mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			131 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Return arc hyperbolic tangent for a complex float type.
 | |
|    Copyright (C) 1997-2018 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| __complex128
 | |
| catanhq (__complex128 x)
 | |
| {
 | |
|   __complex128 res;
 | |
|   int rcls = fpclassifyq (__real__ x);
 | |
|   int icls = fpclassifyq (__imag__ x);
 | |
| 
 | |
|   if (__glibc_unlikely (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE))
 | |
|     {
 | |
|       if (icls == QUADFP_INFINITE)
 | |
| 	{
 | |
| 	  __real__ res = copysignq (0, __real__ x);
 | |
| 	  __imag__ res = copysignq (M_PI_2q, __imag__ x);
 | |
| 	}
 | |
|       else if (rcls == QUADFP_INFINITE || rcls == QUADFP_ZERO)
 | |
| 	{
 | |
| 	  __real__ res = copysignq (0, __real__ x);
 | |
| 	  if (icls >= QUADFP_ZERO)
 | |
| 	    __imag__ res = copysignq (M_PI_2q, __imag__ x);
 | |
| 	  else
 | |
| 	    __imag__ res = nanq ("");
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __real__ res = nanq ("");
 | |
| 	  __imag__ res = nanq ("");
 | |
| 	}
 | |
|     }
 | |
|   else if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
 | |
|     {
 | |
|       res = x;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (fabsq (__real__ x) >= 16 / FLT128_EPSILON
 | |
| 	  || fabsq (__imag__ x) >= 16 / FLT128_EPSILON)
 | |
| 	{
 | |
| 	  __imag__ res = copysignq (M_PI_2q, __imag__ x);
 | |
| 	  if (fabsq (__imag__ x) <= 1)
 | |
| 	    __real__ res = 1 / __real__ x;
 | |
| 	  else if (fabsq (__real__ x) <= 1)
 | |
| 	    __real__ res = __real__ x / __imag__ x / __imag__ x;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      __float128 h = hypotq (__real__ x / 2, __imag__ x / 2);
 | |
| 	      __real__ res = __real__ x / h / h / 4;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  if (fabsq (__real__ x) == 1
 | |
| 	      && fabsq (__imag__ x) < FLT128_EPSILON * FLT128_EPSILON)
 | |
| 	    __real__ res = (copysignq (0.5Q, __real__ x)
 | |
| 			    * ((__float128) M_LN2q
 | |
| 			       - logq (fabsq (__imag__ x))));
 | |
| 	  else
 | |
| 	    {
 | |
| 	      __float128 i2 = 0;
 | |
| 	      if (fabsq (__imag__ x) >= FLT128_EPSILON * FLT128_EPSILON)
 | |
| 		i2 = __imag__ x * __imag__ x;
 | |
| 
 | |
| 	      __float128 num = 1 + __real__ x;
 | |
| 	      num = i2 + num * num;
 | |
| 
 | |
| 	      __float128 den = 1 - __real__ x;
 | |
| 	      den = i2 + den * den;
 | |
| 
 | |
| 	      __float128 f = num / den;
 | |
| 	      if (f < 0.5Q)
 | |
| 		__real__ res = 0.25Q * logq (f);
 | |
| 	      else
 | |
| 		{
 | |
| 		  num = 4 * __real__ x;
 | |
| 		  __real__ res = 0.25Q * log1pq (num / den);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  __float128 absx, absy, den;
 | |
| 
 | |
| 	  absx = fabsq (__real__ x);
 | |
| 	  absy = fabsq (__imag__ x);
 | |
| 	  if (absx < absy)
 | |
| 	    {
 | |
| 	      __float128 t = absx;
 | |
| 	      absx = absy;
 | |
| 	      absy = t;
 | |
| 	    }
 | |
| 
 | |
| 	  if (absy < FLT128_EPSILON / 2)
 | |
| 	    {
 | |
| 	      den = (1 - absx) * (1 + absx);
 | |
| 	      if (den == 0)
 | |
| 		den = 0;
 | |
| 	    }
 | |
| 	  else if (absx >= 1)
 | |
| 	    den = (1 - absx) * (1 + absx) - absy * absy;
 | |
| 	  else if (absx >= 0.75Q || absy >= 0.5Q)
 | |
| 	    den = -__quadmath_x2y2m1q (absx, absy);
 | |
| 	  else
 | |
| 	    den = (1 - absx) * (1 + absx) - absy * absy;
 | |
| 
 | |
| 	  __imag__ res = 0.5Q * atan2q (2 * __imag__ x, den);
 | |
| 	}
 | |
| 
 | |
|       math_check_force_underflow_complex (res);
 | |
|     }
 | |
| 
 | |
|   return res;
 | |
| }
 |