mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			634 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			634 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* Float.java -- object wrapper for float
 | |
|    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
 | |
|    Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.lang;
 | |
| 
 | |
| import gnu.java.lang.CPStringBuilder;
 | |
| 
 | |
| /**
 | |
|  * Instances of class <code>Float</code> represent primitive
 | |
|  * <code>float</code> values.
 | |
|  *
 | |
|  * Additionally, this class provides various helper functions and variables
 | |
|  * related to floats.
 | |
|  *
 | |
|  * @author Paul Fisher
 | |
|  * @author Andrew Haley (aph@cygnus.com)
 | |
|  * @author Eric Blake (ebb9@email.byu.edu)
 | |
|  * @author Tom Tromey (tromey@redhat.com)
 | |
|  * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | |
|  * @since 1.0
 | |
|  * @status partly updated to 1.5
 | |
|  */
 | |
| public final class Float extends Number implements Comparable<Float>
 | |
| {
 | |
|   /**
 | |
|    * Compatible with JDK 1.0+.
 | |
|    */
 | |
|   private static final long serialVersionUID = -2671257302660747028L;
 | |
| 
 | |
|   /**
 | |
|    * The maximum positive value a <code>double</code> may represent
 | |
|    * is 3.4028235e+38f.
 | |
|    */
 | |
|   public static final float MAX_VALUE = 3.4028235e+38f;
 | |
| 
 | |
|   /**
 | |
|    * The minimum positive value a <code>float</code> may represent
 | |
|    * is 1.4e-45.
 | |
|    */
 | |
|   public static final float MIN_VALUE = 1.4e-45f;
 | |
| 
 | |
|   /**
 | |
|    * The value of a float representation -1.0/0.0, negative infinity.
 | |
|    */
 | |
|   public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
 | |
| 
 | |
|   /**
 | |
|    * The value of a float representation 1.0/0.0, positive infinity.
 | |
|    */
 | |
|   public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
 | |
| 
 | |
|   /**
 | |
|    * All IEEE 754 values of NaN have the same value in Java.
 | |
|    */
 | |
|   public static final float NaN = 0.0f / 0.0f;
 | |
| 
 | |
|   /**
 | |
|    * The primitive type <code>float</code> is represented by this
 | |
|    * <code>Class</code> object.
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
 | |
| 
 | |
|   /**
 | |
|    * The number of bits needed to represent a <code>float</code>.
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static final int SIZE = 32;
 | |
| 
 | |
|   /**
 | |
|    * Cache representation of 0
 | |
|    */
 | |
|   private static final Float ZERO = new Float(0.0f);
 | |
| 
 | |
|   /**
 | |
|    * Cache representation of 1
 | |
|    */
 | |
|   private static final Float ONE = new Float(1.0f);
 | |
| 
 | |
|   /**
 | |
|    * The immutable value of this Float.
 | |
|    *
 | |
|    * @serial the wrapped float
 | |
|    */
 | |
|   private final float value;
 | |
| 
 | |
|   /**
 | |
|    * Create a <code>Float</code> from the primitive <code>float</code>
 | |
|    * specified.
 | |
|    *
 | |
|    * @param value the <code>float</code> argument
 | |
|    */
 | |
|   public Float(float value)
 | |
|   {
 | |
|     this.value = value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a <code>Float</code> from the primitive <code>double</code>
 | |
|    * specified.
 | |
|    *
 | |
|    * @param value the <code>double</code> argument
 | |
|    */
 | |
|   public Float(double value)
 | |
|   {
 | |
|     this.value = (float) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a <code>Float</code> from the specified <code>String</code>.
 | |
|    * This method calls <code>Float.parseFloat()</code>.
 | |
|    *
 | |
|    * @param s the <code>String</code> to convert
 | |
|    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | |
|    *         <code>float</code>
 | |
|    * @throws NullPointerException if <code>s</code> is null
 | |
|    * @see #parseFloat(String)
 | |
|    */
 | |
|   public Float(String s)
 | |
|   {
 | |
|     value = parseFloat(s);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the <code>float</code> to a <code>String</code>.
 | |
|    * Floating-point string representation is fairly complex: here is a
 | |
|    * rundown of the possible values.  "<code>[-]</code>" indicates that a
 | |
|    * negative sign will be printed if the value (or exponent) is negative.
