mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			210 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the NORM2 intrinsic
 | 
						|
   Copyright (C) 2010-2016 Free Software Foundation, Inc.
 | 
						|
   Contributed by Tobias Burnus  <burnus@net-b.de>
 | 
						|
 | 
						|
This file is part of the GNU Fortran runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <math.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_REAL_4) && defined (HAVE_SQRTF) && defined (HAVE_FABSF)
 | 
						|
 | 
						|
#define MATHFUNC(funcname) funcname ## f
 | 
						|
 | 
						|
 | 
						|
extern void norm2_r4 (gfc_array_r4 * const restrict, 
 | 
						|
	gfc_array_r4 * const restrict, const index_type * const restrict);
 | 
						|
export_proto(norm2_r4);
 | 
						|
 | 
						|
void
 | 
						|
norm2_r4 (gfc_array_r4 * const restrict retarray, 
 | 
						|
	gfc_array_r4 * const restrict array, 
 | 
						|
	const index_type * const restrict pdim)
 | 
						|
{
 | 
						|
  index_type count[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type extent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type dstride[GFC_MAX_DIMENSIONS];
 | 
						|
  const GFC_REAL_4 * restrict base;
 | 
						|
  GFC_REAL_4 * restrict dest;
 | 
						|
  index_type rank;
 | 
						|
  index_type n;
 | 
						|
  index_type len;
 | 
						|
  index_type delta;
 | 
						|
  index_type dim;
 | 
						|
  int continue_loop;
 | 
						|
 | 
						|
  /* Make dim zero based to avoid confusion.  */
 | 
						|
  dim = (*pdim) - 1;
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | 
						|
 | 
						|
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | 
						|
  if (len < 0)
 | 
						|
    len = 0;
 | 
						|
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 | 
						|
 | 
						|
  for (n = 0; n < dim; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | 
						|
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | 
						|
 | 
						|
      if (extent[n] < 0)
 | 
						|
	extent[n] = 0;
 | 
						|
    }
 | 
						|
  for (n = dim; n < rank; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
 | 
						|
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 | 
						|
 | 
						|
      if (extent[n] < 0)
 | 
						|
	extent[n] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      size_t alloc_size, str;
 | 
						|
 | 
						|
      for (n = 0; n < rank; n++)
 | 
						|
	{
 | 
						|
	  if (n == 0)
 | 
						|
	    str = 1;
 | 
						|
	  else
 | 
						|
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | 
						|
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
      retarray->offset = 0;
 | 
						|
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | 
						|
 | 
						|
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | 
						|
 | 
						|
      retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_4));
 | 
						|
      if (alloc_size == 0)
 | 
						|
	{
 | 
						|
	  /* Make sure we have a zero-sized array.  */
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | 
						|
	  return;
 | 
						|
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | 
						|
	runtime_error ("rank of return array incorrect in"
 | 
						|
		       " NORM intrinsic: is %ld, should be %ld",
 | 
						|
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
 | 
						|
		       (long int) rank);
 | 
						|
 | 
						|
      if (unlikely (compile_options.bounds_check))
 | 
						|
	bounds_ifunction_return ((array_t *) retarray, extent,
 | 
						|
				 "return value", "NORM");
 | 
						|
    }
 | 
						|
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    {
 | 
						|
      count[n] = 0;
 | 
						|
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | 
						|
      if (extent[n] <= 0)
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
  base = array->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  continue_loop = 1;
 | 
						|
  while (continue_loop)
 | 
						|
    {
 | 
						|
      const GFC_REAL_4 * restrict src;
 | 
						|
      GFC_REAL_4 result;
 | 
						|
      src = base;
 | 
						|
      {
 | 
						|
 | 
						|
	GFC_REAL_4 scale;
 | 
						|
	result = 0;
 | 
						|
	scale = 1;
 | 
						|
	if (len <= 0)
 | 
						|
	  *dest = 0;
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    for (n = 0; n < len; n++, src += delta)
 | 
						|
	      {
 | 
						|
 | 
						|
	  if (*src != 0)
 | 
						|
	    {
 | 
						|
	      GFC_REAL_4 absX, val;
 | 
						|
	      absX = MATHFUNC(fabs) (*src);
 | 
						|
	      if (scale < absX)
 | 
						|
		{
 | 
						|
		  val = scale / absX;
 | 
						|
		  result = 1 + result * val * val;
 | 
						|
		  scale = absX;
 | 
						|
		}
 | 
						|
	      else
 | 
						|
		{
 | 
						|
		  val = absX / scale;
 | 
						|
		  result += val * val;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	      }
 | 
						|
	    result = scale * MATHFUNC(sqrt) (result);
 | 
						|
	    *dest = result;
 | 
						|
	  }
 | 
						|
      }
 | 
						|
      /* Advance to the next element.  */
 | 
						|
      count[0]++;
 | 
						|
      base += sstride[0];
 | 
						|
      dest += dstride[0];
 | 
						|
      n = 0;
 | 
						|
      while (count[n] == extent[n])
 | 
						|
	{
 | 
						|
	  /* When we get to the end of a dimension, reset it and increment
 | 
						|
	     the next dimension.  */
 | 
						|
	  count[n] = 0;
 | 
						|
	  /* We could precalculate these products, but this is a less
 | 
						|
	     frequently used path so probably not worth it.  */
 | 
						|
	  base -= sstride[n] * extent[n];
 | 
						|
	  dest -= dstride[n] * extent[n];
 | 
						|
	  n++;
 | 
						|
	  if (n == rank)
 | 
						|
	    {
 | 
						|
	      /* Break out of the look.  */
 | 
						|
	      continue_loop = 0;
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      count[n]++;
 | 
						|
	      base += sstride[n];
 | 
						|
	      dest += dstride[n];
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |