mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1062 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1062 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| /* 
 | |
|  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 | |
|  * Copyright (c) 1991-1996 by Xerox Corporation.  All rights reserved.
 | |
|  * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
 | |
|  * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
 | |
|  *
 | |
|  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | |
|  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | |
|  *
 | |
|  * Permission is hereby granted to use or copy this program
 | |
|  * for any purpose,  provided the above notices are retained on all copies.
 | |
|  * Permission to modify the code and to distribute modified code is granted,
 | |
|  * provided the above notices are retained, and a notice that the code was
 | |
|  * modified is included with the above copyright notice.
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "private/gc_priv.h"
 | |
| 
 | |
| signed_word GC_mem_found = 0;
 | |
| 			/* Number of words of memory reclaimed     */
 | |
| 
 | |
| #if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
 | |
|   word GC_fl_builder_count = 0;
 | |
| 	/* Number of threads currently building free lists without 	*/
 | |
| 	/* holding GC lock.  It is not safe to collect if this is 	*/
 | |
| 	/* nonzero.							*/
 | |
| #endif /* PARALLEL_MARK */
 | |
| 
 | |
| /* We defer printing of leaked objects until we're done with the GC	*/
 | |
| /* cycle, since the routine for printing objects needs to run outside	*/
 | |
| /* the collector, e.g. without the allocation lock.			*/
 | |
| #define MAX_LEAKED 40
 | |
| ptr_t GC_leaked[MAX_LEAKED];
 | |
| unsigned GC_n_leaked = 0;
 | |
| 
 | |
| GC_bool GC_have_errors = FALSE;
 | |
| 
 | |
| void GC_add_leaked(leaked)
 | |
| ptr_t leaked;
 | |
| {
 | |
|     if (GC_n_leaked < MAX_LEAKED) {
 | |
|       GC_have_errors = TRUE;
 | |
|       GC_leaked[GC_n_leaked++] = leaked;
 | |
|       /* Make sure it's not reclaimed this cycle */
 | |
|         GC_set_mark_bit(leaked);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static GC_bool printing_errors = FALSE;
 | |
| /* Print all objects on the list after printing any smashed objs. 	*/
 | |
| /* Clear both lists.							*/
 | |
| void GC_print_all_errors ()
 | |
| {
 | |
|     unsigned i;
 | |
| 
 | |
|     LOCK();
 | |
|     if (printing_errors) {
 | |
| 	UNLOCK();
 | |
| 	return;
 | |
|     }
 | |
|     printing_errors = TRUE;
 | |
|     UNLOCK();
 | |
|     if (GC_debugging_started) GC_print_all_smashed();
 | |
|     for (i = 0; i < GC_n_leaked; ++i) {
 | |
| 	ptr_t p = GC_leaked[i];
 | |
| 	if (HDR(p) -> hb_obj_kind == PTRFREE) {
 | |
| 	    GC_err_printf0("Leaked atomic object at ");
 | |
| 	} else {
 | |
| 	    GC_err_printf0("Leaked composite object at ");
 | |
| 	}
 | |
| 	GC_print_heap_obj(p);
 | |
| 	GC_err_printf0("\n");
 | |
| 	GC_free(p);
 | |
| 	GC_leaked[i] = 0;
 | |
|     }
 | |
|     GC_n_leaked = 0;
 | |
|     printing_errors = FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| #   define FOUND_FREE(hblk, word_no) \
 | |
|       { \
 | |
|          GC_add_leaked((ptr_t)hblk + WORDS_TO_BYTES(word_no)); \
 | |
|       }
 | |
| 
 | |
| /*
 | |
|  * reclaim phase
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Test whether a block is completely empty, i.e. contains no marked
 | |
|  * objects.  This does not require the block to be in physical
 | |
|  * memory.
