mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			215 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the COUNT intrinsic
 | |
|    Copyright (C) 2002-2017 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 3 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "libgfortran.h"
 | |
| 
 | |
| 
 | |
| #if defined (HAVE_GFC_INTEGER_8)
 | |
| 
 | |
| 
 | |
| extern void count_8_l (gfc_array_i8 * const restrict, 
 | |
| 	gfc_array_l1 * const restrict, const index_type * const restrict);
 | |
| export_proto(count_8_l);
 | |
| 
 | |
| void
 | |
| count_8_l (gfc_array_i8 * const restrict retarray, 
 | |
| 	gfc_array_l1 * const restrict array, 
 | |
| 	const index_type * const restrict pdim)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   const GFC_LOGICAL_1 * restrict base;
 | |
|   GFC_INTEGER_8 * restrict dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type dim;
 | |
|   int src_kind;
 | |
|   int continue_loop;
 | |
| 
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   src_kind = GFC_DESCRIPTOR_SIZE (array);
 | |
| 
 | |
|   len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | |
|   if (len < 0)
 | |
|     len = 0;
 | |
| 
 | |
|   delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
|         {
 | |
|           if (n == 0)
 | |
|             str = 1;
 | |
|           else
 | |
|             str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
|         }
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|       else
 | |
| 	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in"
 | |
| 		       " COUNT intrinsic: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_RANK (retarray),
 | |
| 		       (long int) rank);
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	{
 | |
| 	  for (n=0; n < rank; n++)
 | |
| 	    {
 | |
| 	      index_type ret_extent;
 | |
| 
 | |
| 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
 | |
| 	      if (extent[n] != ret_extent)
 | |
| 		runtime_error ("Incorrect extent in return value of"
 | |
| 			       " COUNT intrinsic in dimension %d:"
 | |
| 			       " is %ld, should be %ld", (int) n + 1,
 | |
| 			       (long int) ret_extent, (long int) extent[n]);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|       if (extent[n] <= 0)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   base = array->base_addr;
 | |
| 
 | |
|   if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
 | |
| #ifdef HAVE_GFC_LOGICAL_16
 | |
|       || src_kind == 16
 | |
| #endif
 | |
|     )
 | |
|     {
 | |
|       if (base)
 | |
| 	base = GFOR_POINTER_TO_L1 (base, src_kind);
 | |
|     }
 | |
|   else
 | |
|     internal_error (NULL, "Funny sized logical array in COUNT intrinsic");
 | |
| 
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   continue_loop = 1;
 | |
|   while (continue_loop)
 | |
|     {
 | |
|       const GFC_LOGICAL_1 * restrict src;
 | |
|       GFC_INTEGER_8 result;
 | |
|       src = base;
 | |
|       {
 | |
| 
 | |
|   result = 0;
 | |
|         if (len <= 0)
 | |
| 	  *dest = 0;
 | |
| 	else
 | |
| 	  {
 | |
| 	    for (n = 0; n < len; n++, src += delta)
 | |
| 	      {
 | |
| 
 | |
|   if (*src)
 | |
|     result++;
 | |
|           }
 | |
| 	    *dest = result;
 | |
| 	  }
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
|         {
 | |
|           /* When we get to the end of a dimension, reset it and increment
 | |
|              the next dimension.  */
 | |
|           count[n] = 0;
 | |
|           /* We could precalculate these products, but this is a less
 | |
|              frequently used path so probably not worth it.  */
 | |
|           base -= sstride[n] * extent[n];
 | |
|           dest -= dstride[n] * extent[n];
 | |
|           n++;
 | |
|           if (n >= rank)
 | |
|             {
 | |
|               /* Break out of the loop.  */
 | |
|               continue_loop = 0;
 | |
|               break;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               count[n]++;
 | |
|               base += sstride[n];
 | |
|               dest += dstride[n];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |