mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			132 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Complex cosine hyperbolic function for float types.
 | |
|    Copyright (C) 1997-2018 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| __complex128
 | |
| ccoshq (__complex128 x)
 | |
| {
 | |
|   __complex128 retval;
 | |
|   int rcls = fpclassifyq (__real__ x);
 | |
|   int icls = fpclassifyq (__imag__ x);
 | |
| 
 | |
|   if (__glibc_likely (rcls >= QUADFP_ZERO))
 | |
|     {
 | |
|       /* Real part is finite.  */
 | |
|       if (__glibc_likely (icls >= QUADFP_ZERO))
 | |
| 	{
 | |
| 	  /* Imaginary part is finite.  */
 | |
| 	  const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
 | |
| 	  __float128 sinix, cosix;
 | |
| 
 | |
| 	  if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
 | |
| 	    {
 | |
| 	      sincosq (__imag__ x, &sinix, &cosix);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      sinix = __imag__ x;
 | |
| 	      cosix = 1;
 | |
| 	    }
 | |
| 
 | |
| 	  if (fabsq (__real__ x) > t)
 | |
| 	    {
 | |
| 	      __float128 exp_t = expq (t);
 | |
| 	      __float128 rx = fabsq (__real__ x);
 | |
| 	      if (signbitq (__real__ x))
 | |
| 		sinix = -sinix;
 | |
| 	      rx -= t;
 | |
| 	      sinix *= exp_t / 2;
 | |
| 	      cosix *= exp_t / 2;
 | |
| 	      if (rx > t)
 | |
| 		{
 | |
| 		  rx -= t;
 | |
| 		  sinix *= exp_t;
 | |
| 		  cosix *= exp_t;
 | |
| 		}
 | |
| 	      if (rx > t)
 | |
| 		{
 | |
| 		  /* Overflow (original real part of x > 3t).  */
 | |
| 		  __real__ retval = FLT128_MAX * cosix;
 | |
| 		  __imag__ retval = FLT128_MAX * sinix;
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  __float128 exp_val = expq (rx);
 | |
| 		  __real__ retval = exp_val * cosix;
 | |
| 		  __imag__ retval = exp_val * sinix;
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      __real__ retval = coshq (__real__ x) * cosix;
 | |
| 	      __imag__ retval = sinhq (__real__ x) * sinix;
 | |
| 	    }
 | |
| 
 | |
| 	  math_check_force_underflow_complex (retval);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __imag__ retval = __real__ x == 0 ? 0 : nanq ("");
 | |
| 	  __real__ retval = __imag__ x - __imag__ x;
 | |
| 	}
 | |
|     }
 | |
|   else if (rcls == QUADFP_INFINITE)
 | |
|     {
 | |
|       /* Real part is infinite.  */
 | |
|       if (__glibc_likely (icls > QUADFP_ZERO))
 | |
| 	{
 | |
| 	  /* Imaginary part is finite.  */
 | |
| 	  __float128 sinix, cosix;
 | |
| 
 | |
| 	  if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
 | |
| 	    {
 | |
| 	      sincosq (__imag__ x, &sinix, &cosix);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      sinix = __imag__ x;
 | |
| 	      cosix = 1;
 | |
| 	    }
 | |
| 
 | |
| 	  __real__ retval = copysignq (HUGE_VALQ, cosix);
 | |
| 	  __imag__ retval = (copysignq (HUGE_VALQ, sinix)
 | |
| 			     * copysignq (1, __real__ x));
 | |
| 	}
 | |
|       else if (icls == QUADFP_ZERO)
 | |
| 	{
 | |
| 	  /* Imaginary part is 0.0.  */
 | |
| 	  __real__ retval = HUGE_VALQ;
 | |
| 	  __imag__ retval = __imag__ x * copysignq (1, __real__ x);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __real__ retval = HUGE_VALQ;
 | |
| 	  __imag__ retval = __imag__ x - __imag__ x;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       __real__ retval = nanq ("");
 | |
|       __imag__ retval = __imag__ x == 0 ? __imag__ x : nanq ("");
 | |
|     }
 | |
| 
 | |
|   return retval;
 | |
| }
 |