mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			84 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /* s_sinl.c -- long double version of s_sin.c.
 | |
|  * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* sinq(x)
 | |
|  * Return sine function of x.
 | |
|  *
 | |
|  * kernel function:
 | |
|  *	__quadmath_kernel_sinq		... sine function on [-pi/4,pi/4]
 | |
|  *	__quadmath_kernel_cosq		... cose function on [-pi/4,pi/4]
 | |
|  *	__quadmath_rem_pio2q	... argument reduction routine
 | |
|  *
 | |
|  * Method.
 | |
|  *      Let S,C and T denote the sin, cos and tan respectively on
 | |
|  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 | |
|  *	in [-pi/4 , +pi/4], and let n = k mod 4.
 | |
|  *	We have
 | |
|  *
 | |
|  *          n        sin(x)      cos(x)        tan(x)
 | |
|  *     ----------------------------------------------------------
 | |
|  *	    0	       S	   C		 T
 | |
|  *	    1	       C	  -S		-1/T
 | |
|  *	    2	      -S	  -C		 T
 | |
|  *	    3	      -C	   S		-1/T
 | |
|  *     ----------------------------------------------------------
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      Let trig be any of sin, cos, or tan.
 | |
|  *      trig(+-INF)  is NaN, with signals;
 | |
|  *      trig(NaN)    is that NaN;
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *	TRIG(x) returns trig(x) nearly rounded
 | |
|  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| __float128 sinq(__float128 x)
 | |
| {
 | |
| 	__float128 y[2],z=0;
 | |
| 	int64_t n, ix;
 | |
| 
 | |
|     /* High word of x. */
 | |
| 	GET_FLT128_MSW64(ix,x);
 | |
| 
 | |
|     /* |x| ~< pi/4 */
 | |
| 	ix &= 0x7fffffffffffffffLL;
 | |
| 	if(ix <= 0x3ffe921fb54442d1LL)
 | |
| 	  return __quadmath_kernel_sinq(x,z,0);
 | |
| 
 | |
|     /* sin(Inf or NaN) is NaN */
 | |
| 	else if (ix>=0x7fff000000000000LL) {
 | |
| 	    if (ix == 0x7fff000000000000LL) {
 | |
| 		GET_FLT128_LSW64(n,x);
 | |
| 		if (n == 0)
 | |
| 		    errno = EDOM;
 | |
| 	    }
 | |
| 	    return x-x;
 | |
| 	}
 | |
| 
 | |
|     /* argument reduction needed */
 | |
| 	else {
 | |
| 	    n = __quadmath_rem_pio2q(x,y);
 | |
| 	    switch(n&3) {
 | |
| 		case 0: return  __quadmath_kernel_sinq(y[0],y[1],1);
 | |
| 		case 1: return  __quadmath_kernel_cosq(y[0],y[1]);
 | |
| 		case 2: return -__quadmath_kernel_sinq(y[0],y[1],1);
 | |
| 		default:
 | |
| 			return -__quadmath_kernel_cosq(y[0],y[1]);
 | |
| 	    }
 | |
| 	}
 | |
| }
 |