mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3323 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			3323 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			Java
		
	
	
	
/* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
 | 
						|
   mapping Object --> Object
 | 
						|
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006  Free Software Foundation, Inc.
 | 
						|
 | 
						|
This file is part of GNU Classpath.
 | 
						|
 | 
						|
GNU Classpath is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation; either version 2, or (at your option)
 | 
						|
any later version.
 | 
						|
 | 
						|
GNU Classpath is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with GNU Classpath; see the file COPYING.  If not, write to the
 | 
						|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | 
						|
02110-1301 USA.
 | 
						|
 | 
						|
Linking this library statically or dynamically with other modules is
 | 
						|
making a combined work based on this library.  Thus, the terms and
 | 
						|
conditions of the GNU General Public License cover the whole
 | 
						|
combination.
 | 
						|
 | 
						|
As a special exception, the copyright holders of this library give you
 | 
						|
permission to link this library with independent modules to produce an
 | 
						|
executable, regardless of the license terms of these independent
 | 
						|
modules, and to copy and distribute the resulting executable under
 | 
						|
terms of your choice, provided that you also meet, for each linked
 | 
						|
independent module, the terms and conditions of the license of that
 | 
						|
module.  An independent module is a module which is not derived from
 | 
						|
or based on this library.  If you modify this library, you may extend
 | 
						|
this exception to your version of the library, but you are not
 | 
						|
obligated to do so.  If you do not wish to do so, delete this
 | 
						|
exception statement from your version. */
 | 
						|
 | 
						|
 | 
						|
package java.util;
 | 
						|
 | 
						|
import gnu.java.lang.CPStringBuilder;
 | 
						|
 | 
						|
import java.io.IOException;
 | 
						|
import java.io.ObjectInputStream;
 | 
						|
import java.io.ObjectOutputStream;
 | 
						|
import java.io.Serializable;
 | 
						|
 | 
						|
/**
 | 
						|
 * This class provides a red-black tree implementation of the SortedMap
 | 
						|
 * interface.  Elements in the Map will be sorted by either a user-provided
 | 
						|
 * Comparator object, or by the natural ordering of the keys.
 | 
						|
 *
 | 
						|
 * The algorithms are adopted from Corman, Leiserson, and Rivest's
 | 
						|
 * <i>Introduction to Algorithms.</i>  TreeMap guarantees O(log n)
 | 
						|
 * insertion and deletion of elements.  That being said, there is a large
 | 
						|
 * enough constant coefficient in front of that "log n" (overhead involved
 | 
						|
 * in keeping the tree balanced), that TreeMap may not be the best choice
 | 
						|
 * for small collections. If something is already sorted, you may want to
 | 
						|
 * just use a LinkedHashMap to maintain the order while providing O(1) access.
 | 
						|
 *
 | 
						|
 * TreeMap is a part of the JDK1.2 Collections API.  Null keys are allowed
 | 
						|
 * only if a Comparator is used which can deal with them; natural ordering
 | 
						|
 * cannot cope with null.  Null values are always allowed. Note that the
 | 
						|
 * ordering must be <i>consistent with equals</i> to correctly implement
 | 
						|
 * the Map interface. If this condition is violated, the map is still
 | 
						|
 * well-behaved, but you may have suprising results when comparing it to
 | 
						|
 * other maps.<p>
 | 
						|
 *
 | 
						|
 * This implementation is not synchronized. If you need to share this between
 | 
						|
 * multiple threads, do something like:<br>
 | 
						|
 * <code>SortedMap m
 | 
						|
 *       = Collections.synchronizedSortedMap(new TreeMap(...));</code><p>
 | 
						|
 *
 | 
						|
 * The iterators are <i>fail-fast</i>, meaning that any structural
 | 
						|
 * modification, except for <code>remove()</code> called on the iterator
 | 
						|
 * itself, cause the iterator to throw a
 | 
						|
 * <code>ConcurrentModificationException</code> rather than exhibit
 | 
						|
 * non-deterministic behavior.
 | 
						|
 *
 | 
						|
 * @author Jon Zeppieri
 | 
						|
 * @author Bryce McKinlay
 | 
						|
 * @author Eric Blake (ebb9@email.byu.edu)
 | 
						|
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | 
						|
 * @see Map
 | 
						|
 * @see HashMap
 | 
						|
 * @see Hashtable
 | 
						|
 * @see LinkedHashMap
 | 
						|
 * @see Comparable
 | 
						|
 * @see Comparator
 | 
						|
 * @see Collection
 | 
						|
 * @see Collections#synchronizedSortedMap(SortedMap)
 | 
						|
 * @since 1.2
 | 
						|
 * @status updated to 1.6
 | 
						|
 */
 | 
						|
public class TreeMap<K, V> extends AbstractMap<K, V>
 | 
						|
  implements NavigableMap<K, V>, Cloneable, Serializable
 | 
						|
{
 | 
						|
  // Implementation note:
 | 
						|
  // A red-black tree is a binary search tree with the additional properties
 | 
						|
  // that all paths to a leaf node visit the same number of black nodes,
 | 
						|
  // and no red node has red children. To avoid some null-pointer checks,
 | 
						|
  // we use the special node nil which is always black, has no relatives,
 | 
						|
  // and has key and value of null (but is not equal to a mapping of null).
 | 
						|
 | 
						|
  /**
 | 
						|
   * Compatible with JDK 1.2.
 | 
						|
   */
 | 
						|
  private static final long serialVersionUID = 919286545866124006L;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Color status of a node. Package visible for use by nested classes.
 | 
						|
   */
 | 
						|
  static final int RED = -1,
 | 
						|
                   BLACK = 1;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Sentinal node, used to avoid null checks for corner cases and make the
 | 
						|
   * delete rebalance code simpler. The rebalance code must never assign
 | 
						|
   * the parent, left, or right of nil, but may safely reassign the color
 | 
						|
   * to be black. This object must never be used as a key in a TreeMap, or
 | 
						|
   * it will break bounds checking of a SubMap.
 | 
						|
   */
 | 
						|
  static final Node nil = new Node(null, null, BLACK);
 | 
						|
  static
 | 
						|
    {
 | 
						|
      // Nil is self-referential, so we must initialize it after creation.
 | 
						|
      nil.parent = nil;
 | 
						|
      nil.left = nil;
 | 
						|
      nil.right = nil;
 | 
						|
    }
 | 
						|
 | 
						|
  /**
 | 
						|
   * The root node of this TreeMap.
 | 
						|
   */
 | 
						|
  private transient Node root;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The size of this TreeMap. Package visible for use by nested classes.
 | 
						|
   */
 | 
						|
  transient int size;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The cache for {@link #entrySet()}.
 | 
						|
   */
 | 
						|
  private transient Set<Map.Entry<K,V>> entries;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The cache for {@link #descendingMap()}.
 | 
						|
   */
 | 
						|
  private transient NavigableMap<K,V> descendingMap;
 | 
						|
 | 
						|
  /**
 | 
						|
   * The cache for {@link #navigableKeySet()}.
 | 
						|
   */
 | 
						|
  private transient NavigableSet<K> nKeys;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Counts the number of modifications this TreeMap has undergone, used
 | 
						|
   * by Iterators to know when to throw ConcurrentModificationExceptions.
 | 
						|
   * Package visible for use by nested classes.
 | 
						|
   */
 | 
						|
  transient int modCount;
 | 
						|
 | 
						|
  /**
 | 
						|
   * This TreeMap's comparator, or null for natural ordering.
 | 
						|
   * Package visible for use by nested classes.
 | 
						|
   * @serial the comparator ordering this tree, or null
 | 
						|
   */
 | 
						|
  final Comparator<? super K> comparator;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Class to represent an entry in the tree. Holds a single key-value pair,
 | 
						|
   * plus pointers to parent and child nodes.
 | 
						|
   *
 | 
						|
   * @author Eric Blake (ebb9@email.byu.edu)
 | 
						|
   */
 | 
						|
  private static final class Node<K, V> extends AbstractMap.SimpleEntry<K, V>
 | 
						|
  {
 | 
						|
    // All fields package visible for use by nested classes.
 | 
						|
    /** The color of this node. */
 | 
						|
    int color;
 | 
						|
 | 
						|
    /** The left child node. */
 | 
						|
    Node<K, V> left = nil;
 | 
						|
    /** The right child node. */
 | 
						|
    Node<K, V> right = nil;
 | 
						|
    /** The parent node. */
 | 
						|
    Node<K, V> parent = nil;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Simple constructor.
 | 
						|
     * @param key the key
 | 
						|
     * @param value the value
 | 
						|
     */
 | 
						|
    Node(K key, V value, int color)
 | 
						|
    {
 | 
						|
      super(key, value);
 | 
						|
      this.color = color;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Instantiate a new TreeMap with no elements, using the keys' natural
 | 
						|
   * ordering to sort. All entries in the map must have a key which implements
 | 
						|
   * Comparable, and which are <i>mutually comparable</i>, otherwise map
 | 
						|
   * operations may throw a {@link ClassCastException}. Attempts to use
 | 
						|
   * a null key will throw a {@link NullPointerException}.
 | 
						|
   *
 | 
						|
   * @see Comparable
 | 
						|
   */
 | 
						|
  public TreeMap()
 | 
						|
  {
 | 
						|
    this((Comparator) null);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Instantiate a new TreeMap with no elements, using the provided comparator
 | 
						|
   * to sort. All entries in the map must have keys which are mutually
 | 
						|
   * comparable by the Comparator, otherwise map operations may throw a
 | 
						|
   * {@link ClassCastException}.
 | 
						|
   *
 | 
						|
   * @param c the sort order for the keys of this map, or null
 | 
						|
   *        for the natural order
 | 
						|
   */
 | 
						|
  public TreeMap(Comparator<? super K> c)
 | 
						|
  {
 | 
						|
    comparator = c;
 | 
						|
    fabricateTree(0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Instantiate a new TreeMap, initializing it with all of the elements in
 | 
						|
   * the provided Map.  The elements will be sorted using the natural
 | 
						|
   * ordering of the keys. This algorithm runs in n*log(n) time. All entries
 | 
						|
   * in the map must have keys which implement Comparable and are mutually
 | 
						|
   * comparable, otherwise map operations may throw a
 | 
						|
   * {@link ClassCastException}.
 | 
						|
   *
 | 
						|
   * @param map a Map, whose entries will be put into this TreeMap
 | 
						|
   * @throws ClassCastException if the keys in the provided Map are not
 | 
						|
   *         comparable
 | 
						|
   * @throws NullPointerException if map is null
 | 
						|
   * @see Comparable
 | 
						|
   */
 | 
						|
  public TreeMap(Map<? extends K, ? extends V> map)
 | 
						|
  {
 | 
						|
    this((Comparator) null);
 | 
						|
    putAll(map);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Instantiate a new TreeMap, initializing it with all of the elements in
 | 
						|
   * the provided SortedMap.  The elements will be sorted using the same
 | 
						|
   * comparator as in the provided SortedMap. This runs in linear time.
 | 
						|
   *
 | 
						|
   * @param sm a SortedMap, whose entries will be put into this TreeMap
 | 
						|
   * @throws NullPointerException if sm is null
 | 
						|
   */
 | 
						|
  public TreeMap(SortedMap<K, ? extends V> sm)
 | 
						|
  {
 | 
						|
    this(sm.comparator());
 | 
						|
    int pos = sm.size();
 | 
						|
    Iterator itr = sm.entrySet().iterator();
 | 
						|
 | 
						|
    fabricateTree(pos);
 | 
						|
    Node node = firstNode();
 | 
						|
 | 
						|
    while (--pos >= 0)
 | 
						|
      {
 | 
						|
        Map.Entry me = (Map.Entry) itr.next();
 | 
						|
        node.key = me.getKey();
 | 
						|
        node.value = me.getValue();
 | 
						|
        node = successor(node);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Clears the Map so it has no keys. This is O(1).
 | 
						|
   */
 | 
						|
  public void clear()
 | 
						|
  {
 | 
						|
    if (size > 0)
 | 
						|
      {
 | 
						|
        modCount++;
 | 
						|
        root = nil;
 | 
						|
        size = 0;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a shallow clone of this TreeMap. The Map itself is cloned,
 | 
						|
   * but its contents are not.
 | 
						|
   *
 | 
						|
   * @return the clone
 | 
						|
   */
 | 
						|
  public Object clone()
 | 
						|
  {
 | 
						|
    TreeMap copy = null;
 | 
						|
    try
 | 
						|
      {
 | 
						|
        copy = (TreeMap) super.clone();
 | 
						|
      }
 | 
						|
    catch (CloneNotSupportedException x)
 | 
						|
      {
 | 
						|
      }
 | 
						|
    copy.entries = null;
 | 
						|
    copy.fabricateTree(size);
 | 
						|
 | 
						|
    Node node = firstNode();
 | 
						|
    Node cnode = copy.firstNode();
 | 
						|
 | 
						|
    while (node != nil)
 | 
						|
      {
 | 
						|
        cnode.key = node.key;
 | 
						|
        cnode.value = node.value;
 | 
						|
        node = successor(node);
 | 
						|
        cnode = copy.successor(cnode);
 | 
						|
      }
 | 
						|
    return copy;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the comparator used to sort this map, or null if it is by
 | 
						|
   * natural order.
 | 
						|
   *
 | 
						|
   * @return the map's comparator
 | 
						|
   */
 | 
						|
  public Comparator<? super K> comparator()
 | 
						|
  {
 | 
						|
    return comparator;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the map contains a mapping for the given key.
 | 
						|
   *
 | 
						|
   * @param key the key to look for
 | 
						|
   * @return true if the key has a mapping
 | 
						|
   * @throws ClassCastException if key is not comparable to map elements
 | 
						|
   * @throws NullPointerException if key is null and the comparator is not
 | 
						|
   *         tolerant of nulls
 | 
						|
   */
 | 
						|
  public boolean containsKey(Object key)
 | 
						|
  {
 | 
						|
    return getNode((K) key) != nil;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the map contains at least one mapping to the given value.
 | 
						|
   * This requires linear time.
 | 
						|
   *
 | 
						|
   * @param value the value to look for
 | 
						|
   * @return true if the value appears in a mapping
 | 
						|
   */
 | 
						|
  public boolean containsValue(Object value)
 | 
						|
  {
 | 
						|
    Node node = firstNode();
 | 
						|
    while (node != nil)
 | 
						|
      {
 | 
						|
        if (equals(value, node.value))
 | 
						|
          return true;
 | 
						|
        node = successor(node);
 | 
						|
      }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a "set view" of this TreeMap's entries. The set is backed by
 | 
						|
   * the TreeMap, so changes in one show up in the other.  The set supports
 | 
						|
   * element removal, but not element addition.<p>
 | 
						|
   *
 | 
						|
   * Note that the iterators for all three views, from keySet(), entrySet(),
 | 
						|
   * and values(), traverse the TreeMap in sorted sequence.
 | 
						|
   *
 | 
						|
   * @return a set view of the entries
 | 
						|
   * @see #keySet()
 | 
						|
   * @see #values()
 | 
						|
   * @see Map.Entry
 | 
						|
   */
 | 
						|
  public Set<Map.Entry<K,V>> entrySet()
 | 
						|
  {
 | 
						|
    if (entries == null)
 | 
						|
      // Create an AbstractSet with custom implementations of those methods
 | 
						|
      // that can be overriden easily and efficiently.
 | 
						|
      entries = new NavigableEntrySet();
 | 
						|
    return entries;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the first (lowest) key in the map.
 | 
						|
   *
 | 
						|
   * @return the first key
 | 
						|
   * @throws NoSuchElementException if the map is empty
 | 
						|
   */
 | 
						|
  public K firstKey()
 | 
						|
  {
 | 
						|
    if (root == nil)
 | 
						|
      throw new NoSuchElementException();
 | 
						|
    return firstNode().key;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the value in this TreeMap associated with the supplied key,
 | 
						|
   * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
 | 
						|
   * could also be null, you must use containsKey to see if this key
 | 
						|
   * actually maps to something.
 | 
						|
   *
 | 
						|
   * @param key the key for which to fetch an associated value
 | 
						|
   * @return what the key maps to, if present
 | 
						|
   * @throws ClassCastException if key is not comparable to elements in the map
 | 
						|
   * @throws NullPointerException if key is null but the comparator does not
 | 
						|
   *         tolerate nulls
 | 
						|
   * @see #put(Object, Object)
 | 
						|
   * @see #containsKey(Object)
 | 
						|
   */
 | 
						|
  public V get(Object key)
 | 
						|
  {
 | 
						|
    // Exploit fact that nil.value == null.
 | 
						|
    return getNode((K) key).value;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys less than
 | 
						|
   * <code>toKey</code>. The returned map is backed by the original, so changes
 | 
						|
   * in one appear in the other. The submap will throw an
 | 
						|
   * {@link IllegalArgumentException} for any attempt to access or add an
 | 
						|
   * element beyond the specified cutoff. The returned map does not include
 | 
						|
   * the endpoint; if you want inclusion, pass the successor element
 | 
						|
   * or call <code>headMap(toKey, true)</code>.  This is equivalent to
 | 
						|
   * calling <code>headMap(toKey, false)</code>.
 | 
						|
   *
 | 
						|
   * @param toKey the (exclusive) cutoff point
 | 
						|
   * @return a view of the map less than the cutoff
 | 
						|
   * @throws ClassCastException if <code>toKey</code> is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if toKey is null, but the comparator does not
 | 
						|
   *         tolerate null elements
 | 
						|
   */
 | 
						|
  public SortedMap<K, V> headMap(K toKey)
 | 
						|
  {
 | 
						|
    return headMap(toKey, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys less than
 | 
						|
   * (or equal to, if <code>inclusive</code> is true) <code>toKey</code>.
 | 
						|
   * The returned map is backed by the original, so changes in one appear
 | 
						|
   * in the other. The submap will throw an {@link IllegalArgumentException}
 | 
						|
   * for any attempt to access or add an element beyond the specified cutoff.
 | 
						|
   *
 | 
						|
   * @param toKey the cutoff point
 | 
						|
   * @param inclusive true if the cutoff point should be included.
 | 
						|
   * @return a view of the map less than (or equal to, if <code>inclusive</code>
 | 
						|
   *         is true) the cutoff.
 | 
						|
   * @throws ClassCastException if <code>toKey</code> is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if toKey is null, but the comparator does not
 | 
						|
   *         tolerate null elements
 | 
						|
   */
 | 
						|
  public NavigableMap<K, V> headMap(K toKey, boolean inclusive)
 | 
						|
  {
 | 
						|
    return new SubMap((K)(Object)nil, inclusive
 | 
						|
                      ? successor(getNode(toKey)).key : toKey);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a "set view" of this TreeMap's keys. The set is backed by the
 | 
						|
   * TreeMap, so changes in one show up in the other.  The set supports
 | 
						|
   * element removal, but not element addition.
 | 
						|
   *
 | 
						|
   * @return a set view of the keys
 | 
						|
   * @see #values()
 | 
						|
   * @see #entrySet()
 | 
						|
   */
 | 
						|
  public Set<K> keySet()
 | 
						|
  {
 | 
						|
    if (keys == null)
 | 
						|
      // Create an AbstractSet with custom implementations of those methods
 | 
						|
      // that can be overriden easily and efficiently.
 | 
						|
      keys = new KeySet();
 | 
						|
    return keys;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the last (highest) key in the map.
 | 
						|
   *
 | 
						|
   * @return the last key
 | 
						|
   * @throws NoSuchElementException if the map is empty
 | 
						|
   */
 | 
						|
  public K lastKey()
 | 
						|
  {
 | 
						|
    if (root == nil)
 | 
						|
      throw new NoSuchElementException("empty");
 | 
						|
    return lastNode().key;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Puts the supplied value into the Map, mapped by the supplied key.
 | 
						|
   * The value may be retrieved by any object which <code>equals()</code>
 | 
						|
   * this key. NOTE: Since the prior value could also be null, you must
 | 
						|
   * first use containsKey if you want to see if you are replacing the
 | 
						|
   * key's mapping.
 | 
						|
   *
 | 
						|
   * @param key the key used to locate the value
 | 
						|
   * @param value the value to be stored in the Map
 | 
						|
   * @return the prior mapping of the key, or null if there was none
 | 
						|
   * @throws ClassCastException if key is not comparable to current map keys
 | 
						|
   * @throws NullPointerException if key is null, but the comparator does
 | 
						|
   *         not tolerate nulls
 | 
						|
   * @see #get(Object)
 | 
						|
   * @see Object#equals(Object)
 | 
						|
   */
 | 
						|
  public V put(K key, V value)
 | 
						|
  {
 | 
						|
    Node<K,V> current = root;
 | 
						|
    Node<K,V> parent = nil;
 | 
						|
    int comparison = 0;
 | 
						|
 | 
						|
    // Find new node's parent.
 | 
						|
    while (current != nil)
 | 
						|
      {
 | 
						|
        parent = current;
 | 
						|
        comparison = compare(key, current.key);
 | 
						|
        if (comparison > 0)
 | 
						|
          current = current.right;
 | 
						|
        else if (comparison < 0)
 | 
						|
          current = current.left;
 | 
						|
        else // Key already in tree.
 | 
						|
          return current.setValue(value);
 | 
						|
      }
 | 
						|
 | 
						|
    // Set up new node.
 | 
						|
    Node n = new Node(key, value, RED);
 | 
						|
    n.parent = parent;
 | 
						|
 | 
						|
    // Insert node in tree.
 | 
						|
    modCount++;
 | 
						|
    size++;
 | 
						|
    if (parent == nil)
 | 
						|
      {
 | 
						|
        // Special case inserting into an empty tree.
 | 
						|
        root = n;
 | 
						|
        return null;
 | 
						|
      }
 | 
						|
    if (comparison > 0)
 | 
						|
      parent.right = n;
 | 
						|
    else
 | 
						|
      parent.left = n;
 | 
						|
 | 
						|
    // Rebalance after insert.
 | 
						|
    insertFixup(n);
 | 
						|
    return null;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Copies all elements of the given map into this TreeMap.  If this map
 | 
						|
   * already has a mapping for a key, the new mapping replaces the current
 | 
						|
   * one.
 | 
						|
   *
 | 
						|
   * @param m the map to be added
 | 
						|
   * @throws ClassCastException if a key in m is not comparable with keys
 | 
						|
   *         in the map
 | 
						|
   * @throws NullPointerException if a key in m is null, and the comparator
 | 
						|
   *         does not tolerate nulls
 | 
						|
   */
 | 
						|
  public void putAll(Map<? extends K, ? extends V> m)
 | 
						|
  {
 | 
						|
    Iterator itr = m.entrySet().iterator();
 | 
						|
    int pos = m.size();
 | 
						|
    while (--pos >= 0)
 | 
						|
      {
 | 
						|
        Map.Entry<K,V> e = (Map.Entry<K,V>) itr.next();
 | 
						|
        put(e.getKey(), e.getValue());
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Removes from the TreeMap and returns the value which is mapped by the
 | 
						|
   * supplied key. If the key maps to nothing, then the TreeMap remains
 | 
						|
   * unchanged, and <code>null</code> is returned. NOTE: Since the value
 | 
						|
   * could also be null, you must use containsKey to see if you are
 | 
						|
   * actually removing a mapping.
 | 
						|
   *
 | 
						|
   * @param key the key used to locate the value to remove
 | 
						|
   * @return whatever the key mapped to, if present
 | 
						|
   * @throws ClassCastException if key is not comparable to current map keys
 | 
						|
   * @throws NullPointerException if key is null, but the comparator does
 | 
						|
   *         not tolerate nulls
 | 
						|
   */
 | 
						|
  public V remove(Object key)
 | 
						|
  {
 | 
						|
    Node<K, V> n = getNode((K)key);
 | 
						|
    if (n == nil)
 | 
						|
      return null;
 | 
						|
    // Note: removeNode can alter the contents of n, so save value now.
 | 
						|
    V result = n.value;
 | 
						|
    removeNode(n);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the number of key-value mappings currently in this Map.
 | 
						|
   *
 | 
						|
   * @return the size
 | 
						|
   */
 | 
						|
  public int size()
 | 
						|
  {
 | 
						|
    return size;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys greater or
 | 
						|
   * equal to <code>fromKey</code> and less than <code>toKey</code> (a
 | 
						|
   * half-open interval). The returned map is backed by the original, so
 | 
						|
   * changes in one appear in the other. The submap will throw an
 | 
						|
   * {@link IllegalArgumentException} for any attempt to access or add an
 | 
						|
   * element beyond the specified cutoffs. The returned map includes the low
 | 
						|
   * endpoint but not the high; if you want to reverse this behavior on
 | 
						|
   * either end, pass in the successor element or call
 | 
						|
   * {@link #subMap(K,boolean,K,boolean)}.  This call is equivalent to
 | 
						|
   * <code>subMap(fromKey, true, toKey, false)</code>.
 | 
						|
   *
 | 
						|
   * @param fromKey the (inclusive) low cutoff point
 | 
						|
   * @param toKey the (exclusive) high cutoff point
 | 
						|
   * @return a view of the map between the cutoffs
 | 
						|
   * @throws ClassCastException if either cutoff is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if fromKey or toKey is null, but the
 | 
						|
   *         comparator does not tolerate null elements
 | 
						|
   * @throws IllegalArgumentException if fromKey is greater than toKey
 | 
						|
   */
 | 
						|
  public SortedMap<K, V> subMap(K fromKey, K toKey)
 | 
						|
  {
 | 
						|
    return subMap(fromKey, true, toKey, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys greater (or
 | 
						|
   * equal to, if <code>fromInclusive</code> is true) <code>fromKey</code> and
 | 
						|
   * less than (or equal to, if <code>toInclusive</code> is true)
 | 
						|
   * <code>toKey</code>. The returned map is backed by the original, so
 | 
						|
   * changes in one appear in the other. The submap will throw an
 | 
						|
   * {@link IllegalArgumentException} for any attempt to access or add an
 | 
						|
   * element beyond the specified cutoffs.
 | 
						|
   *
 | 
						|
   * @param fromKey the low cutoff point
 | 
						|
   * @param fromInclusive true if the low cutoff point should be included.
 | 
						|
   * @param toKey the high cutoff point
 | 
						|
   * @param toInclusive true if the high cutoff point should be included.
 | 
						|
   * @return a view of the map for the specified range.
 | 
						|
   * @throws ClassCastException if either cutoff is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if fromKey or toKey is null, but the
 | 
						|
   *         comparator does not tolerate null elements
 | 
						|
   * @throws IllegalArgumentException if fromKey is greater than toKey
 | 
						|
   */
 | 
						|
  public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
 | 
						|
                                   K toKey, boolean toInclusive)
 | 
						|
  {
 | 
						|
    return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
 | 
						|
                      toInclusive ? successor(getNode(toKey)).key : toKey);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys greater or
 | 
						|
   * equal to <code>fromKey</code>. The returned map is backed by the
 | 
						|
   * original, so changes in one appear in the other. The submap will throw an
 | 
						|
   * {@link IllegalArgumentException} for any attempt to access or add an
 | 
						|
   * element beyond the specified cutoff. The returned map includes the
 | 
						|
   * endpoint; if you want to exclude it, pass in the successor element.
 | 
						|
   * This is equivalent to calling <code>tailMap(fromKey, true)</code>.
 | 
						|
   *
 | 
						|
   * @param fromKey the (inclusive) low cutoff point
 | 
						|
   * @return a view of the map above the cutoff
 | 
						|
   * @throws ClassCastException if <code>fromKey</code> is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if fromKey is null, but the comparator
 | 
						|
   *         does not tolerate null elements
 | 
						|
   */
 | 
						|
  public SortedMap<K, V> tailMap(K fromKey)
 | 
						|
  {
 | 
						|
    return tailMap(fromKey, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of this Map including all entries with keys greater or
 | 
						|
   * equal to <code>fromKey</code>. The returned map is backed by the
 | 
						|
   * original, so changes in one appear in the other. The submap will throw an
 | 
						|
   * {@link IllegalArgumentException} for any attempt to access or add an
 | 
						|
   * element beyond the specified cutoff. The returned map includes the
 | 
						|
   * endpoint; if you want to exclude it, pass in the successor element.
 | 
						|
   *
 | 
						|
   * @param fromKey the low cutoff point
 | 
						|
   * @param inclusive true if the cutoff point should be included.
 | 
						|
   * @return a view of the map above the cutoff
 | 
						|
   * @throws ClassCastException if <code>fromKey</code> is not compatible with
 | 
						|
   *         the comparator (or is not Comparable, for natural ordering)
 | 
						|
   * @throws NullPointerException if fromKey is null, but the comparator
 | 
						|
   *         does not tolerate null elements
 | 
						|
   */
 | 
						|
  public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive)
 | 
						|
  {
 | 
						|
    return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
 | 
						|
                      (K)(Object)nil);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a "collection view" (or "bag view") of this TreeMap's values.
 | 
						|
   * The collection is backed by the TreeMap, so changes in one show up
 | 
						|
   * in the other.  The collection supports element removal, but not element
 | 
						|
   * addition.
 | 
						|
   *
 | 
						|
   * @return a bag view of the values
 | 
						|
   * @see #keySet()
 | 
						|
   * @see #entrySet()
 | 
						|
   */
 | 
						|
  public Collection<V> values()
 | 
						|
  {
 | 
						|
    if (values == null)
 | 
						|
      // We don't bother overriding many of the optional methods, as doing so
 | 
						|
      // wouldn't provide any significant performance advantage.
 | 
						|
      values = new AbstractCollection<V>()
 | 
						|
      {
 | 
						|
        public int size()
 | 
						|
        {
 | 
						|
          return size;
 | 
						|
        }
 | 
						|
 | 
						|
        public Iterator<V> iterator()
 | 
						|
        {
 | 
						|
          return new TreeIterator(VALUES);
 | 
						|
        }
 | 
						|
 | 
						|
        public void clear()
 | 
						|
        {
 | 
						|
          TreeMap.this.clear();
 | 
						|
        }
 | 
						|
      };
 | 
						|
    return values;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Compares two elements by the set comparator, or by natural ordering.
 | 
						|
   * Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param o1 the first object
 | 
						|
   * @param o2 the second object
 | 
						|
   * @throws ClassCastException if o1 and o2 are not mutually comparable,
 | 
						|
   *         or are not Comparable with natural ordering
 | 
						|
   * @throws NullPointerException if o1 or o2 is null with natural ordering
 | 
						|
   */
 | 
						|
  final int compare(K o1, K o2)
 | 
						|
  {
 | 
						|
    return (comparator == null
 | 
						|
            ? ((Comparable) o1).compareTo(o2)
 | 
						|
            : comparator.compare(o1, o2));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Maintain red-black balance after deleting a node.
 | 
						|
   *
 | 
						|
   * @param node the child of the node just deleted, possibly nil
 | 
						|
   * @param parent the parent of the node just deleted, never nil
 | 
						|
   */
 | 
						|
  private void deleteFixup(Node<K,V> node, Node<K,V> parent)
 | 
						|
  {
 | 
						|
    // if (parent == nil)
 | 
						|
    //   throw new InternalError();
 | 
						|
    // If a black node has been removed, we need to rebalance to avoid
 | 
						|
    // violating the "same number of black nodes on any path" rule. If
 | 
						|
    // node is red, we can simply recolor it black and all is well.
 | 
						|
    while (node != root && node.color == BLACK)
 | 
						|
      {
 | 
						|
        if (node == parent.left)
 | 
						|
          {
 | 
						|
            // Rebalance left side.
 | 
						|
            Node<K,V> sibling = parent.right;
 | 
						|
            // if (sibling == nil)
 | 
						|
            //   throw new InternalError();
 | 
						|
            if (sibling.color == RED)
 | 
						|
              {
 | 
						|
                // Case 1: Sibling is red.
 | 
						|
                // Recolor sibling and parent, and rotate parent left.
 | 
						|
                sibling.color = BLACK;
 | 
						|
                parent.color = RED;
 | 
						|
                rotateLeft(parent);
 | 
						|
                sibling = parent.right;
 | 
						|
              }
 | 
						|
 | 
						|
            if (sibling.left.color == BLACK && sibling.right.color == BLACK)
 | 
						|
              {
 | 
						|
                // Case 2: Sibling has no red children.
 | 
						|
                // Recolor sibling, and move to parent.
 | 
						|
                sibling.color = RED;
 | 
						|
                node = parent;
 | 
						|
                parent = parent.parent;
 | 
						|
              }
 | 
						|
            else
 | 
						|
              {
 | 
						|
                if (sibling.right.color == BLACK)
 | 
						|
                  {
 | 
						|
                    // Case 3: Sibling has red left child.
 | 
						|
                    // Recolor sibling and left child, rotate sibling right.
 | 
						|
                    sibling.left.color = BLACK;
 | 
						|
                    sibling.color = RED;
 | 
						|
                    rotateRight(sibling);
 | 
						|
                    sibling = parent.right;
 | 
						|
                  }
 | 
						|
                // Case 4: Sibling has red right child. Recolor sibling,
 | 
						|
                // right child, and parent, and rotate parent left.
 | 
						|
                sibling.color = parent.color;
 | 
						|
                parent.color = BLACK;
 | 
						|
                sibling.right.color = BLACK;
 | 
						|
                rotateLeft(parent);
 | 
						|
                node = root; // Finished.
 | 
						|
              }
 | 
						|
          }
 | 
						|
        else
 | 
						|
          {
 | 
						|
            // Symmetric "mirror" of left-side case.
 | 
						|
            Node<K,V> sibling = parent.left;
 | 
						|
            // if (sibling == nil)
 | 
						|
            //   throw new InternalError();
 | 
						|
            if (sibling.color == RED)
 | 
						|
              {
 | 
						|
                // Case 1: Sibling is red.
 | 
						|
                // Recolor sibling and parent, and rotate parent right.
 | 
						|
                sibling.color = BLACK;
 | 
						|
                parent.color = RED;
 | 
						|
                rotateRight(parent);
 | 
						|
                sibling = parent.left;
 | 
						|
              }
 | 
						|
 | 
						|
            if (sibling.right.color == BLACK && sibling.left.color == BLACK)
 | 
						|
              {
 | 
						|
                // Case 2: Sibling has no red children.
 | 
						|
                // Recolor sibling, and move to parent.
 | 
						|
                sibling.color = RED;
 | 
						|
                node = parent;
 | 
						|
                parent = parent.parent;
 | 
						|
              }
 | 
						|
            else
 | 
						|
              {
 | 
						|
                if (sibling.left.color == BLACK)
 | 
						|
                  {
 | 
						|
                    // Case 3: Sibling has red right child.
 | 
						|
                    // Recolor sibling and right child, rotate sibling left.
 | 
						|
                    sibling.right.color = BLACK;
 | 
						|
                    sibling.color = RED;
 | 
						|
                    rotateLeft(sibling);
 | 
						|
                    sibling = parent.left;
 | 
						|
                  }
 | 
						|
                // Case 4: Sibling has red left child. Recolor sibling,
 | 
						|
                // left child, and parent, and rotate parent right.
 | 
						|
                sibling.color = parent.color;
 | 
						|
                parent.color = BLACK;
 | 
						|
                sibling.left.color = BLACK;
 | 
						|
                rotateRight(parent);
 | 
						|
                node = root; // Finished.
 | 
						|
              }
 | 
						|
          }
 | 
						|
      }
 | 
						|
    node.color = BLACK;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Construct a perfectly balanced tree consisting of n "blank" nodes. This
 | 
						|
   * permits a tree to be generated from pre-sorted input in linear time.
 | 
						|
   *
 | 
						|
   * @param count the number of blank nodes, non-negative
 | 
						|
   */
 | 
						|
  private void fabricateTree(final int count)
 | 
						|
  {
 | 
						|
    if (count == 0)
 | 
						|
      {
 | 
						|
        root = nil;
 | 
						|
        size = 0;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    // We color every row of nodes black, except for the overflow nodes.
 | 
						|
    // I believe that this is the optimal arrangement. We construct the tree
 | 
						|
    // in place by temporarily linking each node to the next node in the row,
 | 
						|
    // then updating those links to the children when working on the next row.
 | 
						|
 | 
						|
    // Make the root node.
 | 
						|
    root = new Node(null, null, BLACK);
 | 
						|
    size = count;
 | 
						|
    Node row = root;
 | 
						|
    int rowsize;
 | 
						|
 | 
						|
    // Fill each row that is completely full of nodes.
 | 
						|
    for (rowsize = 2; rowsize + rowsize <= count; rowsize <<= 1)
 | 
						|
      {
 | 
						|
        Node parent = row;
 | 
						|
        Node last = null;
 | 
						|
        for (int i = 0; i < rowsize; i += 2)
 | 
						|
          {
 | 
						|
            Node left = new Node(null, null, BLACK);
 | 
						|
            Node right = new Node(null, null, BLACK);
 | 
						|
            left.parent = parent;
 | 
						|
            left.right = right;
 | 
						|
            right.parent = parent;
 | 
						|
            parent.left = left;
 | 
						|
            Node next = parent.right;
 | 
						|
            parent.right = right;
 | 
						|
            parent = next;
 | 
						|
            if (last != null)
 | 
						|
              last.right = left;
 | 
						|
            last = right;
 | 
						|
          }
 | 
						|
        row = row.left;
 | 
						|
      }
 | 
						|
 | 
						|
    // Now do the partial final row in red.
 | 
						|
    int overflow = count - rowsize;
 | 
						|
    Node parent = row;
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < overflow; i += 2)
 | 
						|
      {
 | 
						|
        Node left = new Node(null, null, RED);
 | 
						|
        Node right = new Node(null, null, RED);
 | 
						|
        left.parent = parent;
 | 
						|
        right.parent = parent;
 | 
						|
        parent.left = left;
 | 
						|
        Node next = parent.right;
 | 
						|
        parent.right = right;
 | 
						|
        parent = next;
 | 
						|
      }
 | 
						|
    // Add a lone left node if necessary.
 | 
						|
    if (i - overflow == 0)
 | 
						|
      {
 | 
						|
        Node left = new Node(null, null, RED);
 | 
						|
        left.parent = parent;
 | 
						|
        parent.left = left;
 | 
						|
        parent = parent.right;
 | 
						|
        left.parent.right = nil;
 | 
						|
      }
 | 
						|
    // Unlink the remaining nodes of the previous row.
 | 
						|
    while (parent != nil)
 | 
						|
      {
 | 
						|
        Node next = parent.right;
 | 
						|
        parent.right = nil;
 | 
						|
        parent = next;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the first sorted node in the map, or nil if empty. Package
 | 
						|
   * visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @return the first node
 | 
						|
   */
 | 
						|
  final Node<K, V> firstNode()
 | 
						|
  {
 | 
						|
    // Exploit fact that nil.left == nil.
 | 
						|
    Node node = root;
 | 
						|
    while (node.left != nil)
 | 
						|
      node = node.left;
 | 
						|
    return node;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the TreeMap.Node associated with key, or the nil node if no such
 | 
						|
   * node exists in the tree. Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param key the key to search for
 | 
						|
   * @return the node where the key is found, or nil
 | 
						|
   */
 | 
						|
  final Node<K, V> getNode(K key)
 | 
						|
  {
 | 
						|
    Node<K,V> current = root;
 | 
						|
    while (current != nil)
 | 
						|
      {
 | 
						|
        int comparison = compare(key, current.key);
 | 
						|
        if (comparison > 0)
 | 
						|
          current = current.right;
 | 
						|
        else if (comparison < 0)
 | 
						|
          current = current.left;
 | 
						|
        else
 | 
						|
          return current;
 | 
						|
      }
 | 
						|
    return current;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Find the "highest" node which is < key. If key is nil, return last
 | 
						|
   * node. Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param key the upper bound, exclusive
 | 
						|
   * @return the previous node
 | 
						|
   */
 | 
						|
  final Node<K,V> highestLessThan(K key)
 | 
						|
  {
 | 
						|
    return highestLessThan(key, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Find the "highest" node which is < (or equal to,
 | 
						|
   * if <code>equal</code> is true) key. If key is nil,
 | 
						|
   * return last node. Package visible for use by nested
 | 
						|
   * classes.
 | 
						|
   *
 | 
						|
   * @param key the upper bound, exclusive
 | 
						|
   * @param equal true if the key should be returned if found.
 | 
						|
   * @return the previous node
 | 
						|
   */
 | 
						|
  final Node<K,V> highestLessThan(K key, boolean equal)
 | 
						|
  {
 | 
						|
    if (key == nil)
 | 
						|
      return lastNode();
 | 
						|
 | 
						|
    Node<K,V> last = nil;
 | 
						|
    Node<K,V> current = root;
 | 
						|
    int comparison = 0;
 | 
						|
 | 
						|
    while (current != nil)
 | 
						|
      {
 | 
						|
        last = current;
 | 
						|
        comparison = compare(key, current.key);
 | 
						|
        if (comparison > 0)
 | 
						|
          current = current.right;
 | 
						|
        else if (comparison < 0)
 | 
						|
          current = current.left;
 | 
						|
        else // Exact match.
 | 
						|
          return (equal ? last : predecessor(last));
 | 
						|
      }
 | 
						|
    return comparison < 0 ? predecessor(last) : last;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Maintain red-black balance after inserting a new node.
 | 
						|
   *
 | 
						|
   * @param n the newly inserted node
 | 
						|
   */
 | 
						|
  private void insertFixup(Node<K,V> n)
 | 
						|
  {
 | 
						|
    // Only need to rebalance when parent is a RED node, and while at least
 | 
						|
    // 2 levels deep into the tree (ie: node has a grandparent). Remember
 | 
						|
    // that nil.color == BLACK.
 | 
						|
    while (n.parent.color == RED && n.parent.parent != nil)
 | 
						|
      {
 | 
						|
        if (n.parent == n.parent.parent.left)
 | 
						|
          {
 | 
						|
            Node uncle = n.parent.parent.right;
 | 
						|
            // Uncle may be nil, in which case it is BLACK.
 | 
						|
            if (uncle.color == RED)
 | 
						|
              {
 | 
						|
                // Case 1. Uncle is RED: Change colors of parent, uncle,
 | 
						|
                // and grandparent, and move n to grandparent.
 | 
						|
                n.parent.color = BLACK;
 | 
						|
                uncle.color = BLACK;
 | 
						|
                uncle.parent.color = RED;
 | 
						|
                n = uncle.parent;
 | 
						|
              }
 | 
						|
            else
 | 
						|
              {
 | 
						|
                if (n == n.parent.right)
 | 
						|
                  {
 | 
						|
                    // Case 2. Uncle is BLACK and x is right child.
 | 
						|
                    // Move n to parent, and rotate n left.
 | 
						|
                    n = n.parent;
 | 
						|
                    rotateLeft(n);
 | 
						|
                  }
 | 
						|
                // Case 3. Uncle is BLACK and x is left child.
 | 
						|
                // Recolor parent, grandparent, and rotate grandparent right.
 | 
						|
                n.parent.color = BLACK;
 | 
						|
                n.parent.parent.color = RED;
 | 
						|
                rotateRight(n.parent.parent);
 | 
						|
              }
 | 
						|
          }
 | 
						|
        else
 | 
						|
          {
 | 
						|
            // Mirror image of above code.
 | 
						|
            Node uncle = n.parent.parent.left;
 | 
						|
            // Uncle may be nil, in which case it is BLACK.
 | 
						|
            if (uncle.color == RED)
 | 
						|
              {
 | 
						|
                // Case 1. Uncle is RED: Change colors of parent, uncle,
 | 
						|
                // and grandparent, and move n to grandparent.
 | 
						|
                n.parent.color = BLACK;
 | 
						|
                uncle.color = BLACK;
 | 
						|
                uncle.parent.color = RED;
 | 
						|
                n = uncle.parent;
 | 
						|
              }
 | 
						|
            else
 | 
						|
              {
 | 
						|
                if (n == n.parent.left)
 | 
						|
                {
 | 
						|
                    // Case 2. Uncle is BLACK and x is left child.
 | 
						|
                    // Move n to parent, and rotate n right.
 | 
						|
                    n = n.parent;
 | 
						|
                    rotateRight(n);
 | 
						|
                  }
 | 
						|
                // Case 3. Uncle is BLACK and x is right child.
 | 
						|
                // Recolor parent, grandparent, and rotate grandparent left.
 | 
						|
                n.parent.color = BLACK;
 | 
						|
                n.parent.parent.color = RED;
 | 
						|
                rotateLeft(n.parent.parent);
 | 
						|
              }
 | 
						|
          }
 | 
						|
      }
 | 
						|
    root.color = BLACK;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the last sorted node in the map, or nil if empty.
 | 
						|
   *
 | 
						|
   * @return the last node
 | 
						|
   */
 | 
						|
  private Node<K,V> lastNode()
 | 
						|
  {
 | 
						|
    // Exploit fact that nil.right == nil.
 | 
						|
    Node node = root;
 | 
						|
    while (node.right != nil)
 | 
						|
      node = node.right;
 | 
						|
    return node;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Find the "lowest" node which is >= key. If key is nil, return either
 | 
						|
   * nil or the first node, depending on the parameter first.  Package visible
 | 
						|
   * for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param key the lower bound, inclusive
 | 
						|
   * @param first true to return the first element instead of nil for nil key
 | 
						|
   * @return the next node
 | 
						|
   */
 | 
						|
  final Node<K,V> lowestGreaterThan(K key, boolean first)
 | 
						|
  {
 | 
						|
    return lowestGreaterThan(key, first, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Find the "lowest" node which is > (or equal to, if <code>equal</code>
 | 
						|
   * is true) key. If key is nil, return either nil or the first node, depending
 | 
						|
   * on the parameter first.  Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param key the lower bound, inclusive
 | 
						|
   * @param first true to return the first element instead of nil for nil key
 | 
						|
   * @param equal true if the key should be returned if found.
 | 
						|
   * @return the next node
 | 
						|
   */
 | 
						|
  final Node<K,V> lowestGreaterThan(K key, boolean first, boolean equal)
 | 
						|
  {
 | 
						|
    if (key == nil)
 | 
						|
      return first ? firstNode() : nil;
 | 
						|
 | 
						|
    Node<K,V> last = nil;
 | 
						|
    Node<K,V> current = root;
 | 
						|
    int comparison = 0;
 | 
						|
 | 
						|
    while (current != nil)
 | 
						|
      {
 | 
						|
        last = current;
 | 
						|
        comparison = compare(key, current.key);
 | 
						|
        if (comparison > 0)
 | 
						|
          current = current.right;
 | 
						|
        else if (comparison < 0)
 | 
						|
          current = current.left;
 | 
						|
        else
 | 
						|
          return (equal ? current : successor(current));
 | 
						|
      }
 | 
						|
    return comparison > 0 ? successor(last) : last;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the node preceding the given one, or nil if there isn't one.
 | 
						|
   *
 | 
						|
   * @param node the current node, not nil
 | 
						|
   * @return the prior node in sorted order
 | 
						|
   */
 | 
						|
  private Node<K,V> predecessor(Node<K,V> node)
 | 
						|
  {
 | 
						|
    if (node.left != nil)
 | 
						|
      {
 | 
						|
        node = node.left;
 | 
						|
        while (node.right != nil)
 | 
						|
          node = node.right;
 | 
						|
        return node;
 | 
						|
      }
 | 
						|
 | 
						|
    Node parent = node.parent;
 | 
						|
    // Exploit fact that nil.left == nil and node is non-nil.
 | 
						|
    while (node == parent.left)
 | 
						|
      {
 | 
						|
        node = parent;
 | 
						|
        parent = node.parent;
 | 
						|
      }
 | 
						|
    return parent;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Construct a tree from sorted keys in linear time. Package visible for
 | 
						|
   * use by TreeSet.
 | 
						|
   *
 | 
						|
   * @param s the stream to read from
 | 
						|
   * @param count the number of keys to read
 | 
						|
   * @param readValues true to read values, false to insert "" as the value
 | 
						|
   * @throws ClassNotFoundException if the underlying stream fails
 | 
						|
   * @throws IOException if the underlying stream fails
 | 
						|
   * @see #readObject(ObjectInputStream)
 | 
						|
   * @see TreeSet#readObject(ObjectInputStream)
 | 
						|
   */
 | 
						|
  final void putFromObjStream(ObjectInputStream s, int count,
 | 
						|
                              boolean readValues)
 | 
						|
    throws IOException, ClassNotFoundException
 | 
						|
  {
 | 
						|
    fabricateTree(count);
 | 
						|
    Node node = firstNode();
 | 
						|
 | 
						|
    while (--count >= 0)
 | 
						|
      {
 | 
						|
        node.key = s.readObject();
 | 
						|
        node.value = readValues ? s.readObject() : "";
 | 
						|
        node = successor(node);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Construct a tree from sorted keys in linear time, with values of "".
 | 
						|
   * Package visible for use by TreeSet, which uses a value type of String.
 | 
						|
   *
 | 
						|
   * @param keys the iterator over the sorted keys
 | 
						|
   * @param count the number of nodes to insert
 | 
						|
   * @see TreeSet#TreeSet(SortedSet)
 | 
						|
   */
 | 
						|
  final void putKeysLinear(Iterator<K> keys, int count)
 | 
						|
  {
 | 
						|
    fabricateTree(count);
 | 
						|
    Node<K,V> node = firstNode();
 | 
						|
 | 
						|
    while (--count >= 0)
 | 
						|
      {
 | 
						|
        node.key = keys.next();
 | 
						|
        node.value = (V) "";
 | 
						|
        node = successor(node);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Deserializes this object from the given stream.
 | 
						|
   *
 | 
						|
   * @param s the stream to read from
 | 
						|
   * @throws ClassNotFoundException if the underlying stream fails
 | 
						|
   * @throws IOException if the underlying stream fails
 | 
						|
   * @serialData the <i>size</i> (int), followed by key (Object) and value
 | 
						|
   *             (Object) pairs in sorted order
 | 
						|
   */
 | 
						|
  private void readObject(ObjectInputStream s)
 | 
						|
    throws IOException, ClassNotFoundException
 | 
						|
  {
 | 
						|
    s.defaultReadObject();
 | 
						|
    int size = s.readInt();
 | 
						|
    putFromObjStream(s, size, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Remove node from tree. This will increment modCount and decrement size.
 | 
						|
   * Node must exist in the tree. Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param node the node to remove
 | 
						|
   */
 | 
						|
  final void removeNode(Node<K,V> node)
 | 
						|
  {
 | 
						|
    Node<K,V> splice;
 | 
						|
    Node<K,V> child;
 | 
						|
 | 
						|
    modCount++;
 | 
						|
    size--;
 | 
						|
 | 
						|
    // Find splice, the node at the position to actually remove from the tree.
 | 
						|
    if (node.left == nil)
 | 
						|
      {
 | 
						|
        // Node to be deleted has 0 or 1 children.
 | 
						|
        splice = node;
 | 
						|
        child = node.right;
 | 
						|
      }
 | 
						|
    else if (node.right == nil)
 | 
						|
      {
 | 
						|
        // Node to be deleted has 1 child.
 | 
						|
        splice = node;
 | 
						|
        child = node.left;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      {
 | 
						|
        // Node has 2 children. Splice is node's predecessor, and we swap
 | 
						|
        // its contents into node.
 | 
						|
        splice = node.left;
 | 
						|
        while (splice.right != nil)
 | 
						|
          splice = splice.right;
 | 
						|
        child = splice.left;
 | 
						|
        node.key = splice.key;
 | 
						|
        node.value = splice.value;
 | 
						|
      }
 | 
						|
 | 
						|
    // Unlink splice from the tree.
 | 
						|
    Node parent = splice.parent;
 | 
						|
    if (child != nil)
 | 
						|
      child.parent = parent;
 | 
						|
    if (parent == nil)
 | 
						|
      {
 | 
						|
        // Special case for 0 or 1 node remaining.
 | 
						|
        root = child;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    if (splice == parent.left)
 | 
						|
      parent.left = child;
 | 
						|
    else
 | 
						|
      parent.right = child;
 | 
						|
 | 
						|
    if (splice.color == BLACK)
 | 
						|
      deleteFixup(child, parent);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Rotate node n to the left.
 | 
						|
   *
 | 
						|
   * @param node the node to rotate
 | 
						|
   */
 | 
						|
  private void rotateLeft(Node<K,V> node)
 | 
						|
  {
 | 
						|
    Node child = node.right;
 | 
						|
    // if (node == nil || child == nil)
 | 
						|
    //   throw new InternalError();
 | 
						|
 | 
						|
    // Establish node.right link.
 | 
						|
    node.right = child.left;
 | 
						|
    if (child.left != nil)
 | 
						|
      child.left.parent = node;
 | 
						|
 | 
						|
    // Establish child->parent link.
 | 
						|
    child.parent = node.parent;
 | 
						|
    if (node.parent != nil)
 | 
						|
      {
 | 
						|
        if (node == node.parent.left)
 | 
						|
          node.parent.left = child;
 | 
						|
        else
 | 
						|
          node.parent.right = child;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      root = child;
 | 
						|
 | 
						|
    // Link n and child.
 | 
						|
    child.left = node;
 | 
						|
    node.parent = child;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Rotate node n to the right.
 | 
						|
   *
 | 
						|
   * @param node the node to rotate
 | 
						|
   */
 | 
						|
  private void rotateRight(Node<K,V> node)
 | 
						|
  {
 | 
						|
    Node child = node.left;
 | 
						|
    // if (node == nil || child == nil)
 | 
						|
    //   throw new InternalError();
 | 
						|
 | 
						|
    // Establish node.left link.
 | 
						|
    node.left = child.right;
 | 
						|
    if (child.right != nil)
 | 
						|
      child.right.parent = node;
 | 
						|
 | 
						|
    // Establish child->parent link.
 | 
						|
    child.parent = node.parent;
 | 
						|
    if (node.parent != nil)
 | 
						|
      {
 | 
						|
        if (node == node.parent.right)
 | 
						|
          node.parent.right = child;
 | 
						|
        else
 | 
						|
          node.parent.left = child;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      root = child;
 | 
						|
 | 
						|
    // Link n and child.
 | 
						|
    child.right = node;
 | 
						|
    node.parent = child;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return the node following the given one, or nil if there isn't one.
 | 
						|
   * Package visible for use by nested classes.
 | 
						|
   *
 | 
						|
   * @param node the current node, not nil
 | 
						|
   * @return the next node in sorted order
 | 
						|
   */
 | 
						|
  final Node<K,V> successor(Node<K,V> node)
 | 
						|
  {
 | 
						|
    if (node.right != nil)
 | 
						|
      {
 | 
						|
        node = node.right;
 | 
						|
        while (node.left != nil)
 | 
						|
          node = node.left;
 | 
						|
        return node;
 | 
						|
      }
 | 
						|
 | 
						|
    Node<K,V> parent = node.parent;
 | 
						|
    // Exploit fact that nil.right == nil and node is non-nil.
 | 
						|
    while (node == parent.right)
 | 
						|
      {
 | 
						|
        node = parent;
 | 
						|
        parent = parent.parent;
 | 
						|
      }
 | 
						|
    return parent;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Serializes this object to the given stream.
 | 
						|
   *
 | 
						|
   * @param s the stream to write to
 | 
						|
   * @throws IOException if the underlying stream fails
 | 
						|
   * @serialData the <i>size</i> (int), followed by key (Object) and value
 | 
						|
   *             (Object) pairs in sorted order
 | 
						|
   */
 | 
						|
  private void writeObject(ObjectOutputStream s) throws IOException
 | 
						|
  {
 | 
						|
    s.defaultWriteObject();
 | 
						|
 | 
						|
    Node node = firstNode();
 | 
						|
    s.writeInt(size);
 | 
						|
    while (node != nil)
 | 
						|
      {
 | 
						|
        s.writeObject(node.key);
 | 
						|
        s.writeObject(node.value);
 | 
						|
        node = successor(node);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Iterate over TreeMap's entries. This implementation is parameterized
 | 
						|
   * to give a sequential view of keys, values, or entries.
 | 
						|
   *
 | 
						|
   * @author Eric Blake (ebb9@email.byu.edu)
 | 
						|
   */
 | 
						|
  private final class TreeIterator implements Iterator
 | 
						|
  {
 | 
						|
    /**
 | 
						|
     * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
 | 
						|
     * or {@link #ENTRIES}.
 | 
						|
     */
 | 
						|
    private final int type;
 | 
						|
    /** The number of modifications to the backing Map that we know about. */
 | 
						|
    private int knownMod = modCount;
 | 
						|
    /** The last Entry returned by a next() call. */
 | 
						|
    private Node last;
 | 
						|
    /** The next entry that should be returned by next(). */
 | 
						|
    private Node next;
 | 
						|
    /**
 | 
						|
     * The last node visible to this iterator. This is used when iterating
 | 
						|
     * on a SubMap.
 | 
						|
     */
 | 
						|
    private final Node max;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Construct a new TreeIterator with the supplied type.
 | 
						|
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | 
						|
     */
 | 
						|
    TreeIterator(int type)
 | 
						|
    {
 | 
						|
      this(type, firstNode(), nil);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Construct a new TreeIterator with the supplied type. Iteration will
 | 
						|
     * be from "first" (inclusive) to "max" (exclusive).
 | 
						|
     *
 | 
						|
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | 
						|
     * @param first where to start iteration, nil for empty iterator
 | 
						|
     * @param max the cutoff for iteration, nil for all remaining nodes
 | 
						|
     */
 | 
						|
    TreeIterator(int type, Node first, Node max)
 | 
						|
    {
 | 
						|
      this.type = type;
 | 
						|
      this.next = first;
 | 
						|
      this.max = max;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns true if the Iterator has more elements.
 | 
						|
     * @return true if there are more elements
 | 
						|
     */
 | 
						|
    public boolean hasNext()
 | 
						|
    {
 | 
						|
      return next != max;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the next element in the Iterator's sequential view.
 | 
						|
     * @return the next element
 | 
						|
     * @throws ConcurrentModificationException if the TreeMap was modified
 | 
						|
     * @throws NoSuchElementException if there is none
 | 
						|
     */
 | 
						|
    public Object next()
 | 
						|
    {
 | 
						|
      if (knownMod != modCount)
 | 
						|
        throw new ConcurrentModificationException();
 | 
						|
      if (next == max)
 | 
						|
        throw new NoSuchElementException();
 | 
						|
      last = next;
 | 
						|
      next = successor(last);
 | 
						|
 | 
						|
      if (type == VALUES)
 | 
						|
        return last.value;
 | 
						|
      else if (type == KEYS)
 | 
						|
        return last.key;
 | 
						|
      return last;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Removes from the backing TreeMap the last element which was fetched
 | 
						|
     * with the <code>next()</code> method.
 | 
						|
     * @throws ConcurrentModificationException if the TreeMap was modified
 | 
						|
     * @throws IllegalStateException if called when there is no last element
 | 
						|
     */
 | 
						|
    public void remove()
 | 
						|
    {
 | 
						|
      if (last == null)
 | 
						|
        throw new IllegalStateException();
 | 
						|
      if (knownMod != modCount)
 | 
						|
        throw new ConcurrentModificationException();
 | 
						|
 | 
						|
      removeNode(last);
 | 
						|
      last = null;
 | 
						|
      knownMod++;
 | 
						|
    }
 | 
						|
  } // class TreeIterator
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #subMap(Object, Object)} and other map
 | 
						|
   * ranges. This class provides a view of a portion of the original backing
 | 
						|
   * map, and throws {@link IllegalArgumentException} for attempts to
 | 
						|
   * access beyond that range.
 | 
						|
   *
 | 
						|
   * @author Eric Blake (ebb9@email.byu.edu)
 | 
						|
   */
 | 
						|
  private final class SubMap
 | 
						|
    extends AbstractMap<K,V>
 | 
						|
    implements NavigableMap<K,V>
 | 
						|
  {
 | 
						|
    /**
 | 
						|
     * The lower range of this view, inclusive, or nil for unbounded.
 | 
						|
     * Package visible for use by nested classes.
 | 
						|
     */
 | 
						|
    final K minKey;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The upper range of this view, exclusive, or nil for unbounded.
 | 
						|
     * Package visible for use by nested classes.
 | 
						|
     */
 | 
						|
    final K maxKey;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #entrySet()}.
 | 
						|
     */
 | 
						|
    private Set<Map.Entry<K,V>> entries;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #descendingMap()}.
 | 
						|
     */
 | 
						|
    private NavigableMap<K,V> descendingMap;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #navigableKeySet()}.
 | 
						|
     */
 | 
						|
    private NavigableSet<K> nKeys;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Create a SubMap representing the elements between minKey (inclusive)
 | 
						|
     * and maxKey (exclusive). If minKey is nil, SubMap has no lower bound
 | 
						|
     * (headMap). If maxKey is nil, the SubMap has no upper bound (tailMap).
 | 
						|
     *
 | 
						|
     * @param minKey the lower bound
 | 
						|
     * @param maxKey the upper bound
 | 
						|
     * @throws IllegalArgumentException if minKey > maxKey
 | 
						|
     */
 | 
						|
    SubMap(K minKey, K maxKey)
 | 
						|
    {
 | 
						|
      if (minKey != nil && maxKey != nil && compare(minKey, maxKey) > 0)
 | 
						|
        throw new IllegalArgumentException("fromKey > toKey");
 | 
						|
      this.minKey = minKey;
 | 
						|
      this.maxKey = maxKey;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Check if "key" is in within the range bounds for this SubMap. The
 | 
						|
     * lower ("from") SubMap range is inclusive, and the upper ("to") bound
 | 
						|
     * is exclusive. Package visible for use by nested classes.
 | 
						|
     *
 | 
						|
     * @param key the key to check
 | 
						|
     * @return true if the key is in range
 | 
						|
     */
 | 
						|
    boolean keyInRange(K key)
 | 
						|
    {
 | 
						|
      return ((minKey == nil || compare(key, minKey) >= 0)
 | 
						|
              && (maxKey == nil || compare(key, maxKey) < 0));
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> ceilingEntry(K key)
 | 
						|
    {
 | 
						|
      Entry<K,V> n = TreeMap.this.ceilingEntry(key);
 | 
						|
      if (n != null && keyInRange(n.getKey()))
 | 
						|
        return n;
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public K ceilingKey(K key)
 | 
						|
    {
 | 
						|
      K found = TreeMap.this.ceilingKey(key);
 | 
						|
      if (keyInRange(found))
 | 
						|
        return found;
 | 
						|
      else
 | 
						|
        return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> descendingKeySet()
 | 
						|
    {
 | 
						|
      return descendingMap().navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<K,V> descendingMap()
 | 
						|
    {
 | 
						|
      if (descendingMap == null)
 | 
						|
        descendingMap = new DescendingMap(this);
 | 
						|
      return descendingMap;
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      Node next = lowestGreaterThan(minKey, true);
 | 
						|
      Node max = lowestGreaterThan(maxKey, false);
 | 
						|
      while (next != max)
 | 
						|
        {
 | 
						|
          Node current = next;
 | 
						|
          next = successor(current);
 | 
						|
          removeNode(current);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    public Comparator<? super K> comparator()
 | 
						|
    {
 | 
						|
      return comparator;
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean containsKey(Object key)
 | 
						|
    {
 | 
						|
      return keyInRange((K) key) && TreeMap.this.containsKey(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean containsValue(Object value)
 | 
						|
    {
 | 
						|
      Node node = lowestGreaterThan(minKey, true);
 | 
						|
      Node max = lowestGreaterThan(maxKey, false);
 | 
						|
      while (node != max)
 | 
						|
        {
 | 
						|
          if (equals(value, node.getValue()))
 | 
						|
            return true;
 | 
						|
          node = successor(node);
 | 
						|
        }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    public Set<Map.Entry<K,V>> entrySet()
 | 
						|
    {
 | 
						|
      if (entries == null)
 | 
						|
        // Create an AbstractSet with custom implementations of those methods
 | 
						|
        // that can be overriden easily and efficiently.
 | 
						|
        entries = new SubMap.NavigableEntrySet();
 | 
						|
      return entries;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> firstEntry()
 | 
						|
    {
 | 
						|
      Node<K,V> node = lowestGreaterThan(minKey, true);
 | 
						|
      if (node == nil || ! keyInRange(node.key))
 | 
						|
        return null;
 | 
						|
      return node;
 | 
						|
    }
 | 
						|
 | 
						|
    public K firstKey()
 | 
						|
    {
 | 
						|
      Entry<K,V> e = firstEntry();
 | 
						|
      if (e == null)
 | 
						|
        throw new NoSuchElementException();
 | 
						|
      return e.getKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> floorEntry(K key)
 | 
						|
    {
 | 
						|
      Entry<K,V> n = TreeMap.this.floorEntry(key);
 | 
						|
      if (n != null && keyInRange(n.getKey()))
 | 
						|
        return n;
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public K floorKey(K key)
 | 
						|
    {
 | 
						|
      K found = TreeMap.this.floorKey(key);
 | 
						|
      if (keyInRange(found))
 | 
						|
        return found;
 | 
						|
      else
 | 
						|
        return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public V get(Object key)
 | 
						|
    {
 | 
						|
      if (keyInRange((K) key))
 | 
						|
        return TreeMap.this.get(key);
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<K,V> headMap(K toKey)
 | 
						|
    {
 | 
						|
      return headMap(toKey, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<K,V> headMap(K toKey, boolean inclusive)
 | 
						|
    {
 | 
						|
      if (!keyInRange(toKey))
 | 
						|
        throw new IllegalArgumentException("Key outside submap range");
 | 
						|
      return new SubMap(minKey, (inclusive ?
 | 
						|
                                 successor(getNode(toKey)).key : toKey));
 | 
						|
    }
 | 
						|
 | 
						|
    public Set<K> keySet()
 | 
						|
    {
 | 
						|
      if (this.keys == null)
 | 
						|
        // Create an AbstractSet with custom implementations of those methods
 | 
						|
        // that can be overriden easily and efficiently.
 | 
						|
        this.keys = new SubMap.KeySet();
 | 
						|
      return this.keys;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> higherEntry(K key)
 | 
						|
    {
 | 
						|
      Entry<K,V> n = TreeMap.this.higherEntry(key);
 | 
						|
      if (n != null && keyInRange(n.getKey()))
 | 
						|
        return n;
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public K higherKey(K key)
 | 
						|
    {
 | 
						|
      K found = TreeMap.this.higherKey(key);
 | 
						|
      if (keyInRange(found))
 | 
						|
        return found;
 | 
						|
      else
 | 
						|
        return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> lastEntry()
 | 
						|
    {
 | 
						|
      return lowerEntry(maxKey);
 | 
						|
    }
 | 
						|
 | 
						|
    public K lastKey()
 | 
						|
    {
 | 
						|
      Entry<K,V> e = lastEntry();
 | 
						|
      if (e == null)
 | 
						|
        throw new NoSuchElementException();
 | 
						|
      return e.getKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> lowerEntry(K key)
 | 
						|
    {
 | 
						|
      Entry<K,V> n = TreeMap.this.lowerEntry(key);
 | 
						|
      if (n != null && keyInRange(n.getKey()))
 | 
						|
        return n;
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public K lowerKey(K key)
 | 
						|
    {
 | 
						|
      K found = TreeMap.this.lowerKey(key);
 | 
						|
      if (keyInRange(found))
 | 
						|
        return found;
 | 
						|
      else
 | 
						|
        return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> navigableKeySet()
 | 
						|
    {
 | 
						|
      if (this.nKeys == null)
 | 
						|
        // Create an AbstractSet with custom implementations of those methods
 | 
						|
        // that can be overriden easily and efficiently.
 | 
						|
        this.nKeys = new SubMap.NavigableKeySet();
 | 
						|
      return this.nKeys;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> pollFirstEntry()
 | 
						|
    {
 | 
						|
      Entry<K,V> e = firstEntry();
 | 
						|
      if (e != null)
 | 
						|
        removeNode((Node<K,V>) e);
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> pollLastEntry()
 | 
						|
    {
 | 
						|
      Entry<K,V> e = lastEntry();
 | 
						|
      if (e != null)
 | 
						|
        removeNode((Node<K,V>) e);
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
 | 
						|
    public V put(K key, V value)
 | 
						|
    {
 | 
						|
      if (! keyInRange(key))
 | 
						|
        throw new IllegalArgumentException("Key outside range");
 | 
						|
      return TreeMap.this.put(key, value);
 | 
						|
    }
 | 
						|
 | 
						|
    public V remove(Object key)
 | 
						|
    {
 | 
						|
      if (keyInRange((K)key))
 | 
						|
        return TreeMap.this.remove(key);
 | 
						|
      return null;
 | 
						|
    }
 | 
						|
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      Node node = lowestGreaterThan(minKey, true);
 | 
						|
      Node max = lowestGreaterThan(maxKey, false);
 | 
						|
      int count = 0;
 | 
						|
      while (node != max)
 | 
						|
        {
 | 
						|
          count++;
 | 
						|
          node = successor(node);
 | 
						|
        }
 | 
						|
      return count;
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<K,V> subMap(K fromKey, K toKey)
 | 
						|
    {
 | 
						|
      return subMap(fromKey, true, toKey, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
 | 
						|
                                    K toKey, boolean toInclusive)
 | 
						|
    {
 | 
						|
      if (! keyInRange(fromKey) || ! keyInRange(toKey))
 | 
						|
        throw new IllegalArgumentException("key outside range");
 | 
						|
      return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
 | 
						|
                        toInclusive ? successor(getNode(toKey)).key : toKey);
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<K, V> tailMap(K fromKey)
 | 
						|
    {
 | 
						|
      return tailMap(fromKey, true);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive)
 | 
						|
    {
 | 
						|
      if (! keyInRange(fromKey))
 | 
						|
        throw new IllegalArgumentException("key outside range");
 | 
						|
      return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
 | 
						|
                        maxKey);
 | 
						|
    }
 | 
						|
 | 
						|
    public Collection<V> values()
 | 
						|
    {
 | 
						|
      if (this.values == null)
 | 
						|
        // Create an AbstractCollection with custom implementations of those
 | 
						|
        // methods that can be overriden easily and efficiently.
 | 
						|
        this.values = new AbstractCollection()
 | 
						|
        {
 | 
						|
          public int size()
 | 
						|
          {
 | 
						|
            return SubMap.this.size();
 | 
						|
          }
 | 
						|
 | 
						|
          public Iterator<V> iterator()
 | 
						|
          {
 | 
						|
            Node first = lowestGreaterThan(minKey, true);
 | 
						|
            Node max = lowestGreaterThan(maxKey, false);
 | 
						|
            return new TreeIterator(VALUES, first, max);
 | 
						|
          }
 | 
						|
 | 
						|
          public void clear()
 | 
						|
          {
 | 
						|
            SubMap.this.clear();
 | 
						|
          }
 | 
						|
        };
 | 
						|
      return this.values;
 | 
						|
    }
 | 
						|
 | 
						|
    private class KeySet
 | 
						|
      extends AbstractSet<K>
 | 
						|
    {
 | 
						|
      public int size()
 | 
						|
      {
 | 
						|
        return SubMap.this.size();
 | 
						|
      }
 | 
						|
 | 
						|
      public Iterator<K> iterator()
 | 
						|
      {
 | 
						|
        Node first = lowestGreaterThan(minKey, true);
 | 
						|
        Node max = lowestGreaterThan(maxKey, false);
 | 
						|
        return new TreeIterator(KEYS, first, max);
 | 
						|
      }
 | 
						|
 | 
						|
      public void clear()
 | 
						|
      {
 | 
						|
        SubMap.this.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      public boolean contains(Object o)
 | 
						|
      {
 | 
						|
        if (! keyInRange((K) o))
 | 
						|
          return false;
 | 
						|
        return getNode((K) o) != nil;
 | 
						|
      }
 | 
						|
 | 
						|
      public boolean remove(Object o)
 | 
						|
      {
 | 
						|
        if (! keyInRange((K) o))
 | 
						|
          return false;
 | 
						|
        Node n = getNode((K) o);
 | 
						|
        if (n != nil)
 | 
						|
          {
 | 
						|
            removeNode(n);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
    } // class SubMap.KeySet
 | 
						|
 | 
						|
    private final class NavigableKeySet
 | 
						|
      extends KeySet
 | 
						|
      implements NavigableSet<K>
 | 
						|
    {
 | 
						|
 | 
						|
      public K ceiling(K k)
 | 
						|
      {
 | 
						|
        return SubMap.this.ceilingKey(k);
 | 
						|
      }
 | 
						|
 | 
						|
      public Comparator<? super K> comparator()
 | 
						|
      {
 | 
						|
        return comparator;
 | 
						|
      }
 | 
						|
 | 
						|
      public Iterator<K> descendingIterator()
 | 
						|
      {
 | 
						|
        return descendingSet().iterator();
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<K> descendingSet()
 | 
						|
      {
 | 
						|
        return new DescendingSet(this);
 | 
						|
      }
 | 
						|
 | 
						|
      public K first()
 | 
						|
      {
 | 
						|
        return SubMap.this.firstKey();
 | 
						|
      }
 | 
						|
 | 
						|
      public K floor(K k)
 | 
						|
      {
 | 
						|
        return SubMap.this.floorKey(k);
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<K> headSet(K to)
 | 
						|
      {
 | 
						|
        return headSet(to, false);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<K> headSet(K to, boolean inclusive)
 | 
						|
      {
 | 
						|
        return SubMap.this.headMap(to, inclusive).navigableKeySet();
 | 
						|
      }
 | 
						|
 | 
						|
      public K higher(K k)
 | 
						|
      {
 | 
						|
        return SubMap.this.higherKey(k);
 | 
						|
      }
 | 
						|
 | 
						|
      public K last()
 | 
						|
      {
 | 
						|
        return SubMap.this.lastKey();
 | 
						|
      }
 | 
						|
 | 
						|
      public K lower(K k)
 | 
						|
      {
 | 
						|
        return SubMap.this.lowerKey(k);
 | 
						|
      }
 | 
						|
 | 
						|
      public K pollFirst()
 | 
						|
      {
 | 
						|
        return SubMap.this.pollFirstEntry().getKey();
 | 
						|
      }
 | 
						|
 | 
						|
      public K pollLast()
 | 
						|
      {
 | 
						|
        return SubMap.this.pollLastEntry().getKey();
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<K> subSet(K from, K to)
 | 
						|
      {
 | 
						|
        return subSet(from, true, to, false);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<K> subSet(K from, boolean fromInclusive,
 | 
						|
                                    K to, boolean toInclusive)
 | 
						|
      {
 | 
						|
        return SubMap.this.subMap(from, fromInclusive,
 | 
						|
                                  to, toInclusive).navigableKeySet();
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<K> tailSet(K from)
 | 
						|
      {
 | 
						|
        return tailSet(from, true);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<K> tailSet(K from, boolean inclusive)
 | 
						|
      {
 | 
						|
        return SubMap.this.tailMap(from, inclusive).navigableKeySet();
 | 
						|
      }
 | 
						|
 | 
						|
  } // class SubMap.NavigableKeySet
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #entrySet()}.
 | 
						|
   */
 | 
						|
  private class EntrySet
 | 
						|
    extends AbstractSet<Entry<K,V>>
 | 
						|
  {
 | 
						|
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      return SubMap.this.size();
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<Map.Entry<K,V>> iterator()
 | 
						|
    {
 | 
						|
      Node first = lowestGreaterThan(minKey, true);
 | 
						|
      Node max = lowestGreaterThan(maxKey, false);
 | 
						|
      return new TreeIterator(ENTRIES, first, max);
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      SubMap.this.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean contains(Object o)
 | 
						|
    {
 | 
						|
      if (! (o instanceof Map.Entry))
 | 
						|
        return false;
 | 
						|
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | 
						|
      K key = me.getKey();
 | 
						|
      if (! keyInRange(key))
 | 
						|
        return false;
 | 
						|
      Node<K,V> n = getNode(key);
 | 
						|
      return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean remove(Object o)
 | 
						|
    {
 | 
						|
      if (! (o instanceof Map.Entry))
 | 
						|
        return false;
 | 
						|
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | 
						|
      K key = me.getKey();
 | 
						|
      if (! keyInRange(key))
 | 
						|
        return false;
 | 
						|
      Node<K,V> n = getNode(key);
 | 
						|
      if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | 
						|
        {
 | 
						|
          removeNode(n);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } // class SubMap.EntrySet
 | 
						|
 | 
						|
    private final class NavigableEntrySet
 | 
						|
      extends EntrySet
 | 
						|
      implements NavigableSet<Entry<K,V>>
 | 
						|
    {
 | 
						|
 | 
						|
      public Entry<K,V> ceiling(Entry<K,V> e)
 | 
						|
      {
 | 
						|
        return SubMap.this.ceilingEntry(e.getKey());
 | 
						|
      }
 | 
						|
 | 
						|
      public Comparator<? super Entry<K,V>> comparator()
 | 
						|
      {
 | 
						|
        return new Comparator<Entry<K,V>>()
 | 
						|
          {
 | 
						|
            public int compare(Entry<K,V> t1, Entry<K,V> t2)
 | 
						|
              {
 | 
						|
                return comparator.compare(t1.getKey(), t2.getKey());
 | 
						|
              }
 | 
						|
          };
 | 
						|
      }
 | 
						|
 | 
						|
      public Iterator<Entry<K,V>> descendingIterator()
 | 
						|
      {
 | 
						|
        return descendingSet().iterator();
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<Entry<K,V>> descendingSet()
 | 
						|
      {
 | 
						|
        return new DescendingSet(this);
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> first()
 | 
						|
      {
 | 
						|
        return SubMap.this.firstEntry();
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> floor(Entry<K,V> e)
 | 
						|
      {
 | 
						|
        return SubMap.this.floorEntry(e.getKey());
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
 | 
						|
      {
 | 
						|
        return headSet(to, false);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
 | 
						|
      {
 | 
						|
        return (NavigableSet<Entry<K,V>>)
 | 
						|
          SubMap.this.headMap(to.getKey(), inclusive).entrySet();
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> higher(Entry<K,V> e)
 | 
						|
      {
 | 
						|
        return SubMap.this.higherEntry(e.getKey());
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> last()
 | 
						|
      {
 | 
						|
        return SubMap.this.lastEntry();
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> lower(Entry<K,V> e)
 | 
						|
      {
 | 
						|
        return SubMap.this.lowerEntry(e.getKey());
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> pollFirst()
 | 
						|
      {
 | 
						|
        return SubMap.this.pollFirstEntry();
 | 
						|
      }
 | 
						|
 | 
						|
      public Entry<K,V> pollLast()
 | 
						|
      {
 | 
						|
        return SubMap.this.pollLastEntry();
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
 | 
						|
      {
 | 
						|
        return subSet(from, true, to, false);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
 | 
						|
                                             Entry<K,V> to, boolean toInclusive)
 | 
						|
      {
 | 
						|
        return (NavigableSet<Entry<K,V>>)
 | 
						|
          SubMap.this.subMap(from.getKey(), fromInclusive,
 | 
						|
                             to.getKey(), toInclusive).entrySet();
 | 
						|
      }
 | 
						|
 | 
						|
      public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
 | 
						|
      {
 | 
						|
        return tailSet(from, true);
 | 
						|
      }
 | 
						|
 | 
						|
      public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
 | 
						|
      {
 | 
						|
        return (NavigableSet<Entry<K,V>>)
 | 
						|
          SubMap.this.tailMap(from.getKey(), inclusive).navigableKeySet();
 | 
						|
      }
 | 
						|
 | 
						|
  } // class SubMap.NavigableEntrySet
 | 
						|
 | 
						|
} // class SubMap
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the least or lowest key
 | 
						|
   * that is greater than or equal to the specified key, or
 | 
						|
   * <code>null</code> if there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the entry with the least key greater than or equal
 | 
						|
   *         to the given key, or <code>null</code> if there is
 | 
						|
   *         no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> ceilingEntry(K key)
 | 
						|
  {
 | 
						|
    Node<K,V> n = lowestGreaterThan(key, false);
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the the least or lowest key that is greater than
 | 
						|
   * or equal to the specified key, or <code>null</code> if
 | 
						|
   * there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the least key greater than or equal to the given key,
 | 
						|
   *         or <code>null</code> if there is no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public K ceilingKey(K key)
 | 
						|
  {
 | 
						|
    Entry<K,V> e = ceilingEntry(key);
 | 
						|
    return (e == null) ? null : e.getKey();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a reverse ordered {@link NavigableSet} view of this
 | 
						|
   * map's keys. The set is backed by the {@link TreeMap}, so changes
 | 
						|
   * in one show up in the other.  The set supports element removal,
 | 
						|
   * but not element addition.
 | 
						|
   *
 | 
						|
   * @return a reverse ordered set view of the keys.
 | 
						|
   * @since 1.6
 | 
						|
   * @see #descendingMap()
 | 
						|
   */
 | 
						|
  public NavigableSet<K> descendingKeySet()
 | 
						|
  {
 | 
						|
    return descendingMap().navigableKeySet();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a view of the map in reverse order.  The descending map
 | 
						|
   * is backed by the original map, so that changes affect both maps.
 | 
						|
   * Any changes occurring to either map while an iteration is taking
 | 
						|
   * place (with the exception of a {@link Iterator#remove()} operation)
 | 
						|
   * result in undefined behaviour from the iteration.  The ordering
 | 
						|
   * of the descending map is the same as for a map with a
 | 
						|
   * {@link Comparator} given by {@link Collections#reverseOrder()},
 | 
						|
   * and calling {@link #descendingMap()} on the descending map itself
 | 
						|
   * results in a view equivalent to the original map.
 | 
						|
   *
 | 
						|
   * @return a reverse order view of the map.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public NavigableMap<K,V> descendingMap()
 | 
						|
  {
 | 
						|
    if (descendingMap == null)
 | 
						|
      descendingMap = new DescendingMap<K,V>(this);
 | 
						|
    return descendingMap;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the least or lowest key
 | 
						|
   * in the map, or <code>null</code> if the map is empty.
 | 
						|
   *
 | 
						|
   * @return the lowest entry, or <code>null</code> if the map
 | 
						|
   *         is empty.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> firstEntry()
 | 
						|
  {
 | 
						|
    Node<K,V> n = firstNode();
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the greatest or highest key
 | 
						|
   * that is less than or equal to the specified key, or
 | 
						|
   * <code>null</code> if there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the entry with the greatest key less than or equal
 | 
						|
   *         to the given key, or <code>null</code> if there is
 | 
						|
   *         no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> floorEntry(K key)
 | 
						|
  {
 | 
						|
    Node<K,V> n = highestLessThan(key, true);
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the the greatest or highest key that is less than
 | 
						|
   * or equal to the specified key, or <code>null</code> if
 | 
						|
   * there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the greatest key less than or equal to the given key,
 | 
						|
   *         or <code>null</code> if there is no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public K floorKey(K key)
 | 
						|
  {
 | 
						|
    Entry<K,V> e = floorEntry(key);
 | 
						|
    return (e == null) ? null : e.getKey();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the least or lowest key
 | 
						|
   * that is strictly greater than the specified key, or
 | 
						|
   * <code>null</code> if there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the entry with the least key greater than
 | 
						|
   *         the given key, or <code>null</code> if there is
 | 
						|
   *         no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> higherEntry(K key)
 | 
						|
  {
 | 
						|
    Node<K,V> n = lowestGreaterThan(key, false, false);
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the the least or lowest key that is strictly
 | 
						|
   * greater than the specified key, or <code>null</code> if
 | 
						|
   * there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the least key greater than the given key,
 | 
						|
   *         or <code>null</code> if there is no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public K higherKey(K key)
 | 
						|
  {
 | 
						|
    Entry<K,V> e = higherEntry(key);
 | 
						|
    return (e == null) ? null : e.getKey();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the greatest or highest key
 | 
						|
   * in the map, or <code>null</code> if the map is empty.
 | 
						|
   *
 | 
						|
   * @return the highest entry, or <code>null</code> if the map
 | 
						|
   *         is empty.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> lastEntry()
 | 
						|
  {
 | 
						|
    Node<K,V> n = lastNode();
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the entry associated with the greatest or highest key
 | 
						|
   * that is strictly less than the specified key, or
 | 
						|
   * <code>null</code> if there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the entry with the greatest key less than
 | 
						|
   *         the given key, or <code>null</code> if there is
 | 
						|
   *         no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> lowerEntry(K key)
 | 
						|
  {
 | 
						|
    Node<K,V> n = highestLessThan(key);
 | 
						|
    return (n == nil) ? null : n;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the the greatest or highest key that is strictly
 | 
						|
   * less than the specified key, or <code>null</code> if
 | 
						|
   * there is no such key.
 | 
						|
   *
 | 
						|
   * @param key the key relative to the returned entry.
 | 
						|
   * @return the greatest key less than the given key,
 | 
						|
   *         or <code>null</code> if there is no such key.
 | 
						|
   * @throws ClassCastException if the specified key can not
 | 
						|
   *                            be compared with those in the map.
 | 
						|
   * @throws NullPointerException if the key is <code>null</code>
 | 
						|
   *                              and this map either uses natural
 | 
						|
   *                              ordering or a comparator that does
 | 
						|
   *                              not permit null keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public K lowerKey(K key)
 | 
						|
  {
 | 
						|
    Entry<K,V> e = lowerEntry(key);
 | 
						|
    return (e == null) ? null : e.getKey();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a {@link NavigableSet} view of this map's keys. The set is
 | 
						|
   * backed by the {@link TreeMap}, so changes in one show up in the other.
 | 
						|
   * Any changes occurring to either while an iteration is taking
 | 
						|
   * place (with the exception of a {@link Iterator#remove()} operation)
 | 
						|
   * result in undefined behaviour from the iteration.  The ordering
 | 
						|
   * The set supports element removal, but not element addition.
 | 
						|
   *
 | 
						|
   * @return a {@link NavigableSet} view of the keys.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public NavigableSet<K> navigableKeySet()
 | 
						|
  {
 | 
						|
    if (nKeys == null)
 | 
						|
      nKeys = new NavigableKeySet();
 | 
						|
    return nKeys;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Removes and returns the entry associated with the least
 | 
						|
   * or lowest key in the map, or <code>null</code> if the map
 | 
						|
   * is empty.
 | 
						|
   *
 | 
						|
   * @return the removed first entry, or <code>null</code> if the
 | 
						|
   *         map is empty.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> pollFirstEntry()
 | 
						|
  {
 | 
						|
    Entry<K,V> e = firstEntry();
 | 
						|
    if (e != null)
 | 
						|
      removeNode((Node<K,V>)e);
 | 
						|
    return e;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Removes and returns the entry associated with the greatest
 | 
						|
   * or highest key in the map, or <code>null</code> if the map
 | 
						|
   * is empty.
 | 
						|
   *
 | 
						|
   * @return the removed last entry, or <code>null</code> if the
 | 
						|
   *         map is empty.
 | 
						|
   * @since 1.6
 | 
						|
   */
 | 
						|
  public Entry<K,V> pollLastEntry()
 | 
						|
  {
 | 
						|
    Entry<K,V> e = lastEntry();
 | 
						|
    if (e != null)
 | 
						|
      removeNode((Node<K,V>)e);
 | 
						|
    return e;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #descendingMap()} and associated
 | 
						|
   * derivatives. This class provides a view of the
 | 
						|
   * original backing map in reverse order, and throws
 | 
						|
   * {@link IllegalArgumentException} for attempts to
 | 
						|
   * access beyond that range.
 | 
						|
   *
 | 
						|
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | 
						|
   */
 | 
						|
  private static final class DescendingMap<DK,DV>
 | 
						|
    implements NavigableMap<DK,DV>
 | 
						|
  {
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #entrySet()}.
 | 
						|
     */
 | 
						|
    private Set<Map.Entry<DK,DV>> entries;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #keySet()}.
 | 
						|
     */
 | 
						|
    private Set<DK> keys;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #navigableKeySet()}.
 | 
						|
     */
 | 
						|
    private NavigableSet<DK> nKeys;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The cache for {@link #values()}.
 | 
						|
     */
 | 
						|
    private Collection<DV> values;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The backing {@link NavigableMap}.
 | 
						|
     */
 | 
						|
    private NavigableMap<DK,DV> map;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Create a {@link DescendingMap} around the specified
 | 
						|
     * map.
 | 
						|
     *
 | 
						|
     * @param map the map to wrap.
 | 
						|
     */
 | 
						|
    public DescendingMap(NavigableMap<DK,DV> map)
 | 
						|
    {
 | 
						|
      this.map = map;
 | 
						|
    }
 | 
						|
 | 
						|
    public Map.Entry<DK,DV> ceilingEntry(DK key)
 | 
						|
    {
 | 
						|
      return map.floorEntry(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public DK ceilingKey(DK key)
 | 
						|
    {
 | 
						|
      return map.floorKey(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      map.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    public Comparator<? super DK> comparator()
 | 
						|
    {
 | 
						|
      return Collections.reverseOrder(map.comparator());
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean containsKey(Object o)
 | 
						|
    {
 | 
						|
      return map.containsKey(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean containsValue(Object o)
 | 
						|
    {
 | 
						|
      return map.containsValue(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<DK> descendingKeySet()
 | 
						|
    {
 | 
						|
      return descendingMap().navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<DK,DV> descendingMap()
 | 
						|
    {
 | 
						|
      return map;
 | 
						|
    }
 | 
						|
 | 
						|
    public Set<Entry<DK,DV>> entrySet()
 | 
						|
    {
 | 
						|
      if (entries == null)
 | 
						|
        entries =
 | 
						|
          new DescendingSet<Entry<DK,DV>>((NavigableSet<Entry<DK,DV>>)
 | 
						|
                                          map.entrySet());
 | 
						|
      return entries;
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean equals(Object o)
 | 
						|
    {
 | 
						|
      return map.equals(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> firstEntry()
 | 
						|
    {
 | 
						|
      return map.lastEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public DK firstKey()
 | 
						|
    {
 | 
						|
      return map.lastKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> floorEntry(DK key)
 | 
						|
    {
 | 
						|
      return map.ceilingEntry(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public DK floorKey(DK key)
 | 
						|
    {
 | 
						|
      return map.ceilingKey(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public DV get(Object key)
 | 
						|
    {
 | 
						|
      return map.get(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public int hashCode()
 | 
						|
    {
 | 
						|
      return map.hashCode();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<DK,DV> headMap(DK toKey)
 | 
						|
    {
 | 
						|
      return headMap(toKey, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<DK,DV> headMap(DK toKey, boolean inclusive)
 | 
						|
    {
 | 
						|
      return new DescendingMap(map.tailMap(toKey, inclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> higherEntry(DK key)
 | 
						|
    {
 | 
						|
      return map.lowerEntry(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public DK higherKey(DK key)
 | 
						|
    {
 | 
						|
      return map.lowerKey(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public Set<DK> keySet()
 | 
						|
    {
 | 
						|
      if (keys == null)
 | 
						|
        keys = new DescendingSet<DK>(map.navigableKeySet());
 | 
						|
      return keys;
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean isEmpty()
 | 
						|
    {
 | 
						|
      return map.isEmpty();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> lastEntry()
 | 
						|
    {
 | 
						|
      return map.firstEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public DK lastKey()
 | 
						|
    {
 | 
						|
      return map.firstKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> lowerEntry(DK key)
 | 
						|
    {
 | 
						|
      return map.higherEntry(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public DK lowerKey(DK key)
 | 
						|
    {
 | 
						|
      return map.higherKey(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<DK> navigableKeySet()
 | 
						|
    {
 | 
						|
      if (nKeys == null)
 | 
						|
        nKeys = new DescendingSet<DK>(map.navigableKeySet());
 | 
						|
      return nKeys;
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> pollFirstEntry()
 | 
						|
    {
 | 
						|
      return pollLastEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<DK,DV> pollLastEntry()
 | 
						|
    {
 | 
						|
      return pollFirstEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public DV put(DK key, DV value)
 | 
						|
    {
 | 
						|
      return map.put(key, value);
 | 
						|
    }
 | 
						|
 | 
						|
    public void putAll(Map<? extends DK, ? extends DV> m)
 | 
						|
    {
 | 
						|
      map.putAll(m);
 | 
						|
    }
 | 
						|
 | 
						|
    public DV remove(Object key)
 | 
						|
    {
 | 
						|
      return map.remove(key);
 | 
						|
    }
 | 
						|
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      return map.size();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<DK,DV> subMap(DK fromKey, DK toKey)
 | 
						|
    {
 | 
						|
      return subMap(fromKey, true, toKey, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<DK,DV> subMap(DK fromKey, boolean fromInclusive,
 | 
						|
                                      DK toKey, boolean toInclusive)
 | 
						|
    {
 | 
						|
      return new DescendingMap(map.subMap(fromKey, fromInclusive,
 | 
						|
                                          toKey, toInclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedMap<DK,DV> tailMap(DK fromKey)
 | 
						|
    {
 | 
						|
      return tailMap(fromKey, true);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableMap<DK,DV> tailMap(DK fromKey, boolean inclusive)
 | 
						|
    {
 | 
						|
      return new DescendingMap(map.headMap(fromKey, inclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public String toString()
 | 
						|
    {
 | 
						|
      CPStringBuilder r = new CPStringBuilder("{");
 | 
						|
      final Iterator<Entry<DK,DV>> it = entrySet().iterator();
 | 
						|
      while (it.hasNext())
 | 
						|
      {
 | 
						|
        final Entry<DK,DV> e = it.next();
 | 
						|
        r.append(e.getKey());
 | 
						|
        r.append('=');
 | 
						|
        r.append(e.getValue());
 | 
						|
        r.append(", ");
 | 
						|
      }
 | 
						|
      r.replace(r.length() - 2, r.length(), "}");
 | 
						|
      return r.toString();
 | 
						|
    }
 | 
						|
 | 
						|
    public Collection<DV> values()
 | 
						|
    {
 | 
						|
      if (values == null)
 | 
						|
        // Create an AbstractCollection with custom implementations of those
 | 
						|
        // methods that can be overriden easily and efficiently.
 | 
						|
        values = new AbstractCollection()
 | 
						|
          {
 | 
						|
            public int size()
 | 
						|
            {
 | 
						|
              return DescendingMap.this.size();
 | 
						|
            }
 | 
						|
 | 
						|
            public Iterator<DV> iterator()
 | 
						|
            {
 | 
						|
              return new Iterator<DV>()
 | 
						|
                {
 | 
						|
                  /** The last Entry returned by a next() call. */
 | 
						|
                  private Entry<DK,DV> last;
 | 
						|
 | 
						|
                  /** The next entry that should be returned by next(). */
 | 
						|
                  private Entry<DK,DV> next = firstEntry();
 | 
						|
 | 
						|
                  public boolean hasNext()
 | 
						|
                  {
 | 
						|
                    return next != null;
 | 
						|
                  }
 | 
						|
 | 
						|
                  public DV next()
 | 
						|
                  {
 | 
						|
                    if (next == null)
 | 
						|
                      throw new NoSuchElementException();
 | 
						|
                    last = next;
 | 
						|
                    next = higherEntry(last.getKey());
 | 
						|
 | 
						|
                    return last.getValue();
 | 
						|
                  }
 | 
						|
 | 
						|
                  public void remove()
 | 
						|
                  {
 | 
						|
                    if (last == null)
 | 
						|
                      throw new IllegalStateException();
 | 
						|
 | 
						|
                    DescendingMap.this.remove(last.getKey());
 | 
						|
                    last = null;
 | 
						|
                  }
 | 
						|
                };
 | 
						|
            }
 | 
						|
 | 
						|
            public void clear()
 | 
						|
            {
 | 
						|
              DescendingMap.this.clear();
 | 
						|
            }
 | 
						|
          };
 | 
						|
      return values;
 | 
						|
    }
 | 
						|
 | 
						|
  } // class DescendingMap
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #keySet()}.
