mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			634 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			634 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Java
		
	
	
	
/* Float.java -- object wrapper for float
 | 
						|
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
 | 
						|
   Free Software Foundation, Inc.
 | 
						|
 | 
						|
This file is part of GNU Classpath.
 | 
						|
 | 
						|
GNU Classpath is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation; either version 2, or (at your option)
 | 
						|
any later version.
 | 
						|
 | 
						|
GNU Classpath is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with GNU Classpath; see the file COPYING.  If not, write to the
 | 
						|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | 
						|
02110-1301 USA.
 | 
						|
 | 
						|
Linking this library statically or dynamically with other modules is
 | 
						|
making a combined work based on this library.  Thus, the terms and
 | 
						|
conditions of the GNU General Public License cover the whole
 | 
						|
combination.
 | 
						|
 | 
						|
As a special exception, the copyright holders of this library give you
 | 
						|
permission to link this library with independent modules to produce an
 | 
						|
executable, regardless of the license terms of these independent
 | 
						|
modules, and to copy and distribute the resulting executable under
 | 
						|
terms of your choice, provided that you also meet, for each linked
 | 
						|
independent module, the terms and conditions of the license of that
 | 
						|
module.  An independent module is a module which is not derived from
 | 
						|
or based on this library.  If you modify this library, you may extend
 | 
						|
this exception to your version of the library, but you are not
 | 
						|
obligated to do so.  If you do not wish to do so, delete this
 | 
						|
exception statement from your version. */
 | 
						|
 | 
						|
 | 
						|
package java.lang;
 | 
						|
 | 
						|
import gnu.java.lang.CPStringBuilder;
 | 
						|
 | 
						|
/**
 | 
						|
 * Instances of class <code>Float</code> represent primitive
 | 
						|
 * <code>float</code> values.
 | 
						|
 *
 | 
						|
 * Additionally, this class provides various helper functions and variables
 | 
						|
 * related to floats.
 | 
						|
 *
 | 
						|
 * @author Paul Fisher
 | 
						|
 * @author Andrew Haley (aph@cygnus.com)
 | 
						|
 * @author Eric Blake (ebb9@email.byu.edu)
 | 
						|
 * @author Tom Tromey (tromey@redhat.com)
 | 
						|
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | 
						|
 * @since 1.0
 | 
						|
 * @status partly updated to 1.5
 | 
						|
 */
 | 
						|
public final class Float extends Number implements Comparable<Float>
 | 
						|
{
 | 
						|
  /**
 | 
						|
   * Compatible with JDK 1.0+.
 | 
						|
   */
 | 
						|
  private static final long serialVersionUID = -2671257302660747028L;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The maximum positive value a <code>double</code> may represent
 | 
						|
   * is 3.4028235e+38f.
 | 
						|
   */
 | 
						|
  public static final float MAX_VALUE = 3.4028235e+38f;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The minimum positive value a <code>float</code> may represent
 | 
						|
   * is 1.4e-45.
 | 
						|
   */
 | 
						|
  public static final float MIN_VALUE = 1.4e-45f;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The value of a float representation -1.0/0.0, negative infinity.
 | 
						|
   */
 | 
						|
  public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The value of a float representation 1.0/0.0, positive infinity.
 | 
						|
   */
 | 
						|
  public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
 | 
						|
 | 
						|
  /**
 | 
						|
   * All IEEE 754 values of NaN have the same value in Java.
 | 
						|
   */
 | 
						|
  public static final float NaN = 0.0f / 0.0f;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The primitive type <code>float</code> is represented by this
 | 
						|
   * <code>Class</code> object.
 | 
						|
   * @since 1.1
 | 
						|
   */
 | 
						|
  public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
 | 
						|
 | 
						|
  /**
 | 
						|
   * The number of bits needed to represent a <code>float</code>.
 | 
						|
   * @since 1.5
 | 
						|
   */
 | 
						|
  public static final int SIZE = 32;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Cache representation of 0
 | 
						|
   */
 | 
						|
  private static final Float ZERO = new Float(0.0f);
 | 
						|
 | 
						|
  /**
 | 
						|
   * Cache representation of 1
 | 
						|
   */
 | 
						|
  private static final Float ONE = new Float(1.0f);
 | 
						|
 | 
						|
  /**
 | 
						|
   * The immutable value of this Float.
