mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			215 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the MATMUL intrinsic
 | 
						|
   Copyright 2002 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 2 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
In addition to the permissions in the GNU General Public License, the
 | 
						|
Free Software Foundation gives you unlimited permission to link the
 | 
						|
compiled version of this file into combinations with other programs,
 | 
						|
and to distribute those combinations without any restriction coming
 | 
						|
from the use of this file.  (The General Public License restrictions
 | 
						|
do apply in other respects; for example, they cover modification of
 | 
						|
the file, and distribution when not linked into a combine
 | 
						|
executable.)
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public
 | 
						|
License along with libgfortran; see the file COPYING.  If not,
 | 
						|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | 
						|
Boston, MA 02111-1307, USA.  */
 | 
						|
 | 
						|
#include "config.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
#include "libgfortran.h"
 | 
						|
 | 
						|
/* This is a C version of the following fortran pseudo-code. The key
 | 
						|
   point is the loop order -- we access all arrays column-first, which
 | 
						|
   improves the performance enough to boost galgel spec score by 50%.
 | 
						|
 | 
						|
   DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
 | 
						|
   C = 0
 | 
						|
   DO J=1,N
 | 
						|
     DO K=1,COUNT
 | 
						|
       DO I=1,M
 | 
						|
         C(I,J) = C(I,J)+A(I,K)*B(K,J)
 | 
						|
*/
 | 
						|
 | 
						|
extern void matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b);
 | 
						|
export_proto(matmul_r8);
 | 
						|
 | 
						|
void
 | 
						|
matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
 | 
						|
{
 | 
						|
  GFC_REAL_8 *abase;
 | 
						|
  GFC_REAL_8 *bbase;
 | 
						|
  GFC_REAL_8 *dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
  */
 | 
						|
 | 
						|
  if (retarray->data == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
          retarray->dim[0].lbound = 0;
 | 
						|
          retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
 | 
						|
          retarray->dim[0].stride = 1;
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
          retarray->dim[0].lbound = 0;
 | 
						|
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
 | 
						|
          retarray->dim[0].stride = 1;
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
          retarray->dim[0].lbound = 0;
 | 
						|
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
 | 
						|
          retarray->dim[0].stride = 1;
 | 
						|
          
 | 
						|
          retarray->dim[1].lbound = 0;
 | 
						|
          retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
 | 
						|
          retarray->dim[1].stride = retarray->dim[0].ubound+1;
 | 
						|
        }
 | 
						|
          
 | 
						|
      retarray->data
 | 
						|
	= internal_malloc_size (sizeof (GFC_REAL_8) * size0 (retarray));
 | 
						|
      retarray->base = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->data;
 | 
						|
  bbase = b->data;
 | 
						|
  dest = retarray->data;
 | 
						|
 | 
						|
  if (retarray->dim[0].stride == 0)
 | 
						|
    retarray->dim[0].stride = 1;
 | 
						|
  if (a->dim[0].stride == 0)
 | 
						|
    a->dim[0].stride = 1;
 | 
						|
  if (b->dim[0].stride == 0)
 | 
						|
    b->dim[0].stride = 1;
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = retarray->dim[0].stride;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = retarray->dim[0].stride;
 | 
						|
      rystride = retarray->dim[1].stride;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = a->dim[0].stride;
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = a->dim[0].ubound + 1 - a->dim[0].lbound;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = a->dim[0].stride;
 | 
						|
      aystride = a->dim[1].stride;
 | 
						|
 | 
						|
      count = a->dim[1].ubound + 1 - a->dim[1].lbound;
 | 
						|
      xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
 | 
						|
    }
 | 
						|
 | 
						|
  assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = b->dim[0].stride;
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
	 in case it is we want it to cause a segfault, rather than
 | 
						|
	 an incorrect result. */
 | 
						|
      bystride = 0xDEADBEEF; 
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = b->dim[0].stride;
 | 
						|
      bystride = b->dim[1].stride;
 | 
						|
      ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
 | 
						|
    }
 | 
						|
 | 
						|
  assert (a->base == 0);
 | 
						|
  assert (b->base == 0);
 | 
						|
  assert (retarray->base == 0);
 | 
						|
 | 
						|
  abase = a->data;
 | 
						|
  bbase = b->data;
 | 
						|
  dest = retarray->data;
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      GFC_REAL_8 *bbase_y;
 | 
						|
      GFC_REAL_8 *dest_y;
 | 
						|
      GFC_REAL_8 *abase_n;
 | 
						|
      GFC_REAL_8 bbase_yn;
 | 
						|
 | 
						|
      memset (dest, 0, (sizeof (GFC_REAL_8) * size0(retarray)));
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = bbase + y*bystride;
 | 
						|
	  dest_y = dest + y*rystride;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    {
 | 
						|
	      abase_n = abase + n*aystride;
 | 
						|
	      bbase_yn = bbase_y[n];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  dest_y[x] += abase_n[x] * bbase_yn;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
}
 |