 | |
|  */
 | |
|  
 | |
| GC_bool GC_block_empty(hhdr)
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     /* We treat hb_marks as an array of words here, even if it is 	*/
 | |
|     /* actually an array of bytes.  Since we only check for zero, there	*/
 | |
|     /* are no endian-ness issues.					*/
 | |
|     register word *p = (word *)(&(hhdr -> hb_marks[0]));
 | |
|     register word * plim =
 | |
| 	    (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
 | |
|     while (p < plim) {
 | |
| 	if (*p++) return(FALSE);
 | |
|     }
 | |
|     return(TRUE);
 | |
| }
 | |
| 
 | |
| /* The following functions sometimes return a DONT_KNOW value. */
 | |
| #define DONT_KNOW  2
 | |
| 
 | |
| #ifdef SMALL_CONFIG
 | |
| # define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
 | |
| # define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
 | |
| # define GC_block_nearly_full(hhdr) DONT_KNOW
 | |
| #endif
 | |
| 
 | |
| #if !defined(SMALL_CONFIG) && defined(USE_MARK_BYTES)
 | |
| 
 | |
| # define GC_block_nearly_full1(hhdr, pat1) GC_block_nearly_full(hhdr)
 | |
| # define GC_block_nearly_full3(hhdr, pat1, pat2) GC_block_nearly_full(hhdr)
 | |
| 
 | |
|  
 | |
| GC_bool GC_block_nearly_full(hhdr)
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     /* We again treat hb_marks as an array of words, even though it	*/
 | |
|     /* isn't.  We first sum up all the words, resulting in a word 	*/
 | |
|     /* containing 4 or 8 separate partial sums. 			*/
 | |
|     /* We then sum the bytes in the word of partial sums.		*/
 | |
|     /* This is still endian independant.  This fails if the partial	*/
 | |
|     /* sums can overflow.						*/
 | |
| #   if (BYTES_TO_WORDS(MARK_BITS_SZ)) >= 256
 | |
| 	--> potential overflow; fix the code
 | |
| #   endif
 | |
|     register word *p = (word *)(&(hhdr -> hb_marks[0]));
 | |
|     register word * plim =
 | |
| 	    (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
 | |
|     word sum_vector = 0;
 | |
|     unsigned sum;
 | |
|     while (p < plim) {
 | |
| 	sum_vector += *p;
 | |
| 	++p;
 | |
|     }
 | |
|     sum = 0;
 | |
|     while (sum_vector > 0) {
 | |
| 	sum += sum_vector & 0xff;
 | |
| 	sum_vector >>= 8;
 | |
|     }
 | |
|     return (sum > BYTES_TO_WORDS(7*HBLKSIZE/8)/(hhdr -> hb_sz));
 | |
| }
 | |
| #endif  /* USE_MARK_BYTES */
 | |
| 
 | |
| #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
| 
 | |
| /*
 | |
|  * Test whether nearly all of the mark words consist of the same
 | |
|  * repeating pattern.
 | |
|  */
 | |
| #define FULL_THRESHOLD (MARK_BITS_SZ/16)
 | |
| 
 | |
| GC_bool GC_block_nearly_full1(hhdr, pat1)
 | |
| hdr *hhdr;
 | |
| word pat1;
 | |
| {
 | |
|     unsigned i;
 | |
|     unsigned misses = 0;
 | |
|     GC_ASSERT((MARK_BITS_SZ & 1) == 0);
 | |
|     for (i = 0; i < MARK_BITS_SZ; ++i) {
 | |
| 	if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
 | |
| 	    if (++misses > FULL_THRESHOLD) return FALSE;
 | |
| 	}
 | |
|     }
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether the same repeating 3 word pattern occurs in nearly
 | |
|  * all the mark bit slots.
 | |
|  * This is used as a heuristic, so we're a bit sloppy and ignore
 | |
|  * the last one or two words.
 | |
|  */
 | |
| GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
 | |
| hdr *hhdr;
 | |
| word pat1, pat2, pat3;
 | |
| {
 | |
|     unsigned i;
 | |
|     unsigned misses = 0;
 | |
| 
 | |
|     if (MARK_BITS_SZ < 4) {
 | |
|       return DONT_KNOW;
 | |
|     }
 | |
|     for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
 | |
| 	if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
 | |
| 	    if (++misses > FULL_THRESHOLD) return FALSE;
 | |
| 	}
 | |
| 	if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
 | |
| 	    if (++misses > FULL_THRESHOLD) return FALSE;
 | |
| 	}
 | |
| 	if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
 | |
| 	    if (++misses > FULL_THRESHOLD) return FALSE;
 | |
| 	}
 | |
|     }
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /* Check whether a small object block is nearly full by looking at only */
 | |
| /* the mark bits.							*/
 | |
| /* We manually precomputed the mark bit patterns that need to be 	*/
 | |
| /* checked for, and we give up on the ones that are unlikely to occur,	*/
 | |
| /* or have period > 3.							*/
 | |
| /* This would be a lot easier with a mark bit per object instead of per	*/
 | |
| /* word, but that would rewuire computing object numbers in the mark	*/
 | |
| /* loop, which would require different data structures ...		*/
 | |
| GC_bool GC_block_nearly_full(hhdr)
 | |
| hdr *hhdr;
 | |
| {
 | |
|     int sz = hhdr -> hb_sz;
 | |
| 
 | |
| #   if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
 | |
|       return DONT_KNOW;	/* Shouldn't be used in any standard config.	*/
 | |
| #   endif
 | |
| #   if CPP_WORDSZ == 32
 | |
|       switch(sz) {
 | |
|         case 1:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0xffffffffl);
 | |
| 	case 2:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x55555555l);
 | |
| 	case 4:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x11111111l);
 | |
| 	case 6:
 | |
| 	  return GC_block_nearly_full3(hhdr, 0x41041041l,
 | |
| 					      0x10410410l,
 | |
| 					       0x04104104l);
 | |
| 	case 8:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x01010101l);
 | |
| 	case 12:
 | |
| 	  return GC_block_nearly_full3(hhdr, 0x01001001l,
 | |
| 					      0x10010010l,
 | |
| 					       0x00100100l);
 | |
| 	case 16:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x00010001l);
 | |
| 	case 32:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x00000001l);
 | |
| 	default:
 | |
| 	  return DONT_KNOW;
 | |
|       }
 | |
| #   endif
 | |
| #   if CPP_WORDSZ == 64
 | |
|       switch(sz) {
 | |
|         case 1:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
 | |
| 	case 2:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
 | |
| 	case 4:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
 | |
| 	case 6:
 | |
| 	  return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
 | |
| 					       0x4104104104104104l,
 | |
| 					         0x0410410410410410l);
 | |
| 	case 8:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
 | |
| 	case 12:
 | |
| 	  return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
 | |
| 					       0x0100100100100100l,
 | |
| 					         0x0010010010010010l);
 | |
| 	case 16:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
 | |
| 	case 32:
 | |
| 	  return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
 | |
| 	default:
 | |
| 	  return DONT_KNOW;
 | |
|       }
 | |
| #   endif
 | |
| }
 | |
| #endif /* !SMALL_CONFIG  && !USE_MARK_BYTES */
 | |
| 
 | |
| /* We keep track of reclaimed memory if we are either asked to, or	*/
 | |
| /* we are using the parallel marker.  In the latter case, we assume	*/
 | |
| /* that most allocation goes through GC_malloc_many for scalability.	*/
 | |
| /* GC_malloc_many needs the count anyway.				*/
 | |
| # if defined(GATHERSTATS) || defined(PARALLEL_MARK)
 | |
| #   define INCR_WORDS(sz) n_words_found += (sz)
 | |
| #   define COUNT_PARAM , count
 | |
| #   define COUNT_ARG , count
 | |
| #   define COUNT_DECL signed_word * count;
 | |
| #   define NWORDS_DECL signed_word n_words_found = 0;
 | |
| #   define COUNT_UPDATE *count += n_words_found;
 | |
| #   define MEM_FOUND_ADDR , &GC_mem_found
 | |
| # else
 | |
| #   define INCR_WORDS(sz)
 | |
| #   define COUNT_PARAM
 | |
| #   define COUNT_ARG
 | |
| #   define COUNT_DECL
 | |
| #   define NWORDS_DECL
 | |
| #   define COUNT_UPDATE
 | |
| #   define MEM_FOUND_ADDR
 | |
| # endif
 | |
| /*
 | |
|  * Restore unmarked small objects in h of size sz to the object
 | |
|  * free list.  Returns the new list.
