
|     // get a first approximation of the year.  This may be one 
 | |
|     // year to big.
 | |
|     int year = 1970 + (gregorian
 | |
| 		       ? ((day - 100) * 400) / (365 * 400 + 100 - 4 + 1)
 | |
| 		       : ((day - 100) * 4) / (365 * 4 + 1));
 | |
|     if (day >= 0)
 | |
|       year++;
 | |
| 
 | |
|     int firstDayOfYear = getLinearDay(year, 1, gregorian);
 | |
| 
 | |
|     // Now look in which year day really lies.
 | |
|     if (day < firstDayOfYear)
 | |
|       {
 | |
| 	year--;
 | |
| 	firstDayOfYear = getLinearDay(year, 1, gregorian);
 | |
|       }
 | |
| 
 | |
|     day -= firstDayOfYear - 1;	// day of year,  one based.
 | |
| 
 | |
|     fields[DAY_OF_YEAR] = day;
 | |
|     if (year <= 0)
 | |
|       {
 | |
| 	fields[ERA] = BC;
 | |
| 	fields[YEAR] = 1 - year;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	fields[ERA] = AD;
 | |
| 	fields[YEAR] = year;
 | |
|       }
 | |
| 
 | |
|     int leapday = isLeapYear(year, gregorian) ? 1 : 0;
 | |
|     if (day <= 31 + 28 + leapday)
 | |
|       {
 | |
| 	fields[MONTH] = day / 32;	// 31->JANUARY, 32->FEBRUARY
 | |
| 	fields[DAY_OF_MONTH] = day - 31 * fields[MONTH];
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	// A few more magic formulas
 | |
| 	int scaledDay = (day - leapday) * 5 + 8;
 | |
| 	fields[MONTH] = scaledDay / (31 + 30 + 31 + 30 + 31);
 | |
| 	fields[DAY_OF_MONTH] = (scaledDay % (31 + 30 + 31 + 30 + 31)) / 5 + 1;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Converts the milliseconds since the epoch UTC
 | |
|    * (<code>time</code>) to time fields
 | |
|    * (<code>fields</code>). 
 | |
|    */
 | |
|   protected synchronized void computeFields()
 | |
|   {
 | |
|     boolean gregorian = (time >= gregorianCutover);
 | |
| 
 | |
|     TimeZone zone = getTimeZone();
 | |
|     fields[ZONE_OFFSET] = zone.getRawOffset();
 | |
|     long localTime = time + fields[ZONE_OFFSET];
 | |
| 
 | |
|     int day = (int) (localTime / (24 * 60 * 60 * 1000L));
 | |
|     int millisInDay = (int) (localTime % (24 * 60 * 60 * 1000L));
 | |
|     if (millisInDay < 0)
 | |
|       {
 | |
| 	millisInDay += (24 * 60 * 60 * 1000);
 | |
| 	day--;
 | |
|       }
 | |
| 
 | |
|     calculateDay(day, gregorian);
 | |
|     fields[DST_OFFSET] =
 | |
|       zone.getOffset(fields[ERA], fields[YEAR], fields[MONTH],
 | |
| 		     fields[DAY_OF_MONTH], fields[DAY_OF_WEEK],
 | |
| 		     millisInDay) - fields[ZONE_OFFSET];
 | |
| 
 | |
|     millisInDay += fields[DST_OFFSET];
 | |
|     if (millisInDay >= 24 * 60 * 60 * 1000)
 | |
|       {
 | |
| 	millisInDay -= 24 * 60 * 60 * 1000;
 | |
| 	calculateDay(++day, gregorian);
 | |
|       }
 | |
| 
 | |
|     fields[DAY_OF_WEEK_IN_MONTH] = (fields[DAY_OF_MONTH] + 6) / 7;
 | |
| 
 | |
|     // which day of the week are we (0..6), relative to getFirstDayOfWeek
 | |
|     int relativeWeekday = (7 + fields[DAY_OF_WEEK] - getFirstDayOfWeek()) % 7;
 | |
| 
 | |
|     fields[WEEK_OF_MONTH] = (fields[DAY_OF_MONTH] - relativeWeekday + 6) / 7;
 | |
| 
 | |
|     int weekOfYear = (fields[DAY_OF_YEAR] - relativeWeekday + 6) / 7;
 | |
| 
 | |
|     // Do the Correction: getMinimalDaysInFirstWeek() is always in the 
 | |
|     // first week.
 | |
|     int minDays = getMinimalDaysInFirstWeek();
 | |
|     int firstWeekday =
 | |
|       (7 + getWeekDay(fields[YEAR], minDays) - getFirstDayOfWeek()) % 7;
 | |
|     if (minDays - firstWeekday < 1)
 | |
|       weekOfYear++;
 | |
|     fields[WEEK_OF_YEAR] = weekOfYear;
 | |
| 
 | |
| 
 | |
|     int hourOfDay = millisInDay / (60 * 60 * 1000);
 | |
|     fields[AM_PM] = (hourOfDay < 12) ? AM : PM;
 | |
|     int hour = hourOfDay % 12;
 | |
|     fields[HOUR] = (hour == 0) ? 12 : hour;
 | |
|     fields[HOUR_OF_DAY] = hourOfDay;
 | |
|     millisInDay %= (60 * 60 * 1000);
 | |
|     fields[MINUTE] = millisInDay / (60 * 1000);
 | |
|     millisInDay %= (60 * 1000);
 | |
|     fields[SECOND] = millisInDay / (1000);
 | |
|     fields[MILLISECOND] = millisInDay % 1000;
 | |
| 
 | |
| 
 | |
|     areFieldsSet = isSet[ERA] = isSet[YEAR] = isSet[MONTH] =
 | |
|       isSet[WEEK_OF_YEAR] = isSet[WEEK_OF_MONTH] =
 | |
|       isSet[DAY_OF_MONTH] = isSet[DAY_OF_YEAR] = isSet[DAY_OF_WEEK] =
 | |
|       isSet[DAY_OF_WEEK_IN_MONTH] = isSet[AM_PM] = isSet[HOUR] =
 | |
|       isSet[HOUR_OF_DAY] = isSet[MINUTE] = isSet[SECOND] =
 | |
|       isSet[MILLISECOND] = isSet[ZONE_OFFSET] = isSet[DST_OFFSET] = true;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compares the given calender with this.  
 | |
|    * @param o the object to that we should compare.
 | |
|    * @return true, if the given object is a calendar, that represents
 | |
|    * the same time (but doesn't necessary have the same fields).
 | |
|    * @XXX Should we check if time zones, locale, cutover etc. are equal?
 | |
|    */
 | |
|   public boolean equals(Object o)
 | |
|   {
 | |
|     if (!(o instanceof GregorianCalendar))
 | |
|       return false;
 | |
| 
 | |
|     GregorianCalendar cal = (GregorianCalendar) o;
 | |
|     return (cal.getTimeInMillis() == getTimeInMillis());
 | |
|   }
 | |
| 
 | |
| //     /**
 | |
| //      * Compares the given calender with this.  
 | |
| //      * @param o the object to that we should compare.
 | |
| //      * @return true, if the given object is a calendar, and this calendar
 | |
| //      * represents a smaller time than the calender o.
 | |
| //      */
 | |
| //     public boolean before(Object o) {
 | |
| //         if (!(o instanceof GregorianCalendar))
 | |
| //             return false;
 | |
| 
 | |
| //         GregorianCalendar cal = (GregorianCalendar) o;
 | |
| //         return (cal.getTimeInMillis() < getTimeInMillis());
 | |
| //     }
 | |
| 
 | |
| //     /**
 | |
| //      * Compares the given calender with this.  
 | |
| //      * @param o the object to that we should compare.
 | |
| //      * @return true, if the given object is a calendar, and this calendar
 | |
| //      * represents a bigger time than the calender o.
 | |
| //      */
 | |
| //     public boolean after(Object o) {
 | |
| //         if (!(o instanceof GregorianCalendar))
 | |
| //             return false;
 | |
| 
 | |
| //         GregorianCalendar cal = (GregorianCalendar) o;
 | |
| //         return (cal.getTimeInMillis() > getTimeInMillis());
 | |
| //     }
 | |
| 
 | |
|   /**
 | |
|    * Adds the specified amount of time to the given time field.  The
 | |
|    * amount may be negative to subtract the time.  If the field overflows
 | |
|    * it does what you expect: Jan, 25 + 10 Days is Feb, 4.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @param amount the amount of time.
 | |
|    */
 | |
|   public void add(int field, int amount)
 | |
|   {
 | |
|     switch (field)
 | |
|       {
 | |
|       case YEAR:
 | |
| 	complete();
 | |
| 	fields[YEAR] += amount;
 | |
| 	isTimeSet = false;
 | |
| 	break;
 | |
|       case MONTH:
 | |
| 	complete();
 | |
| 	int months = fields[MONTH] + amount;
 | |
| 	fields[YEAR] += months / 12;
 | |
| 	fields[MONTH] = months % 12;
 | |
| 	if (fields[MONTH] < 0)
 | |
| 	  {
 | |
| 	    fields[MONTH] += 12;
 | |
| 	    fields[YEAR]--;
 | |
| 	  }
 | |
| 	isTimeSet = false;
 | |
| 	int maxDay = getActualMaximum(DAY_OF_MONTH);
 | |
| 	if (fields[DAY_OF_MONTH] > maxDay)
 | |
| 	  {
 | |
| 	    fields[DAY_OF_MONTH] = maxDay;
 | |
| 	    isTimeSet = false;
 | |
| 	  }
 | |
| 	break;
 | |
|       case DAY_OF_MONTH:
 | |
|       case DAY_OF_YEAR:
 | |
|       case DAY_OF_WEEK:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (24 * 60 * 60 * 1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case WEEK_OF_YEAR:
 | |
|       case WEEK_OF_MONTH:
 | |
|       case DAY_OF_WEEK_IN_MONTH:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (7 * 24 * 60 * 60 * 1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case AM_PM:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (12 * 60 * 60 * 1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case HOUR:
 | |
|       case HOUR_OF_DAY:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (60 * 60 * 1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case MINUTE:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (60 * 1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case SECOND:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount * (1000L);
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case MILLISECOND:
 | |
| 	if (!isTimeSet)
 | |
| 	  computeTime();
 | |
| 	time += amount;
 | |
| 	areFieldsSet = false;
 | |
| 	break;
 | |
|       case ZONE_OFFSET:
 | |
| 	complete();
 | |
| 	fields[ZONE_OFFSET] += amount;
 | |
| 	time -= amount;
 | |
| 	break;
 | |
|       case DST_OFFSET:
 | |
| 	complete();
 | |
| 	fields[DST_OFFSET] += amount;
 | |
| 	isTimeSet = false;
 | |
| 	break;
 | |
|       default:
 | |
| 	throw new IllegalArgumentException
 | |
| 	  ("Unknown Calendar field: " + field);
 | |
|       }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * Rolls the specified time field up or down.  This means add one
 | |
|    * to the specified field, but don't change the other fields.  If
 | |
|    * the maximum for this field is reached, start over with the 
 | |
|    * minimum value.  
 | |
|    *
 | |
|    * <strong>Note:</strong> There may be situation, where the other
 | |
|    * fields must be changed, e.g rolling the month on May, 31. 
 | |
|    * The date June, 31 is automatically converted to July, 1. 
 | |
|    * This requires lenient settings.
 | |
|    *
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @param up the direction, true for up, false for down.
 | |
|    */
 | |
|   public void roll(int field, boolean up)
 | |
|   {
 | |
|     roll(field, up ? 1 : -1);
 | |
|   }
 | |
| 
 | |
|   private void cleanUpAfterRoll(int field, int delta)
 | |
|   {
 | |
|     switch (field)
 | |
|       {
 | |
|       case ERA:
 | |
|       case YEAR:
 | |
|       case MONTH:
 | |
| 	// check that day of month is still in correct range
 | |
| 	if (fields[DAY_OF_MONTH] > getActualMaximum(DAY_OF_MONTH))
 | |
| 	  fields[DAY_OF_MONTH] = getActualMaximum(DAY_OF_MONTH);
 | |
| 	isTimeSet = false;
 | |
| 	isSet[WEEK_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK] = false;
 | |
| 	isSet[DAY_OF_WEEK_IN_MONTH] = false;
 | |
| 	isSet[DAY_OF_YEAR] = false;
 | |
| 	isSet[WEEK_OF_YEAR] = false;
 | |
| 	break;
 | |
| 
 | |
|       case DAY_OF_MONTH:
 | |
| 	isSet[WEEK_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK] = false;
 | |
| 	isSet[DAY_OF_WEEK_IN_MONTH] = false;
 | |
| 	isSet[DAY_OF_YEAR] = false;
 | |
| 	isSet[WEEK_OF_YEAR] = false;
 | |
| 	time += delta * (24 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
| 
 | |
|       case WEEK_OF_MONTH:
 | |
| 	isSet[DAY_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK_IN_MONTH] = false;
 | |
| 	isSet[DAY_OF_YEAR] = false;
 | |
| 	isSet[WEEK_OF_YEAR] = false;
 | |
| 	time += delta * (7 * 24 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
|       case DAY_OF_WEEK_IN_MONTH:
 | |
| 	isSet[DAY_OF_MONTH] = false;
 | |
| 	isSet[WEEK_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_YEAR] = false;
 | |
| 	isSet[WEEK_OF_YEAR] = false;
 | |
| 	time += delta * (7 * 24 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
|       case DAY_OF_YEAR:
 | |
| 	isSet[MONTH] = false;
 | |
| 	isSet[DAY_OF_MONTH] = false;
 | |
| 	isSet[WEEK_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK_IN_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK] = false;
 | |
| 	isSet[WEEK_OF_YEAR] = false;
 | |
| 	time += delta * (24 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
|       case WEEK_OF_YEAR:
 | |
| 	isSet[MONTH] = false;
 | |
| 	isSet[DAY_OF_MONTH] = false;
 | |
| 	isSet[WEEK_OF_MONTH] = false;
 | |
| 	isSet[DAY_OF_WEEK_IN_MONTH] = false;
 | |
| 	isSet[DAY_OF_YEAR] = false;
 | |
| 	time += delta * (7 * 24 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
| 
 | |
|       case AM_PM:
 | |
| 	isSet[HOUR_OF_DAY] = false;
 | |
| 	time += delta * (12 * 60 * 60 * 1000L);
 | |
| 	break;
 | |
|       case HOUR:
 | |
| 	isSet[HOUR_OF_DAY] = false;
 | |
| 	time += delta * (60 * 60 * 1000L);
 | |
| 	break;
 | |
|       case HOUR_OF_DAY:
 | |
| 	isSet[HOUR] = false;
 | |
| 	isSet[AM_PM] = false;
 | |
| 	time += delta * (60 * 60 * 1000L);
 | |
| 	break;
 | |
| 
 | |
|       case MINUTE:
 | |
| 	time += delta * (60 * 1000L);
 | |
| 	break;
 | |
|       case SECOND:
 | |
| 	time += delta * (1000L);
 | |
| 	break;
 | |
|       case MILLISECOND:
 | |
| 	time += delta;
 | |
| 	break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Rolls the specified time field by the given amount.  This means
 | |
|    * add amount to the specified field, but don't change the other
 | |
|    * fields.  If the maximum for this field is reached, start over
 | |
|    * with the minimum value and vice versa for negative amounts.
 | |
|    *
 | |
|    * <strong>Note:</strong> There may be situation, where the other
 | |
|    * fields must be changed, e.g rolling the month on May, 31. 
 | |
|    * The date June, 31 is automatically corrected to June, 30.
 | |
|    *
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @param amount the amount by which we should roll.
 | |
|    */
 | |
|   public void roll(int field, int amount)
 | |
|   {
 | |
|     switch (field)
 | |
|       {
 | |
|       case DAY_OF_WEEK:
 | |
| 	// day of week is special: it rolls automatically
 | |
| 	add(field, amount);
 | |
| 	return;
 | |
|       case ZONE_OFFSET:
 | |
|       case DST_OFFSET:
 | |
| 	throw new IllegalArgumentException("Can't roll time zone");
 | |
|       }
 | |
|     complete();
 | |
|     int min = getActualMinimum(field);
 | |
|     int range = getActualMaximum(field) - min + 1;
 | |
|     int oldval = fields[field];
 | |
|     int newval = (oldval - min + range + amount) % range + min;
 | |
|     if (newval < min)
 | |
|       newval += range;
 | |
|     fields[field] = newval;
 | |
|     cleanUpAfterRoll(field, newval - oldval);
 | |
|   }
 | |
| 
 | |
|   private static final int[] minimums =
 | |
|       { BC,       1,  0,  0, 1,  1,   1,   SUNDAY, 1, 
 | |
|         AM,  1,  0,  1,  1,   1, -(12*60*60*1000),               0 };
 | |
| 
 | |
|   private static final int[] maximums =
 | |
|       { AD, 5000000, 11, 53, 5, 31, 366, SATURDAY, 5, 
 | |
|         PM, 12, 23, 59, 59, 999, +(12*60*60*1000), (12*60*60*1000) };
 | |
| 
 | |
|   /**
 | |
|    * Gets the smallest value that is allowed for the specified field.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the smallest value.
 | |
|    */
 | |
|   public int getMinimum(int field)
 | |
|   {
 | |
|     return minimums[field];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Gets the biggest value that is allowed for the specified field.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the biggest value.
 | |
|    */
 | |
|   public int getMaximum(int field)
 | |
|   {
 | |
|     return maximums[field];
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * Gets the greatest minimum value that is allowed for the specified field.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the greatest minimum value.
 | |
|    */
 | |
|   public int getGreatestMinimum(int field)
 | |
|   {
 | |
|     if (field == WEEK_OF_YEAR)
 | |
|       return 1;
 | |
|     return minimums[field];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Gets the smallest maximum value that is allowed for the
 | |
|    * specified field.  For example this is 28 for DAY_OF_MONTH.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the least maximum value.  
 | |
|    * @since jdk1.2
 | |
|    */
 | |
|   public int getLeastMaximum(int field)
 | |
|   {
 | |
|     switch (field)
 | |
|       {
 | |
|       case WEEK_OF_YEAR:
 | |
| 	return 52;
 | |
|       case DAY_OF_MONTH:
 | |
| 	return 28;
 | |
|       case DAY_OF_YEAR:
 | |
| 	return 365;
 | |
|       case DAY_OF_WEEK_IN_MONTH:
 | |
|       case WEEK_OF_MONTH:
 | |
| 	return 4;
 | |
|       default:
 | |
| 	return maximums[field];
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Gets the actual minimum value that is allowed for the specified field.
 | |
|    * This value is dependent on the values of the other fields.  Note that
 | |
|    * this calls <code>complete()</code> if not enough fields are set.  This
 | |
|    * can have ugly side effects.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the actual minimum value.
 | |
|    * @since jdk1.2
 | |
|    */
 | |
|   public int getActualMinimum(int field)
 | |
|   {
 | |
|     if (field == WEEK_OF_YEAR)
 | |
|       {
 | |
| 	int min = getMinimalDaysInFirstWeek();
 | |
| 	if (min == 0)
 | |
| 	  return 1;
 | |
| 	if (!areFieldsSet || !isSet[ERA] || !isSet[YEAR])
 | |
| 	  complete();
 | |
| 
 | |
| 	int year = fields[ERA] == AD ? fields[YEAR] : 1 - fields[YEAR];
 | |
| 	int weekday = getWeekDay(year, min);
 | |
| 	if ((7 + weekday - getFirstDayOfWeek()) % 7 >= min - 1)
 | |
| 	  return 1;
 | |
| 	return 0;
 | |
|       }
 | |
|     return minimums[field];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Gets the actual maximum value that is allowed for the specified field.
 | |
|    * This value is dependent on the values of the other fields.  Note that
 | |
|    * this calls <code>complete()</code> if not enough fields are set.  This
 | |
|    * can have ugly side effects.
 | |
|    * @param field the time field. One of the time field constants.
 | |
|    * @return the actual maximum value.  
 | |
|    */
 | |
|   public int getActualMaximum(int field)
 | |
|   {
 | |
|     switch (field)
 | |
|       {
 | |
|       case WEEK_OF_YEAR:
 | |
| 	{
 | |
| 	  if (!areFieldsSet || !isSet[ERA] || !isSet[YEAR])
 | |
| 	    complete();
 | |
| 	  // This is wrong for the year that contains the gregorian change.
 | |
| 	  // I.e it gives the weeks in the julian year or in the gregorian
 | |
| 	  // year in that case.
 | |
| 	  int year = fields[ERA] == AD ? fields[YEAR] : 1 - fields[YEAR];
 | |
| 	  int lastDay = isLeapYear(year) ? 366 : 365;
 | |
| 	  int weekday = getWeekDay(year, lastDay);
 | |
| 	  int week = (lastDay + 6
 | |
| 		      - (7 + weekday - getFirstDayOfWeek()) % 7) / 7;
 | |
| 
 | |
| 	  int minimalDays = getMinimalDaysInFirstWeek();
 | |
| 	  int firstWeekday = getWeekDay(year, minimalDays);
 | |
| 	  if (minimalDays - (7 + firstWeekday - getFirstDayOfWeek()) % 7 < 1)
 | |
| 	    return week + 1;
 | |
| 	}
 | |
| 	case DAY_OF_MONTH:
 | |
| 	{
 | |
| 	  if (!areFieldsSet || !isSet[MONTH])
 | |
| 	    complete();
 | |
| 	  int month = fields[MONTH];
 | |
| 	  // If you change this, you should also change 
 | |
| 	  // SimpleTimeZone.getDaysInMonth();
 | |
| 	  if (month == FEBRUARY)
 | |
| 	    {
 | |
| 	      if (!isSet[YEAR] || !isSet[ERA])
 | |
| 		complete();
 | |
| 	      int year = fields[ERA] == AD ? fields[YEAR] : 1 - fields[YEAR];
 | |
| 	      return isLeapYear(year) ? 29 : 28;
 | |
| 	    }
 | |
| 	  else if (month < AUGUST)
 | |
| 	    return 31 - (month & 1);
 | |
| 	  else
 | |
| 	    return 30 + (month & 1);
 | |
| 	}
 | |
|       case DAY_OF_YEAR:
 | |
| 	{
 | |
| 	  if (!areFieldsSet || !isSet[ERA] || !isSet[YEAR])
 | |
| 	    complete();
 | |
| 	  int year = fields[ERA] == AD ? fields[YEAR] : 1 - fields[YEAR];
 | |
| 	  return isLeapYear(year) ? 366 : 365;
 | |
| 	}
 | |
|       case DAY_OF_WEEK_IN_MONTH:
 | |
| 	{
 | |
| 	  // This is wrong for the month that contains the gregorian change.
 | |
| 	  int daysInMonth = getActualMaximum(DAY_OF_MONTH);
 | |
| 	  // That's black magic, I know
 | |
| 	  return (daysInMonth - (fields[DAY_OF_MONTH] - 1) % 7 + 6) / 7;
 | |
| 	}
 | |
|       case WEEK_OF_MONTH:
 | |
| 	{
 | |
| 	  int daysInMonth = getActualMaximum(DAY_OF_MONTH);
 | |
| 	  int weekday = (daysInMonth - fields[DAY_OF_MONTH]
 | |
| 			 + fields[DAY_OF_WEEK] - SUNDAY) % 7 + SUNDAY;
 | |
| 	  return (daysInMonth + 6
 | |
| 		  - (7 + weekday - getFirstDayOfWeek()) % 7) / 7;
 | |
| 	}
 | |
|       default:
 | |
| 	return maximums[field];
 | |
|       }
 | |
|   }
 | |
| }
 |