 | 
						|
   */
 | 
						|
  private class KeySet
 | 
						|
    extends AbstractSet<K>
 | 
						|
  {
 | 
						|
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      return size;
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<K> iterator()
 | 
						|
    {
 | 
						|
      return new TreeIterator(KEYS);
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      TreeMap.this.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean contains(Object o)
 | 
						|
    {
 | 
						|
      return containsKey(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean remove(Object key)
 | 
						|
    {
 | 
						|
      Node<K,V> n = getNode((K) key);
 | 
						|
      if (n == nil)
 | 
						|
        return false;
 | 
						|
      removeNode(n);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } // class KeySet
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #navigableKeySet()}.
 | 
						|
   *
 | 
						|
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | 
						|
   */
 | 
						|
  private final class NavigableKeySet
 | 
						|
    extends KeySet
 | 
						|
    implements NavigableSet<K>
 | 
						|
  {
 | 
						|
 | 
						|
    public K ceiling(K k)
 | 
						|
    {
 | 
						|
      return ceilingKey(k);
 | 
						|
    }
 | 
						|
 | 
						|
    public Comparator<? super K> comparator()
 | 
						|
    {
 | 
						|
      return comparator;
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<K> descendingIterator()
 | 
						|
    {
 | 
						|
      return descendingSet().iterator();
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> descendingSet()
 | 
						|
    {
 | 
						|
      return new DescendingSet<K>(this);
 | 
						|
    }
 | 
						|
 | 
						|
    public K first()
 | 
						|
    {
 | 
						|
      return firstKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public K floor(K k)
 | 
						|
    {
 | 
						|
      return floorKey(k);
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<K> headSet(K to)
 | 
						|
    {
 | 
						|
      return headSet(to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> headSet(K to, boolean inclusive)
 | 
						|
    {
 | 
						|
      return headMap(to, inclusive).navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public K higher(K k)
 | 
						|
    {
 | 
						|
      return higherKey(k);
 | 
						|
    }
 | 
						|
 | 
						|
    public K last()
 | 
						|
    {
 | 
						|
      return lastKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public K lower(K k)
 | 
						|
    {
 | 
						|
      return lowerKey(k);
 | 
						|
    }
 | 
						|
 | 
						|
    public K pollFirst()
 | 
						|
    {
 | 
						|
      return pollFirstEntry().getKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public K pollLast()
 | 
						|
    {
 | 
						|
      return pollLastEntry().getKey();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<K> subSet(K from, K to)
 | 
						|
    {
 | 
						|
      return subSet(from, true, to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> subSet(K from, boolean fromInclusive,
 | 
						|
                                  K to, boolean toInclusive)
 | 
						|
    {
 | 
						|
      return subMap(from, fromInclusive,
 | 
						|
                    to, toInclusive).navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<K> tailSet(K from)
 | 
						|
    {
 | 
						|
      return tailSet(from, true);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<K> tailSet(K from, boolean inclusive)
 | 
						|
    {
 | 
						|
      return tailMap(from, inclusive).navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  } // class NavigableKeySet
 | 
						|
 | 
						|
  /**
 | 
						|
   * Implementation of {@link #descendingSet()} and associated
 | 
						|
   * derivatives. This class provides a view of the
 | 
						|
   * original backing set in reverse order, and throws
 | 
						|
   * {@link IllegalArgumentException} for attempts to
 | 
						|
   * access beyond that range.
 | 
						|
   *
 | 
						|
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | 
						|
   */
 | 
						|
  private static final class DescendingSet<D>
 | 
						|
    implements NavigableSet<D>
 | 
						|
  {
 | 
						|
 | 
						|
    /**
 | 
						|
     * The backing {@link NavigableSet}.
 | 
						|
     */
 | 
						|
    private NavigableSet<D> set;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Create a {@link DescendingSet} around the specified
 | 
						|
     * set.
 | 
						|
     *
 | 
						|
     * @param map the set to wrap.
 | 
						|
     */
 | 
						|
    public DescendingSet(NavigableSet<D> set)
 | 
						|
    {
 | 
						|
      this.set = set;
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean add(D e)
 | 
						|
    {
 | 
						|
      return set.add(e);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean addAll(Collection<? extends D> c)
 | 
						|
    {
 | 
						|
      return set.addAll(c);
 | 
						|
    }
 | 
						|
 | 
						|
    public D ceiling(D e)
 | 
						|
    {
 | 
						|
      return set.floor(e);
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      set.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    public Comparator<? super D> comparator()
 | 
						|
    {
 | 
						|
      return Collections.reverseOrder(set.comparator());
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean contains(Object o)
 | 
						|
    {
 | 
						|
      return set.contains(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean containsAll(Collection<?> c)
 | 
						|
    {
 | 
						|
      return set.containsAll(c);
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<D> descendingIterator()
 | 
						|
    {
 | 
						|
      return descendingSet().iterator();
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<D> descendingSet()
 | 
						|
    {
 | 
						|
      return set;
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean equals(Object o)
 | 
						|
    {
 | 
						|
      return set.equals(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public D first()
 | 
						|
    {
 | 
						|
      return set.last();
 | 
						|
    }
 | 
						|
 | 
						|
    public D floor(D e)
 | 
						|
    {
 | 
						|
      return set.ceiling(e);
 | 
						|
    }
 | 
						|
 | 
						|
    public int hashCode()
 | 
						|
    {
 | 
						|
      return set.hashCode();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<D> headSet(D to)
 | 
						|
    {
 | 
						|
      return headSet(to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<D> headSet(D to, boolean inclusive)
 | 
						|
    {
 | 
						|
      return new DescendingSet(set.tailSet(to, inclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public D higher(D e)
 | 
						|
    {
 | 
						|
      return set.lower(e);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean isEmpty()
 | 
						|
    {
 | 
						|
      return set.isEmpty();
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<D> iterator()
 | 
						|
    {
 | 
						|
      return new Iterator<D>()
 | 
						|
        {
 | 
						|
 | 
						|
          /** The last element returned by a next() call. */
 | 
						|
          private D last;
 | 
						|
 | 
						|
          /** The next element that should be returned by next(). */
 | 
						|
          private D next = first();
 | 
						|
 | 
						|
          public boolean hasNext()
 | 
						|
          {
 | 
						|
            return next != null;
 | 
						|
          }
 | 
						|
 | 
						|
          public D next()
 | 
						|
          {
 | 
						|
            if (next == null)
 | 
						|
              throw new NoSuchElementException();
 | 
						|
            last = next;
 | 
						|
            next = higher(last);
 | 
						|
 | 
						|
            return last;
 | 
						|
          }
 | 
						|
 | 
						|
          public void remove()
 | 
						|
          {
 | 
						|
            if (last == null)
 | 
						|
              throw new IllegalStateException();
 | 
						|
 | 
						|
            DescendingSet.this.remove(last);
 | 
						|
            last = null;
 | 
						|
          }
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
    public D last()
 | 
						|
    {
 | 
						|
      return set.first();
 | 
						|
    }
 | 
						|
 | 
						|
    public D lower(D e)
 | 
						|
    {
 | 
						|
      return set.higher(e);
 | 
						|
    }
 | 
						|
 | 
						|
    public D pollFirst()
 | 
						|
    {
 | 
						|
      return set.pollLast();
 | 
						|
    }
 | 
						|
 | 
						|
    public D pollLast()
 | 
						|
    {
 | 
						|
      return set.pollFirst();
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean remove(Object o)
 | 
						|
    {
 | 
						|
      return set.remove(o);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean removeAll(Collection<?> c)
 | 
						|
    {
 | 
						|
      return set.removeAll(c);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean retainAll(Collection<?> c)
 | 
						|
    {
 | 
						|
      return set.retainAll(c);
 | 
						|
    }
 | 
						|
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      return set.size();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<D> subSet(D from, D to)
 | 
						|
    {
 | 
						|
      return subSet(from, true, to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<D> subSet(D from, boolean fromInclusive,
 | 
						|
                                  D to, boolean toInclusive)
 | 
						|
    {
 | 
						|
      return new DescendingSet(set.subSet(from, fromInclusive,
 | 
						|
                                          to, toInclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<D> tailSet(D from)
 | 
						|
    {
 | 
						|
      return tailSet(from, true);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<D> tailSet(D from, boolean inclusive)
 | 
						|
    {
 | 
						|
      return new DescendingSet(set.headSet(from, inclusive));
 | 
						|
    }
 | 
						|
 | 
						|
    public Object[] toArray()
 | 
						|
    {
 | 
						|
      D[] array = (D[]) set.toArray();
 | 
						|
      Arrays.sort(array, comparator());
 | 
						|
      return array;
 | 
						|
    }
 | 
						|
 | 
						|
    public <T> T[] toArray(T[] a)
 | 
						|
    {
 | 
						|
      T[] array = set.toArray(a);
 | 
						|
      Arrays.sort(array, (Comparator<? super T>) comparator());
 | 
						|
      return array;
 | 
						|
    }
 | 
						|
 | 
						|
    public String toString()
 | 
						|
    {
 | 
						|
      CPStringBuilder r = new CPStringBuilder("[");
 | 
						|
      final Iterator<D> it = iterator();
 | 
						|
      while (it.hasNext())
 | 
						|
      {
 | 
						|
        final D o = it.next();
 | 
						|
        if (o == this)
 | 
						|
          r.append("<this>");
 | 
						|
        else
 | 
						|
          r.append(o);
 | 
						|
        r.append(", ");
 | 
						|
      }
 | 
						|
      r.replace(r.length() - 2, r.length(), "]");
 | 
						|
      return r.toString();
 | 
						|
    }
 | 
						|
 | 
						|
  } // class DescendingSet
 | 
						|
 | 
						|
  private class EntrySet
 | 
						|
    extends AbstractSet<Entry<K,V>>
 | 
						|
  {
 | 
						|
    public int size()
 | 
						|
    {
 | 
						|
      return size;
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<Map.Entry<K,V>> iterator()
 | 
						|
    {
 | 
						|
      return new TreeIterator(ENTRIES);
 | 
						|
    }
 | 
						|
 | 
						|
    public void clear()
 | 
						|
    {
 | 
						|
      TreeMap.this.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean contains(Object o)
 | 
						|
    {
 | 
						|
      if (! (o instanceof Map.Entry))
 | 
						|
        return false;
 | 
						|
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | 
						|
      Node<K,V> n = getNode(me.getKey());
 | 
						|
      return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | 
						|
    }
 | 
						|
 | 
						|
    public boolean remove(Object o)
 | 
						|
    {
 | 
						|
      if (! (o instanceof Map.Entry))
 | 
						|
        return false;
 | 
						|
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | 
						|
      Node<K,V> n = getNode(me.getKey());
 | 
						|
      if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | 
						|
        {
 | 
						|
          removeNode(n);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  private final class NavigableEntrySet
 | 
						|
    extends EntrySet
 | 
						|
    implements NavigableSet<Entry<K,V>>
 | 
						|
  {
 | 
						|
 | 
						|
    public Entry<K,V> ceiling(Entry<K,V> e)
 | 
						|
    {
 | 
						|
      return ceilingEntry(e.getKey());
 | 
						|
    }
 | 
						|
 | 
						|
    public Comparator<? super Entry<K,V>> comparator()
 | 
						|
    {
 | 
						|
      return new Comparator<Entry<K,V>>()
 | 
						|
        {
 | 
						|
          public int compare(Entry<K,V> t1, Entry<K,V> t2)
 | 
						|
          {
 | 
						|
            return comparator.compare(t1.getKey(), t2.getKey());
 | 
						|
          }
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
    public Iterator<Entry<K,V>> descendingIterator()
 | 
						|
    {
 | 
						|
      return descendingSet().iterator();
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<Entry<K,V>> descendingSet()
 | 
						|
    {
 | 
						|
      return new DescendingSet(this);
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> first()
 | 
						|
    {
 | 
						|
      return firstEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> floor(Entry<K,V> e)
 | 
						|
    {
 | 
						|
      return floorEntry(e.getKey());
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
 | 
						|
    {
 | 
						|
      return headSet(to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
 | 
						|
    {
 | 
						|
      return (NavigableSet<Entry<K,V>>) headMap(to.getKey(), inclusive).entrySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> higher(Entry<K,V> e)
 | 
						|
    {
 | 
						|
      return higherEntry(e.getKey());
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> last()
 | 
						|
    {
 | 
						|
      return lastEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> lower(Entry<K,V> e)
 | 
						|
    {
 | 
						|
      return lowerEntry(e.getKey());
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> pollFirst()
 | 
						|
    {
 | 
						|
      return pollFirstEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public Entry<K,V> pollLast()
 | 
						|
    {
 | 
						|
      return pollLastEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
 | 
						|
    {
 | 
						|
      return subSet(from, true, to, false);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
 | 
						|
                                           Entry<K,V> to, boolean toInclusive)
 | 
						|
    {
 | 
						|
      return (NavigableSet<Entry<K,V>>) subMap(from.getKey(), fromInclusive,
 | 
						|
                                               to.getKey(), toInclusive).entrySet();
 | 
						|
    }
 | 
						|
 | 
						|
    public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
 | 
						|
    {
 | 
						|
      return tailSet(from, true);
 | 
						|
    }
 | 
						|
 | 
						|
    public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
 | 
						|
    {
 | 
						|
      return (NavigableSet<Entry<K,V>>) tailMap(from.getKey(), inclusive).navigableKeySet();
 | 
						|
    }
 | 
						|
 | 
						|
  } // class NavigableEntrySet
 | 
						|
 | 
						|
} // class TreeMap
 |