mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			334 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Specific implementation of the UNPACK intrinsic
 | |
|    Copyright (C) 2008-2017 Free Software Foundation, Inc.
 | |
|    Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
 | |
|    unpack_generic.c by Paul Brook <paul@nowt.org>.
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 3 of the License, or (at your option) any later version.
 | |
| 
 | |
| Ligbfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "libgfortran.h"
 | |
| #include <string.h>
 | |
| 
 | |
| 
 | |
| #if defined (HAVE_GFC_REAL_4)
 | |
| 
 | |
| void
 | |
| unpack0_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
 | |
| 		 const gfc_array_l1 *mask, const GFC_REAL_4 *fptr)
 | |
| {
 | |
|   /* r.* indicates the return array.  */
 | |
|   index_type rstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type rstride0;
 | |
|   index_type rs;
 | |
|   GFC_REAL_4 * restrict rptr;
 | |
|   /* v.* indicates the vector array.  */
 | |
|   index_type vstride0;
 | |
|   GFC_REAL_4 *vptr;
 | |
|   /* Value for field, this is constant.  */
 | |
|   const GFC_REAL_4 fval = *fptr;
 | |
|   /* m.* indicates the mask array.  */
 | |
|   index_type mstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type mstride0;
 | |
|   const GFC_LOGICAL_1 *mptr;
 | |
| 
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type n;
 | |
|   index_type dim;
 | |
| 
 | |
|   int empty;
 | |
|   int mask_kind;
 | |
| 
 | |
|   empty = 0;
 | |
| 
 | |
|   mptr = mask->base_addr;
 | |
| 
 | |
|   /* Use the same loop for all logical types, by using GFC_LOGICAL_1
 | |
|      and using shifting to address size and endian issues.  */
 | |
| 
 | |
|   mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 | |
| 
 | |
|   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
 | |
| #ifdef HAVE_GFC_LOGICAL_16
 | |
|       || mask_kind == 16
 | |
| #endif
 | |
|       )
 | |
|     {
 | |
|       /*  Do not convert a NULL pointer as we use test for NULL below.  */
 | |
|       if (mptr)
 | |
| 	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
 | |
|     }
 | |
|   else
 | |
|     runtime_error ("Funny sized logical array");
 | |
| 
 | |
|   if (ret->base_addr == NULL)
 | |
|     {
 | |
|       /* The front end has signalled that we need to populate the
 | |
| 	 return array descriptor.  */
 | |
|       dim = GFC_DESCRIPTOR_RANK (mask);
 | |
|       rs = 1;
 | |
|       for (n = 0; n < dim; n++)
 | |
| 	{
 | |
| 	  count[n] = 0;
 | |
| 	  GFC_DIMENSION_SET(ret->dim[n], 0,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
 | |
| 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
 | |
| 	  empty = empty || extent[n] <= 0;
 | |
| 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
 | |
| 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
| 	  rs *= extent[n];
 | |
| 	}
 | |
|       ret->offset = 0;
 | |
|       ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_4));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       dim = GFC_DESCRIPTOR_RANK (ret);
 | |
|       /* Initialize to avoid -Wmaybe-uninitialized complaints.  */
 | |
|       rstride[0] = 1;
 | |
|       for (n = 0; n < dim; n++)
 | |
| 	{
 | |
| 	  count[n] = 0;
 | |
| 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
 | |
| 	  empty = empty || extent[n] <= 0;
 | |
| 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
 | |
| 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
| 	}
 | |
|       if (rstride[0] == 0)
 | |
| 	rstride[0] = 1;
 | |
|     }
 | |
| 
 | |
|   if (empty)
 | |
|     return;
 | |
| 
 | |
|   if (mstride[0] == 0)
 | |
|     mstride[0] = 1;
 | |
| 
 | |
|   vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
 | |
|   if (vstride0 == 0)
 | |
|     vstride0 = 1;
 | |
|   rstride0 = rstride[0];
 | |
|   mstride0 = mstride[0];
 | |
|   rptr = ret->base_addr;
 | |
|   vptr = vector->base_addr;
 | |
| 
 | |
|   while (rptr)
 | |
|     {
 | |
|       if (*mptr)
 | |
|         {
 | |
| 	  /* From vector.  */
 | |
| 	  *rptr = *vptr;
 | |
| 	  vptr += vstride0;
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  /* From field.  */
 | |
| 	  *rptr = fval;
 | |
|         }
 | |
|       /* Advance to the next element.  */
 | |
|       rptr += rstride0;
 | |
|       mptr += mstride0;
 | |
|       count[0]++;
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
|         {
 | |
|           /* When we get to the end of a dimension, reset it and increment
 | |
|              the next dimension.  */
 | |
|           count[n] = 0;
 | |
|           /* We could precalculate these products, but this is a less
 | |
|              frequently used path so probably not worth it.  */
 | |
|           rptr -= rstride[n] * extent[n];
 | |
|           mptr -= mstride[n] * extent[n];
 | |
|           n++;
 | |
|           if (n >= dim)
 | |
|             {
 | |
|               /* Break out of the loop.  */
 | |
|               rptr = NULL;
 | |
|               break;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               count[n]++;
 | |
|               rptr += rstride[n];
 | |
|               mptr += mstride[n];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| unpack1_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
 | |
| 		 const gfc_array_l1 *mask, const gfc_array_r4 *field)
 | |
| {
 | |
|   /* r.* indicates the return array.  */
 | |
|   index_type rstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type rstride0;
 | |
|   index_type rs;
 | |
|   GFC_REAL_4 * restrict rptr;
 | |
|   /* v.* indicates the vector array.  */
 | |
|   index_type vstride0;
 | |
|   GFC_REAL_4 *vptr;
 | |
|   /* f.* indicates the field array.  */
 | |
|   index_type fstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type fstride0;
 | |
|   const GFC_REAL_4 *fptr;
 | |
|   /* m.* indicates the mask array.  */
 | |
|   index_type mstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type mstride0;
 | |
|   const GFC_LOGICAL_1 *mptr;
 | |
| 
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type n;
 | |
|   index_type dim;
 | |
| 
 | |
|   int empty;
 | |
|   int mask_kind;
 | |
| 
 | |
|   empty = 0;
 | |
| 
 | |
|   mptr = mask->base_addr;
 | |
| 
 | |
|   /* Use the same loop for all logical types, by using GFC_LOGICAL_1
 | |
|      and using shifting to address size and endian issues.  */
 | |
| 
 | |
|   mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 | |
| 
 | |
|   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
 | |
| #ifdef HAVE_GFC_LOGICAL_16
 | |
|       || mask_kind == 16
 | |
| #endif
 | |
|       )
 | |
|     {
 | |
|       /*  Do not convert a NULL pointer as we use test for NULL below.  */
 | |
|       if (mptr)
 | |
| 	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
 | |
|     }
 | |
|   else
 | |
|     runtime_error ("Funny sized logical array");
 | |
| 
 | |
|   if (ret->base_addr == NULL)
 | |
|     {
 | |
|       /* The front end has signalled that we need to populate the
 | |
| 	 return array descriptor.  */
 | |
|       dim = GFC_DESCRIPTOR_RANK (mask);
 | |
|       rs = 1;
 | |
|       for (n = 0; n < dim; n++)
 | |
| 	{
 | |
| 	  count[n] = 0;
 | |
| 	  GFC_DIMENSION_SET(ret->dim[n], 0,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
 | |
| 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
 | |
| 	  empty = empty || extent[n] <= 0;
 | |
| 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
 | |
| 	  fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
 | |
| 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
| 	  rs *= extent[n];
 | |
| 	}
 | |
|       ret->offset = 0;
 | |
|       ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_4));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       dim = GFC_DESCRIPTOR_RANK (ret);
 | |
|       /* Initialize to avoid -Wmaybe-uninitialized complaints.  */
 | |
|       rstride[0] = 1;
 | |
|       for (n = 0; n < dim; n++)
 | |
| 	{
 | |
| 	  count[n] = 0;
 | |
| 	  extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
 | |
| 	  empty = empty || extent[n] <= 0;
 | |
| 	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
 | |
| 	  fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
 | |
| 	  mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
| 	}
 | |
|       if (rstride[0] == 0)
 | |
| 	rstride[0] = 1;
 | |
|     }
 | |
| 
 | |
|   if (empty)
 | |
|     return;
 | |
| 
 | |
|   if (fstride[0] == 0)
 | |
|     fstride[0] = 1;
 | |
|   if (mstride[0] == 0)
 | |
|     mstride[0] = 1;
 | |
| 
 | |
|   vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
 | |
|   if (vstride0 == 0)
 | |
|     vstride0 = 1;
 | |
|   rstride0 = rstride[0];
 | |
|   fstride0 = fstride[0];
 | |
|   mstride0 = mstride[0];
 | |
|   rptr = ret->base_addr;
 | |
|   fptr = field->base_addr;
 | |
|   vptr = vector->base_addr;
 | |
| 
 | |
|   while (rptr)
 | |
|     {
 | |
|       if (*mptr)
 | |
|         {
 | |
|           /* From vector.  */
 | |
| 	  *rptr = *vptr;
 | |
|           vptr += vstride0;
 | |
|         }
 | |
|       else
 | |
|         {
 | |
|           /* From field.  */
 | |
| 	  *rptr = *fptr;
 | |
|         }
 | |
|       /* Advance to the next element.  */
 | |
|       rptr += rstride0;
 | |
|       fptr += fstride0;
 | |
|       mptr += mstride0;
 | |
|       count[0]++;
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
|         {
 | |
|           /* When we get to the end of a dimension, reset it and increment
 | |
|              the next dimension.  */
 | |
|           count[n] = 0;
 | |
|           /* We could precalculate these products, but this is a less
 | |
|              frequently used path so probably not worth it.  */
 | |
|           rptr -= rstride[n] * extent[n];
 | |
|           fptr -= fstride[n] * extent[n];
 | |
|           mptr -= mstride[n] * extent[n];
 | |
|           n++;
 | |
|           if (n >= dim)
 | |
|             {
 | |
|               /* Break out of the loop.  */
 | |
|               rptr = NULL;
 | |
|               break;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               count[n]++;
 | |
|               rptr += rstride[n];
 | |
|               fptr += fstride[n];
 | |
|               mptr += mstride[n];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 |