mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			304 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			304 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the MINLOC intrinsic
 | 
						|
   Copyright 2002 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 2 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
In addition to the permissions in the GNU General Public License, the
 | 
						|
Free Software Foundation gives you unlimited permission to link the
 | 
						|
compiled version of this file into combinations with other programs,
 | 
						|
and to distribute those combinations without any restriction coming
 | 
						|
from the use of this file.  (The General Public License restrictions
 | 
						|
do apply in other respects; for example, they cover modification of
 | 
						|
the file, and distribution when not linked into a combine
 | 
						|
executable.)
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public
 | 
						|
License along with libgfortran; see the file COPYING.  If not,
 | 
						|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | 
						|
Boston, MA 02111-1307, USA.  */
 | 
						|
 | 
						|
#include "config.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <float.h>
 | 
						|
#include <limits.h>
 | 
						|
#include "libgfortran.h"
 | 
						|
 | 
						|
 | 
						|
extern void minloc1_8_i4 (gfc_array_i8 *, gfc_array_i4 *, index_type *);
 | 
						|
export_proto(minloc1_8_i4);
 | 
						|
 | 
						|
void
 | 
						|
minloc1_8_i4 (gfc_array_i8 *retarray, gfc_array_i4 *array, index_type *pdim)
 | 
						|
{
 | 
						|
  index_type count[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type extent[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type dstride[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  GFC_INTEGER_4 *base;
 | 
						|
  GFC_INTEGER_8 *dest;
 | 
						|
  index_type rank;
 | 
						|
  index_type n;
 | 
						|
  index_type len;
 | 
						|
  index_type delta;
 | 
						|
  index_type dim;
 | 
						|
 | 
						|
  /* Make dim zero based to avoid confusion.  */
 | 
						|
  dim = (*pdim) - 1;
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | 
						|
  assert (rank == GFC_DESCRIPTOR_RANK (retarray));
 | 
						|
  if (array->dim[0].stride == 0)
 | 
						|
    array->dim[0].stride = 1;
 | 
						|
  if (retarray->dim[0].stride == 0)
 | 
						|
    retarray->dim[0].stride = 1;
 | 
						|
 | 
						|
  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
 | 
						|
  delta = array->dim[dim].stride;
 | 
						|
 | 
						|
  for (n = 0; n < dim; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = array->dim[n].stride;
 | 
						|
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
 | 
						|
    }
 | 
						|
  for (n = dim; n < rank; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = array->dim[n + 1].stride;
 | 
						|
      extent[n] =
 | 
						|
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
 | 
						|
    }
 | 
						|
 | 
						|
  if (retarray->data == NULL)
 | 
						|
    {
 | 
						|
      for (n = 0; n < rank; n++)
 | 
						|
        {
 | 
						|
          retarray->dim[n].lbound = 0;
 | 
						|
          retarray->dim[n].ubound = extent[n]-1;
 | 
						|
          if (n == 0)
 | 
						|
            retarray->dim[n].stride = 1;
 | 
						|
          else
 | 
						|
            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->data
 | 
						|
	 = internal_malloc_size (sizeof (GFC_INTEGER_8)
 | 
						|
		 		 * retarray->dim[rank-1].stride
 | 
						|
				 * extent[rank-1]);
 | 
						|
      retarray->base = 0;
 | 
						|
    }
 | 
						|
          
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    {
 | 
						|
      count[n] = 0;
 | 
						|
      dstride[n] = retarray->dim[n].stride;
 | 
						|
      if (extent[n] <= 0)
 | 
						|
        len = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  base = array->data;
 | 
						|
  dest = retarray->data;
 | 
						|
 | 
						|
  while (base)
 | 
						|
    {
 | 
						|
      GFC_INTEGER_4 *src;
 | 
						|
      GFC_INTEGER_8 result;
 | 
						|
      src = base;
 | 
						|
      {
 | 
						|
 | 
						|
  GFC_INTEGER_4 minval;
 | 
						|
  minval = GFC_INTEGER_4_HUGE;
 | 
						|
  result = 1;
 | 
						|
        if (len <= 0)
 | 
						|
	  *dest = 0;
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    for (n = 0; n < len; n++, src += delta)
 | 
						|
	      {
 | 
						|
 | 
						|
  if (*src < minval)
 | 
						|
    {
 | 
						|
      minval = *src;
 | 
						|
      result = (GFC_INTEGER_8)n + 1;
 | 
						|
    }
 | 
						|
          }
 | 
						|
	    *dest = result;
 | 
						|
	  }
 | 
						|
      }
 | 
						|
      /* Advance to the next element.  */
 | 
						|
      count[0]++;
 | 
						|
      base += sstride[0];
 | 
						|
      dest += dstride[0];
 | 
						|
      n = 0;
 | 
						|
      while (count[n] == extent[n])
 | 
						|
        {
 | 
						|
          /* When we get to the end of a dimension, reset it and increment
 | 
						|
             the next dimension.  */
 | 
						|
          count[n] = 0;
 | 
						|
          /* We could precalculate these products, but this is a less
 | 
						|
             frequently used path so proabably not worth it.  */
 | 
						|
          base -= sstride[n] * extent[n];
 | 
						|
          dest -= dstride[n] * extent[n];
 | 
						|
          n++;
 | 
						|
          if (n == rank)
 | 
						|
            {
 | 
						|
              /* Break out of the look.  */
 | 
						|
              base = NULL;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          else
 | 
						|
            {
 | 
						|
              count[n]++;
 | 
						|
              base += sstride[n];
 | 
						|
              dest += dstride[n];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
extern void mminloc1_8_i4 (gfc_array_i8 *, gfc_array_i4 *, index_type *,
 | 
						|
					       gfc_array_l4 *);
 | 
						|
export_proto(mminloc1_8_i4);
 | 
						|
 | 
						|
void
 | 
						|
mminloc1_8_i4 (gfc_array_i8 * retarray, gfc_array_i4 * array,
 | 
						|
				  index_type *pdim, gfc_array_l4 * mask)
 | 
						|
{
 | 
						|
  index_type count[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type extent[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type dstride[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  index_type mstride[GFC_MAX_DIMENSIONS - 1];
 | 
						|
  GFC_INTEGER_8 *dest;
 | 
						|
  GFC_INTEGER_4 *base;
 | 
						|
  GFC_LOGICAL_4 *mbase;
 | 
						|
  int rank;
 | 
						|
  int dim;
 | 
						|
  index_type n;
 | 
						|
  index_type len;
 | 
						|
  index_type delta;
 | 
						|
  index_type mdelta;
 | 
						|
 | 
						|
  dim = (*pdim) - 1;
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | 
						|
  assert (rank == GFC_DESCRIPTOR_RANK (retarray));
 | 
						|
  if (array->dim[0].stride == 0)
 | 
						|
    array->dim[0].stride = 1;
 | 
						|
  if (retarray->dim[0].stride == 0)
 | 
						|
    retarray->dim[0].stride = 1;
 | 
						|
 | 
						|
  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
 | 
						|
  if (len <= 0)
 | 
						|
    return;
 | 
						|
  delta = array->dim[dim].stride;
 | 
						|
  mdelta = mask->dim[dim].stride;
 | 
						|
 | 
						|
  for (n = 0; n < dim; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = array->dim[n].stride;
 | 
						|
      mstride[n] = mask->dim[n].stride;
 | 
						|
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
 | 
						|
    }
 | 
						|
  for (n = dim; n < rank; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = array->dim[n + 1].stride;
 | 
						|
      mstride[n] = mask->dim[n + 1].stride;
 | 
						|
      extent[n] =
 | 
						|
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
 | 
						|
    }
 | 
						|
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    {
 | 
						|
      count[n] = 0;
 | 
						|
      dstride[n] = retarray->dim[n].stride;
 | 
						|
      if (extent[n] <= 0)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
  dest = retarray->data;
 | 
						|
  base = array->data;
 | 
						|
  mbase = mask->data;
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_SIZE (mask) != 4)
 | 
						|
    {
 | 
						|
      /* This allows the same loop to be used for all logical types.  */
 | 
						|
      assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
 | 
						|
      for (n = 0; n < rank; n++)
 | 
						|
        mstride[n] <<= 1;
 | 
						|
      mdelta <<= 1;
 | 
						|
      mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
 | 
						|
    }
 | 
						|
 | 
						|
  while (base)
 | 
						|
    {
 | 
						|
      GFC_INTEGER_4 *src;
 | 
						|
      GFC_LOGICAL_4 *msrc;
 | 
						|
      GFC_INTEGER_8 result;
 | 
						|
      src = base;
 | 
						|
      msrc = mbase;
 | 
						|
      {
 | 
						|
 | 
						|
  GFC_INTEGER_4 minval;
 | 
						|
  minval = GFC_INTEGER_4_HUGE;
 | 
						|
  result = 1;
 | 
						|
        if (len <= 0)
 | 
						|
	  *dest = 0;
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    for (n = 0; n < len; n++, src += delta, msrc += mdelta)
 | 
						|
	      {
 | 
						|
 | 
						|
  if (*msrc && *src < minval)
 | 
						|
    {
 | 
						|
      minval = *src;
 | 
						|
      result = (GFC_INTEGER_8)n + 1;
 | 
						|
    }
 | 
						|
              }
 | 
						|
	    *dest = result;
 | 
						|
	  }
 | 
						|
      }
 | 
						|
      /* Advance to the next element.  */
 | 
						|
      count[0]++;
 | 
						|
      base += sstride[0];
 | 
						|
      mbase += mstride[0];
 | 
						|
      dest += dstride[0];
 | 
						|
      n = 0;
 | 
						|
      while (count[n] == extent[n])
 | 
						|
        {
 | 
						|
          /* When we get to the end of a dimension, reset it and increment
 | 
						|
             the next dimension.  */
 | 
						|
          count[n] = 0;
 | 
						|
          /* We could precalculate these products, but this is a less
 | 
						|
             frequently used path so proabably not worth it.  */
 | 
						|
          base -= sstride[n] * extent[n];
 | 
						|
          mbase -= mstride[n] * extent[n];
 | 
						|
          dest -= dstride[n] * extent[n];
 | 
						|
          n++;
 | 
						|
          if (n == rank)
 | 
						|
            {
 | 
						|
              /* Break out of the look.  */
 | 
						|
              base = NULL;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          else
 | 
						|
            {
 | 
						|
              count[n]++;
 | 
						|
              base += sstride[n];
 | 
						|
              mbase += mstride[n];
 | 
						|
              dest += dstride[n];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 |