 | |
|    * "<code><number></code>" means a string of digits ('0' to '9').
 | |
|    * "<code><digit></code>" means a single digit ('0' to '9').<br>
 | |
|    *
 | |
|    * <table border=1>
 | |
|    * <tr><th>Value of Float</th><th>String Representation</th></tr>
 | |
|    * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
 | |
|    * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
 | |
|    *     <td><code>[-]number.number</code></td></tr>
 | |
|    * <tr><td>Other numeric value</td>
 | |
|    *     <td><code>[-]<digit>.<number>
 | |
|    *          E[-]<number></code></td></tr>
 | |
|    * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
 | |
|    * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
 | |
|    * </table>
 | |
|    *
 | |
|    * Yes, negative zero <em>is</em> a possible value.  Note that there is
 | |
|    * <em>always</em> a <code>.</code> and at least one digit printed after
 | |
|    * it: even if the number is 3, it will be printed as <code>3.0</code>.
 | |
|    * After the ".", all digits will be printed except trailing zeros. The
 | |
|    * result is rounded to the shortest decimal number which will parse back
 | |
|    * to the same float.
 | |
|    *
 | |
|    * <p>To create other output formats, use {@link java.text.NumberFormat}.
 | |
|    *
 | |
|    * @XXX specify where we are not in accord with the spec.
 | |
|    *
 | |
|    * @param f the <code>float</code> to convert
 | |
|    * @return the <code>String</code> representing the <code>float</code>
 | |
|    */
 | |
|   public static String toString(float f)
 | |
|   {
 | |
|     return VMFloat.toString(f);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert a float value to a hexadecimal string.  This converts as
 | |
|    * follows:
 | |
|    * <ul>
 | |
|    * <li> A NaN value is converted to the string "NaN".
 | |
|    * <li> Positive infinity is converted to the string "Infinity".
 | |
|    * <li> Negative infinity is converted to the string "-Infinity".
 | |
|    * <li> For all other values, the first character of the result is '-'
 | |
|    * if the value is negative.  This is followed by '0x1.' if the
 | |
|    * value is normal, and '0x0.' if the value is denormal.  This is
 | |
|    * then followed by a (lower-case) hexadecimal representation of the
 | |
|    * mantissa, with leading zeros as required for denormal values.
 | |
|    * The next character is a 'p', and this is followed by a decimal
 | |
|    * representation of the unbiased exponent.
 | |
|    * </ul>
 | |
|    * @param f the float value
 | |
|    * @return the hexadecimal string representation
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static String toHexString(float f)
 | |
|   {
 | |
|     if (isNaN(f))
 | |
|       return "NaN";
 | |
|     if (isInfinite(f))
 | |
|       return f < 0 ? "-Infinity" : "Infinity";
 | |
| 
 | |
|     int bits = floatToIntBits(f);
 | |
|     CPStringBuilder result = new CPStringBuilder();
 | |
| 
 | |
|     if (bits < 0)
 | |
|       result.append('-');
 | |
|     result.append("0x");
 | |
| 
 | |
|     final int mantissaBits = 23;
 | |
|     final int exponentBits = 8;
 | |
|     int mantMask = (1 << mantissaBits) - 1;
 | |
|     int mantissa = bits & mantMask;
 | |
|     int expMask = (1 << exponentBits) - 1;
 | |
|     int exponent = (bits >>> mantissaBits) & expMask;
 | |
| 
 | |
|     result.append(exponent == 0 ? '0' : '1');
 | |
|     result.append('.');
 | |
|     // For Float only, we have to adjust the mantissa.
 | |
|     mantissa <<= 1;
 | |
|     result.append(Integer.toHexString(mantissa));
 | |
|     if (exponent == 0 && mantissa != 0)
 | |
|       {
 | |
|         // Treat denormal specially by inserting '0's to make
 | |
|         // the length come out right.  The constants here are
 | |
|         // to account for things like the '0x'.
 | |
|         int offset = 4 + ((bits < 0) ? 1 : 0);
 | |
|         // The silly +3 is here to keep the code the same between
 | |
|         // the Float and Double cases.  In Float the value is
 | |
|         // not a multiple of 4.
 | |
|         int desiredLength = offset + (mantissaBits + 3) / 4;
 | |
|         while (result.length() < desiredLength)
 | |
|           result.insert(offset, '0');
 | |
|       }
 | |
|     result.append('p');
 | |
|     if (exponent == 0 && mantissa == 0)
 | |
|       {
 | |
|         // Zero, so do nothing special.
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // Apply bias.
 | |
|         boolean denormal = exponent == 0;
 | |
|         exponent -= (1 << (exponentBits - 1)) - 1;
 | |
|         // Handle denormal.
 | |
|         if (denormal)
 | |
|           ++exponent;
 | |
|       }
 | |
| 
 | |
|     result.append(Integer.toString(exponent));
 | |
|     return result.toString();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>Float</code> object using the <code>String</code>.
 | |
|    *
 | |
|    * @param s the <code>String</code> to convert
 | |
|    * @return the new <code>Float</code>
 | |
|    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 | |
|    *         <code>float</code>
 | |
|    * @throws NullPointerException if <code>s</code> is null
 | |
|    * @see #parseFloat(String)
 | |
|    */
 | |
|   public static Float valueOf(String s)
 | |
|   {
 | |
|     return valueOf(parseFloat(s));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a <code>Float</code> object wrapping the value.
 | |
|    * In contrast to the <code>Float</code> constructor, this method
 | |
|    * may cache some values.  It is used by boxing conversion.
 | |
|    *
 | |
|    * @param val the value to wrap
 | |
|    * @return the <code>Float</code>
 | |
|    * @since 1.5
 | |
|    */
 | |
|   public static Float valueOf(float val)
 | |
|   {
 | |
|     if ((val == 0.0) && (floatToRawIntBits(val) == 0))
 | |
|       return ZERO;
 | |
|     else if (val == 1.0)
 | |
|       return ONE;
 | |
|     else
 | |
|       return new Float(val);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Parse the specified <code>String</code> as a <code>float</code>. The
 | |
|    * extended BNF grammar is as follows:<br>
 | |
|    * <pre>
 | |
|    * <em>DecodableString</em>:
 | |
|    *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
 | |
|    *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
 | |
|    *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
 | |
|    *              [ <code>f</code> | <code>F</code> | <code>d</code>
 | |
|    *                | <code>D</code>] )
 | |
|    * <em>FloatingPoint</em>:
 | |
|    *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
 | |
|    *              [ <em>Exponent</em> ] )
 | |
|    *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
 | |
|    * <em>Exponent</em>:
 | |
|    *      ( ( <code>e</code> | <code>E</code> )
 | |
|    *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
 | |
|    * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
 | |
|    * </pre>
 | |
|    *
 | |
|    * <p>NaN and infinity are special cases, to allow parsing of the output
 | |
|    * of toString.  Otherwise, the result is determined by calculating
 | |
|    * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
 | |
|    * to the nearest float. Remember that many numbers cannot be precisely
 | |
|    * represented in floating point. In case of overflow, infinity is used,
 | |
|    * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
 | |
|    * this does not accept Unicode digits outside the ASCII range.
 | |
|    *
 | |
|    * <p>If an unexpected character is found in the <code>String</code>, a
 | |
|    * <code>NumberFormatException</code> will be thrown.  Leading and trailing
 | |
|    * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
 | |
|    * internal to the actual number are not allowed.
 | |
|    *
 | |
|    * <p>To parse numbers according to another format, consider using
 | |
|    * {@link java.text.NumberFormat}.
 | |
|    *
 | |
|    * @XXX specify where/how we are not in accord with the spec.
 | |
|    *
 | |
|    * @param str the <code>String</code> to convert
 | |
|    * @return the <code>float</code> value of <code>s</code>
 | |
|    * @throws NumberFormatException if <code>str</code> cannot be parsed as a
 | |
|    *         <code>float</code>
 | |
|    * @throws NullPointerException if <code>str</code> is null
 | |
|    * @see #MIN_VALUE
 | |
|    * @see #MAX_VALUE
 | |
|    * @see #POSITIVE_INFINITY
 | |
|    * @see #NEGATIVE_INFINITY
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public static float parseFloat(String str)
 | |
|   {
 | |
|     return VMFloat.parseFloat(str);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the <code>float</code> has the same
 | |
|    * value as <code>NaN</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @param v the <code>float</code> to compare
 | |
|    * @return whether the argument is <code>NaN</code>
 | |
|    */
 | |
|   public static boolean isNaN(float v)
 | |
|   {
 | |
|     // This works since NaN != NaN is the only reflexive inequality
 | |
|     // comparison which returns true.
 | |
|     return v != v;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the <code>float</code> has a value
 | |
|    * equal to either <code>NEGATIVE_INFINITY</code> or
 | |
|    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @param v the <code>float</code> to compare
 | |
|    * @return whether the argument is (-/+) infinity
 | |
|    */
 | |
|   public static boolean isInfinite(float v)
 | |
|   {
 | |
|     return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the value of this <code>Float</code>
 | |
|    * is the same as <code>NaN</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @return whether this <code>Float</code> is <code>NaN</code>
 | |
|    */
 | |
|   public boolean isNaN()
 | |
|   {
 | |
|     return isNaN(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return <code>true</code> if the value of this <code>Float</code>
 | |
|    * is the same as <code>NEGATIVE_INFINITY</code> or
 | |
|    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 | |
|    *
 | |
|    * @return whether this <code>Float</code> is (-/+) infinity
 | |
|    */
 | |
|   public boolean isInfinite()
 | |
|   {
 | |
|     return isInfinite(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the <code>float</code> value of this <code>Float</code>
 | |
|    * to a <code>String</code>.  This method calls
 | |
|    * <code>Float.toString(float)</code> to do its dirty work.
 | |
|    *
 | |
|    * @return the <code>String</code> representation
 | |
|    * @see #toString(float)
 | |
|    */
 | |
|   public String toString()
 | |
|   {
 | |
|     return toString(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Float</code> as a <code>byte</code>.
 | |
|    *
 | |
|    * @return the byte value
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public byte byteValue()
 | |
|   {
 | |
|     return (byte) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Float</code> as a <code>short</code>.
 | |
|    *
 | |
|    * @return the short value
 | |
|    * @since 1.1
 | |
|    */
 | |
|   public short shortValue()
 | |
|   {
 | |
|     return (short) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Integer</code> as an <code>int</code>.
 | |
|    *
 | |
|    * @return the int value
 | |
|    */
 | |
|   public int intValue()
 | |
|   {
 | |
|     return (int) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Integer</code> as a <code>long</code>.
 | |
|    *
 | |
|    * @return the long value
 | |
|    */
 | |
|   public long longValue()
 | |
|   {
 | |
|     return (long) value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Float</code>.
 | |
|    *
 | |
|    * @return the float value
 | |
|    */
 | |
|   public float floatValue()
 | |
|   {
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value of this <code>Float</code> as a <code>double</code>
 | |
|    *
 | |
|    * @return the double value
 | |
|    */
 | |
|   public double doubleValue()
 | |
|   {
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return a hashcode representing this Object. <code>Float</code>'s hash
 | |
|    * code is calculated by calling <code>floatToIntBits(floatValue())</code>.
 | |
|    *
 | |
|    * @return this Object's hash code
 | |
|    * @see #floatToIntBits(float)
 | |
|    */
 | |
|   public int hashCode()
 | |
|   {
 | |
|     return floatToIntBits(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns <code>true</code> if <code>obj</code> is an instance of
 | |
|    * <code>Float</code> and represents the same float value. Unlike comparing
 | |
|    * two floats with <code>==</code>, this treats two instances of
 | |
|    * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
 | |
|    * <code>-0.0</code> as unequal.
 | |
|    *
 | |
|    * <p>Note that <code>f1.equals(f2)</code> is identical to
 | |
|    * <code>floatToIntBits(f1.floatValue()) ==
 | |
|    *    floatToIntBits(f2.floatValue())</code>.
 | |
|    *
 | |
|    * @param obj the object to compare
 | |
|    * @return whether the objects are semantically equal
 | |
|    */
 | |
|   public boolean equals(Object obj)
 | |
|   {
 | |
|     if (obj instanceof Float)
 | |
|       {
 | |
|         float f = ((Float) obj).value;
 | |
|         return (floatToRawIntBits(value) == floatToRawIntBits(f)) ||
 | |
|           (isNaN(value) && isNaN(f));
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the float to the IEEE 754 floating-point "single format" bit
 | |
|    * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
 | |
|    * (masked by 0x7f800000) represent the exponent, and bits 22-0
 | |
|    * (masked by 0x007fffff) are the mantissa. This function collapses all
 | |
|    * versions of NaN to 0x7fc00000. The result of this function can be used
 | |
|    * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
 | |
|    * original <code>float</code> value.
 | |
|    *
 | |
|    * @param value the <code>float</code> to convert
 | |
|    * @return the bits of the <code>float</code>
 | |
|    * @see #intBitsToFloat(int)
 | |
|    */
 | |
|   public static int floatToIntBits(float value)
 | |
|   {
 | |
|     if (isNaN(value))
 | |
|       return 0x7fc00000;
 | |
|     else
 | |
|       return VMFloat.floatToRawIntBits(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the float to the IEEE 754 floating-point "single format" bit
 | |
|    * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
 | |
|    * (masked by 0x7f800000) represent the exponent, and bits 22-0
 | |
|    * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
 | |
|    * rather than collapsing to a canonical value. The result of this function
 | |
|    * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
 | |
|    * obtain the original <code>float</code> value.
 | |
|    *
 | |
|    * @param value the <code>float</code> to convert
 | |
|    * @return the bits of the <code>float</code>
 | |
|    * @see #intBitsToFloat(int)
 | |
|    */
 | |
|   public static int floatToRawIntBits(float value)
 | |
|   {
 | |
|     return VMFloat.floatToRawIntBits(value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Convert the argument in IEEE 754 floating-point "single format" bit
 | |
|    * layout to the corresponding float. Bit 31 (the most significant) is the
 | |
|    * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
 | |
|    * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
 | |
|    * NaN alone, so that you can recover the bit pattern with
 | |
|    * <code>Float.floatToRawIntBits(float)</code>.
 | |
|    *
 | |
|    * @param bits the bits to convert
 | |
|    * @return the <code>float</code> represented by the bits
 | |
|    * @see #floatToIntBits(float)
 | |
|    * @see #floatToRawIntBits(float)
 | |
|    */
 | |
|   public static float intBitsToFloat(int bits)
 | |
|   {
 | |
|     return VMFloat.intBitsToFloat(bits);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compare two Floats numerically by comparing their <code>float</code>
 | |
|    * values. The result is positive if the first is greater, negative if the
 | |
|    * second is greater, and 0 if the two are equal. However, this special
 | |
|    * cases NaN and signed zero as follows: NaN is considered greater than
 | |
|    * all other floats, including <code>POSITIVE_INFINITY</code>, and positive
 | |
|    * zero is considered greater than negative zero.
 | |
|    *
 | |
|    * @param f the Float to compare
 | |
|    * @return the comparison
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public int compareTo(Float f)
 | |
|   {
 | |
|     return compare(value, f.value);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
 | |
|    * other words this compares two floats, special casing NaN and zero,
 | |
|    * without the overhead of objects.
 | |
|    *
 | |
|    * @param x the first float to compare
 | |
|    * @param y the second float to compare
 | |
|    * @return the comparison
 | |
|    * @since 1.4
 | |
|    */
 | |
|   public static int compare(float x, float y)
 | |
|   {
 | |
|       // handle the easy cases:
 | |
|       if (x < y)
 | |
|           return -1;
 | |
|       if (x > y)
 | |
|           return 1;
 | |
| 
 | |
|       // handle equality respecting that 0.0 != -0.0 (hence not using x == y):
 | |
|       int ix = floatToRawIntBits(x);
 | |
|       int iy = floatToRawIntBits(y);
 | |
|       if (ix == iy)
 | |
|           return 0;
 | |
| 
 | |
|       // handle NaNs:
 | |
|       if (x != x)
 | |
|           return (y != y) ? 0 : 1;
 | |
|       else if (y != y)
 | |
|           return -1;
 | |
| 
 | |
|       // handle +/- 0.0
 | |
|       return (ix < iy) ? -1 : 1;
 | |
|   }
 | |
| }
 |