 | 
						|
   *
 | 
						|
   * @serial the wrapped float
 | 
						|
   */
 | 
						|
  private final float value;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Create a <code>Float</code> from the primitive <code>float</code>
 | 
						|
   * specified.
 | 
						|
   *
 | 
						|
   * @param value the <code>float</code> argument
 | 
						|
   */
 | 
						|
  public Float(float value)
 | 
						|
  {
 | 
						|
    this.value = value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Create a <code>Float</code> from the primitive <code>double</code>
 | 
						|
   * specified.
 | 
						|
   *
 | 
						|
   * @param value the <code>double</code> argument
 | 
						|
   */
 | 
						|
  public Float(double value)
 | 
						|
  {
 | 
						|
    this.value = (float) value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Create a <code>Float</code> from the specified <code>String</code>.
 | 
						|
   * This method calls <code>Float.parseFloat()</code>.
 | 
						|
   *
 | 
						|
   * @param s the <code>String</code> to convert
 | 
						|
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | 
						|
   *         <code>float</code>
 | 
						|
   * @throws NullPointerException if <code>s</code> is null
 | 
						|
   * @see #parseFloat(String)
 | 
						|
   */
 | 
						|
  public Float(String s)
 | 
						|
  {
 | 
						|
    value = parseFloat(s);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert the <code>float</code> to a <code>String</code>.
 | 
						|
   * Floating-point string representation is fairly complex: here is a
 | 
						|
   * rundown of the possible values.  "<code>[-]</code>" indicates that a
 | 
						|
   * negative sign will be printed if the value (or exponent) is negative.
 | 
						|
   * "<code><number></code>" means a string of digits ('0' to '9').
 | 
						|
   * "<code><digit></code>" means a single digit ('0' to '9').<br>
 | 
						|
   *
 | 
						|
   * <table border=1>
 | 
						|
   * <tr><th>Value of Float</th><th>String Representation</th></tr>
 | 
						|
   * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
 | 
						|
   * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
 | 
						|
   *     <td><code>[-]number.number</code></td></tr>
 | 
						|
   * <tr><td>Other numeric value</td>
 | 
						|
   *     <td><code>[-]<digit>.<number>
 | 
						|
   *          E[-]<number></code></td></tr>
 | 
						|
   * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
 | 
						|
   * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
 | 
						|
   * </table>
 | 
						|
   *
 | 
						|
   * Yes, negative zero <em>is</em> a possible value.  Note that there is
 | 
						|
   * <em>always</em> a <code>.</code> and at least one digit printed after
 | 
						|
   * it: even if the number is 3, it will be printed as <code>3.0</code>.
 | 
						|
   * After the ".", all digits will be printed except trailing zeros. The
 | 
						|
   * result is rounded to the shortest decimal number which will parse back
 | 
						|
   * to the same float.
 | 
						|
   *
 | 
						|
   * <p>To create other output formats, use {@link java.text.NumberFormat}.
 | 
						|
   *
 | 
						|
   * @XXX specify where we are not in accord with the spec.
 | 
						|
   *
 | 
						|
   * @param f the <code>float</code> to convert
 | 
						|
   * @return the <code>String</code> representing the <code>float</code>
 | 
						|
   */
 | 
						|
  public static String toString(float f)
 | 
						|
  {
 | 
						|
    return VMFloat.toString(f);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert a float value to a hexadecimal string.  This converts as
 | 
						|
   * follows:
 | 
						|
   * <ul>
 | 
						|
   * <li> A NaN value is converted to the string "NaN".
 | 
						|
   * <li> Positive infinity is converted to the string "Infinity".
 | 
						|
   * <li> Negative infinity is converted to the string "-Infinity".
 | 
						|
   * <li> For all other values, the first character of the result is '-'
 | 
						|
   * if the value is negative.  This is followed by '0x1.' if the
 | 
						|
   * value is normal, and '0x0.' if the value is denormal.  This is
 | 
						|
   * then followed by a (lower-case) hexadecimal representation of the
 | 
						|
   * mantissa, with leading zeros as required for denormal values.
 | 
						|
   * The next character is a 'p', and this is followed by a decimal
 | 
						|
   * representation of the unbiased exponent.
 | 
						|
   * </ul>
 | 
						|
   * @param f the float value
 | 
						|
   * @return the hexadecimal string representation
 | 
						|
   * @since 1.5
 | 
						|
   */
 | 
						|
  public static String toHexString(float f)
 | 
						|
  {
 | 
						|
    if (isNaN(f))
 | 
						|
      return "NaN";
 | 
						|
    if (isInfinite(f))
 | 
						|
      return f < 0 ? "-Infinity" : "Infinity";
 | 
						|
 | 
						|
    int bits = floatToIntBits(f);
 | 
						|
    CPStringBuilder result = new CPStringBuilder();
 | 
						|
 | 
						|
    if (bits < 0)
 | 
						|
      result.append('-');
 | 
						|
    result.append("0x");
 | 
						|
 | 
						|
    final int mantissaBits = 23;
 | 
						|
    final int exponentBits = 8;
 | 
						|
    int mantMask = (1 << mantissaBits) - 1;
 | 
						|
    int mantissa = bits & mantMask;
 | 
						|
    int expMask = (1 << exponentBits) - 1;
 | 
						|
    int exponent = (bits >>> mantissaBits) & expMask;
 | 
						|
 | 
						|
    result.append(exponent == 0 ? '0' : '1');
 | 
						|
    result.append('.');
 | 
						|
    // For Float only, we have to adjust the mantissa.
 | 
						|
    mantissa <<= 1;
 | 
						|
    result.append(Integer.toHexString(mantissa));
 | 
						|
    if (exponent == 0 && mantissa != 0)
 | 
						|
      {
 | 
						|
        // Treat denormal specially by inserting '0's to make
 | 
						|
        // the length come out right.  The constants here are
 | 
						|
        // to account for things like the '0x'.
 | 
						|
        int offset = 4 + ((bits < 0) ? 1 : 0);
 | 
						|
        // The silly +3 is here to keep the code the same between
 | 
						|
        // the Float and Double cases.  In Float the value is
 | 
						|
        // not a multiple of 4.
 | 
						|
        int desiredLength = offset + (mantissaBits + 3) / 4;
 | 
						|
        while (result.length() < desiredLength)
 | 
						|
          result.insert(offset, '0');
 | 
						|
      }
 | 
						|
    result.append('p');
 | 
						|
    if (exponent == 0 && mantissa == 0)
 | 
						|
      {
 | 
						|
        // Zero, so do nothing special.
 | 
						|
      }
 | 
						|
    else
 | 
						|
      {
 | 
						|
        // Apply bias.
 | 
						|
        boolean denormal = exponent == 0;
 | 
						|
        exponent -= (1 << (exponentBits - 1)) - 1;
 | 
						|
        // Handle denormal.
 | 
						|
        if (denormal)
 | 
						|
          ++exponent;
 | 
						|
      }
 | 
						|
 | 
						|
    result.append(Integer.toString(exponent));
 | 
						|
    return result.toString();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Creates a new <code>Float</code> object using the <code>String</code>.
 | 
						|
   *
 | 
						|
   * @param s the <code>String</code> to convert
 | 
						|
   * @return the new <code>Float</code>
 | 
						|
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | 
						|
   *         <code>float</code>
 | 
						|
   * @throws NullPointerException if <code>s</code> is null
 | 
						|
   * @see #parseFloat(String)
 | 
						|
   */
 | 
						|
  public static Float valueOf(String s)
 | 
						|
  {
 | 
						|
    return valueOf(parseFloat(s));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a <code>Float</code> object wrapping the value.
 | 
						|
   * In contrast to the <code>Float</code> constructor, this method
 | 
						|
   * may cache some values.  It is used by boxing conversion.
 | 
						|
   *
 | 
						|
   * @param val the value to wrap
 | 
						|
   * @return the <code>Float</code>
 | 
						|
   * @since 1.5
 | 
						|
   */
 | 
						|
  public static Float valueOf(float val)
 | 
						|
  {
 | 
						|
    if ((val == 0.0) && (floatToRawIntBits(val) == 0))
 | 
						|
      return ZERO;
 | 
						|
    else if (val == 1.0)
 | 
						|
      return ONE;
 | 
						|
    else
 | 
						|
      return new Float(val);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Parse the specified <code>String</code> as a <code>float</code>. The
 | 
						|
   * extended BNF grammar is as follows:<br>
 | 
						|
   * <pre>
 | 
						|
   * <em>DecodableString</em>:
 | 
						|
   *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
 | 
						|
   *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
 | 
						|
   *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
 | 
						|
   *              [ <code>f</code> | <code>F</code> | <code>d</code>
 | 
						|
   *                | <code>D</code>] )
 | 
						|
   * <em>FloatingPoint</em>:
 | 
						|
   *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
 | 
						|
   *              [ <em>Exponent</em> ] )
 | 
						|
   *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
 | 
						|
   * <em>Exponent</em>:
 | 
						|
   *      ( ( <code>e</code> | <code>E</code> )
 | 
						|
   *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
 | 
						|
   * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
 | 
						|
   * </pre>
 | 
						|
   *
 | 
						|
   * <p>NaN and infinity are special cases, to allow parsing of the output
 | 
						|
   * of toString.  Otherwise, the result is determined by calculating
 | 
						|
   * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
 | 
						|
   * to the nearest float. Remember that many numbers cannot be precisely
 | 
						|
   * represented in floating point. In case of overflow, infinity is used,
 | 
						|
   * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
 | 
						|
   * this does not accept Unicode digits outside the ASCII range.
 | 
						|
   *
 | 
						|
   * <p>If an unexpected character is found in the <code>String</code>, a
 | 
						|
   * <code>NumberFormatException</code> will be thrown.  Leading and trailing
 | 
						|
   * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
 | 
						|
   * internal to the actual number are not allowed.
 | 
						|
   *
 | 
						|
   * <p>To parse numbers according to another format, consider using
 | 
						|
   * {@link java.text.NumberFormat}.
 | 
						|
   *
 | 
						|
   * @XXX specify where/how we are not in accord with the spec.
 | 
						|
   *
 | 
						|
   * @param str the <code>String</code> to convert
 | 
						|
   * @return the <code>float</code> value of <code>s</code>
 | 
						|
   * @throws NumberFormatException if <code>str</code> cannot be parsed as a
 | 
						|
   *         <code>float</code>
 | 
						|
   * @throws NullPointerException if <code>str</code> is null
 | 
						|
   * @see #MIN_VALUE
 | 
						|
   * @see #MAX_VALUE
 | 
						|
   * @see #POSITIVE_INFINITY
 | 
						|
   * @see #NEGATIVE_INFINITY
 | 
						|
   * @since 1.2
 | 
						|
   */
 | 
						|
  public static float parseFloat(String str)
 | 
						|
  {
 | 
						|
    return VMFloat.parseFloat(str);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return <code>true</code> if the <code>float</code> has the same
 | 
						|
   * value as <code>NaN</code>, otherwise return <code>false</code>.
 | 
						|
   *
 | 
						|
   * @param v the <code>float</code> to compare
 | 
						|
   * @return whether the argument is <code>NaN</code>
 | 
						|
   */
 | 
						|
  public static boolean isNaN(float v)
 | 
						|
  {
 | 
						|
    // This works since NaN != NaN is the only reflexive inequality
 | 
						|
    // comparison which returns true.
 | 
						|
    return v != v;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return <code>true</code> if the <code>float</code> has a value
 | 
						|
   * equal to either <code>NEGATIVE_INFINITY</code> or
 | 
						|
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | 
						|
   *
 | 
						|
   * @param v the <code>float</code> to compare
 | 
						|
   * @return whether the argument is (-/+) infinity
 | 
						|
   */
 | 
						|
  public static boolean isInfinite(float v)
 | 
						|
  {
 | 
						|
    return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return <code>true</code> if the value of this <code>Float</code>
 | 
						|
   * is the same as <code>NaN</code>, otherwise return <code>false</code>.
 | 
						|
   *
 | 
						|
   * @return whether this <code>Float</code> is <code>NaN</code>
 | 
						|
   */
 | 
						|
  public boolean isNaN()
 | 
						|
  {
 | 
						|
    return isNaN(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return <code>true</code> if the value of this <code>Float</code>
 | 
						|
   * is the same as <code>NEGATIVE_INFINITY</code> or
 | 
						|
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | 
						|
   *
 | 
						|
   * @return whether this <code>Float</code> is (-/+) infinity
 | 
						|
   */
 | 
						|
  public boolean isInfinite()
 | 
						|
  {
 | 
						|
    return isInfinite(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert the <code>float</code> value of this <code>Float</code>
 | 
						|
   * to a <code>String</code>.  This method calls
 | 
						|
   * <code>Float.toString(float)</code> to do its dirty work.
 | 
						|
   *
 | 
						|
   * @return the <code>String</code> representation
 | 
						|
   * @see #toString(float)
 | 
						|
   */
 | 
						|
  public String toString()
 | 
						|
  {
 | 
						|
    return toString(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Float</code> as a <code>byte</code>.
 | 
						|
   *
 | 
						|
   * @return the byte value
 | 
						|
   * @since 1.1
 | 
						|
   */
 | 
						|
  public byte byteValue()
 | 
						|
  {
 | 
						|
    return (byte) value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Float</code> as a <code>short</code>.
 | 
						|
   *
 | 
						|
   * @return the short value
 | 
						|
   * @since 1.1
 | 
						|
   */
 | 
						|
  public short shortValue()
 | 
						|
  {
 | 
						|
    return (short) value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Integer</code> as an <code>int</code>.
 | 
						|
   *
 | 
						|
   * @return the int value
 | 
						|
   */
 | 
						|
  public int intValue()
 | 
						|
  {
 | 
						|
    return (int) value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Integer</code> as a <code>long</code>.
 | 
						|
   *
 | 
						|
   * @return the long value
 | 
						|
   */
 | 
						|
  public long longValue()
 | 
						|
  {
 | 
						|
    return (long) value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Float</code>.
 | 
						|
   *
 | 
						|
   * @return the float value
 | 
						|
   */
 | 
						|
  public float floatValue()
 | 
						|
  {
 | 
						|
    return value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value of this <code>Float</code> as a <code>double</code>
 | 
						|
   *
 | 
						|
   * @return the double value
 | 
						|
   */
 | 
						|
  public double doubleValue()
 | 
						|
  {
 | 
						|
    return value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return a hashcode representing this Object. <code>Float</code>'s hash
 | 
						|
   * code is calculated by calling <code>floatToIntBits(floatValue())</code>.
 | 
						|
   *
 | 
						|
   * @return this Object's hash code
 | 
						|
   * @see #floatToIntBits(float)
 | 
						|
   */
 | 
						|
  public int hashCode()
 | 
						|
  {
 | 
						|
    return floatToIntBits(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns <code>true</code> if <code>obj</code> is an instance of
 | 
						|
   * <code>Float</code> and represents the same float value. Unlike comparing
 | 
						|
   * two floats with <code>==</code>, this treats two instances of
 | 
						|
   * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
 | 
						|
   * <code>-0.0</code> as unequal.
 | 
						|
   *
 | 
						|
   * <p>Note that <code>f1.equals(f2)</code> is identical to
 | 
						|
   * <code>floatToIntBits(f1.floatValue()) ==
 | 
						|
   *    floatToIntBits(f2.floatValue())</code>.
 | 
						|
   *
 | 
						|
   * @param obj the object to compare
 | 
						|
   * @return whether the objects are semantically equal
 | 
						|
   */
 | 
						|
  public boolean equals(Object obj)
 | 
						|
  {
 | 
						|
    if (obj instanceof Float)
 | 
						|
      {
 | 
						|
        float f = ((Float) obj).value;
 | 
						|
        return (floatToRawIntBits(value) == floatToRawIntBits(f)) ||
 | 
						|
          (isNaN(value) && isNaN(f));
 | 
						|
      }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert the float to the IEEE 754 floating-point "single format" bit
 | 
						|
   * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
 | 
						|
   * (masked by 0x7f800000) represent the exponent, and bits 22-0
 | 
						|
   * (masked by 0x007fffff) are the mantissa. This function collapses all
 | 
						|
   * versions of NaN to 0x7fc00000. The result of this function can be used
 | 
						|
   * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
 | 
						|
   * original <code>float</code> value.
 | 
						|
   *
 | 
						|
   * @param value the <code>float</code> to convert
 | 
						|
   * @return the bits of the <code>float</code>
 | 
						|
   * @see #intBitsToFloat(int)
 | 
						|
   */
 | 
						|
  public static int floatToIntBits(float value)
 | 
						|
  {
 | 
						|
    if (isNaN(value))
 | 
						|
      return 0x7fc00000;
 | 
						|
    else
 | 
						|
      return VMFloat.floatToRawIntBits(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert the float to the IEEE 754 floating-point "single format" bit
 | 
						|
   * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
 | 
						|
   * (masked by 0x7f800000) represent the exponent, and bits 22-0
 | 
						|
   * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
 | 
						|
   * rather than collapsing to a canonical value. The result of this function
 | 
						|
   * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
 | 
						|
   * obtain the original <code>float</code> value.
 | 
						|
   *
 | 
						|
   * @param value the <code>float</code> to convert
 | 
						|
   * @return the bits of the <code>float</code>
 | 
						|
   * @see #intBitsToFloat(int)
 | 
						|
   */
 | 
						|
  public static int floatToRawIntBits(float value)
 | 
						|
  {
 | 
						|
    return VMFloat.floatToRawIntBits(value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert the argument in IEEE 754 floating-point "single format" bit
 | 
						|
   * layout to the corresponding float. Bit 31 (the most significant) is the
 | 
						|
   * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
 | 
						|
   * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
 | 
						|
   * NaN alone, so that you can recover the bit pattern with
 | 
						|
   * <code>Float.floatToRawIntBits(float)</code>.
 | 
						|
   *
 | 
						|
   * @param bits the bits to convert
 | 
						|
   * @return the <code>float</code> represented by the bits
 | 
						|
   * @see #floatToIntBits(float)
 | 
						|
   * @see #floatToRawIntBits(float)
 | 
						|
   */
 | 
						|
  public static float intBitsToFloat(int bits)
 | 
						|
  {
 | 
						|
    return VMFloat.intBitsToFloat(bits);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Compare two Floats numerically by comparing their <code>float</code>
 | 
						|
   * values. The result is positive if the first is greater, negative if the
 | 
						|
   * second is greater, and 0 if the two are equal. However, this special
 | 
						|
   * cases NaN and signed zero as follows: NaN is considered greater than
 | 
						|
   * all other floats, including <code>POSITIVE_INFINITY</code>, and positive
 | 
						|
   * zero is considered greater than negative zero.
 | 
						|
   *
 | 
						|
   * @param f the Float to compare
 | 
						|
   * @return the comparison
 | 
						|
   * @since 1.2
 | 
						|
   */
 | 
						|
  public int compareTo(Float f)
 | 
						|
  {
 | 
						|
    return compare(value, f.value);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
 | 
						|
   * other words this compares two floats, special casing NaN and zero,
 | 
						|
   * without the overhead of objects.
 | 
						|
   *
 | 
						|
   * @param x the first float to compare
 | 
						|
   * @param y the second float to compare
 | 
						|
   * @return the comparison
 | 
						|
   * @since 1.4
 | 
						|
   */
 | 
						|
  public static int compare(float x, float y)
 | 
						|
  {
 | 
						|
      // handle the easy cases:
 | 
						|
      if (x < y)
 | 
						|
          return -1;
 | 
						|
      if (x > y)
 | 
						|
          return 1;
 | 
						|
 | 
						|
      // handle equality respecting that 0.0 != -0.0 (hence not using x == y):
 | 
						|
      int ix = floatToRawIntBits(x);
 | 
						|
      int iy = floatToRawIntBits(y);
 | 
						|
      if (ix == iy)
 | 
						|
          return 0;
 | 
						|
 | 
						|
      // handle NaNs:
 | 
						|
      if (x != x)
 | 
						|
          return (y != y) ? 0 : 1;
 | 
						|
      else if (y != y)
 | 
						|
          return -1;
 | 
						|
 | 
						|
      // handle +/- 0.0
 | 
						|
      return (ix < iy) ? -1 : 1;
 | 
						|
  }
 | 
						|
}
 |