 | |
|  * Clears unmarked objects.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_clear(hbp, hhdr, sz, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| register hdr * hhdr;
 | |
| register ptr_t list;
 | |
| register word sz;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register int word_no;
 | |
|     register word *p, *q, *plim;
 | |
|     NWORDS_DECL
 | |
|     
 | |
|     GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     word_no = 0;
 | |
|     plim = (word *)((((word)hbp) + HBLKSIZE)
 | |
| 		   - WORDS_TO_BYTES(sz));
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p <= plim )  {
 | |
| 	    if( mark_bit_from_hdr(hhdr, word_no) ) {
 | |
| 		p += sz;
 | |
| 	    } else {
 | |
| 		INCR_WORDS(sz);
 | |
| 		/* object is available - put on list */
 | |
| 		    obj_link(p) = list;
 | |
| 		    list = ((ptr_t)p);
 | |
| 		/* Clear object, advance p to next object in the process */
 | |
| 		    q = p + sz;
 | |
| #		    ifdef USE_MARK_BYTES
 | |
| 		      GC_ASSERT(!(sz & 1)
 | |
| 				&& !((word)p & (2 * sizeof(word) - 1)));
 | |
| 		      p[1] = 0;
 | |
|                       p += 2;
 | |
|                       while (p < q) {
 | |
| 			CLEAR_DOUBLE(p);
 | |
| 			p += 2;
 | |
| 		      }
 | |
| #		    else
 | |
|                       p++; /* Skip link field */
 | |
|                       while (p < q) {
 | |
| 			*p++ = 0;
 | |
| 		      }
 | |
| #		    endif
 | |
| 	    }
 | |
| 	    word_no += sz;
 | |
| 	}
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| }
 | |
| 
 | |
| #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
| 
 | |
| /*
 | |
|  * A special case for 2 word composite objects (e.g. cons cells):
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_clear2(hbp, hhdr, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| register ptr_t list;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p, *plim;
 | |
|     register word mark_word;
 | |
|     register int i;
 | |
|     NWORDS_DECL
 | |
| #   define DO_OBJ(start_displ) \
 | |
| 	if (!(mark_word & ((word)1 << start_displ))) { \
 | |
| 	    p[start_displ] = (word)list; \
 | |
| 	    list = (ptr_t)(p+start_displ); \
 | |
| 	    p[start_displ+1] = 0; \
 | |
| 	    INCR_WORDS(2); \
 | |
| 	}
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)(((word)hbp) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    for (i = 0; i < WORDSZ; i += 8) {
 | |
| 		DO_OBJ(0);
 | |
| 		DO_OBJ(2);
 | |
| 		DO_OBJ(4);
 | |
| 		DO_OBJ(6);
 | |
| 		p += 8;
 | |
| 		mark_word >>= 8;
 | |
| 	    }
 | |
| 	}	        
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| #   undef DO_OBJ
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Another special case for 4 word composite objects:
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_clear4(hbp, hhdr, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| register ptr_t list;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p, *plim;
 | |
|     register word mark_word;
 | |
|     NWORDS_DECL
 | |
| #   define DO_OBJ(start_displ) \
 | |
| 	if (!(mark_word & ((word)1 << start_displ))) { \
 | |
| 	    p[start_displ] = (word)list; \
 | |
| 	    list = (ptr_t)(p+start_displ); \
 | |
| 	    p[start_displ+1] = 0; \
 | |
| 	    CLEAR_DOUBLE(p + start_displ + 2); \
 | |
| 	    INCR_WORDS(4); \
 | |
| 	}
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)(((word)hbp) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    DO_OBJ(0);
 | |
| 	    DO_OBJ(4);
 | |
| 	    DO_OBJ(8);
 | |
| 	    DO_OBJ(12);
 | |
| 	    DO_OBJ(16);
 | |
| 	    DO_OBJ(20);
 | |
| 	    DO_OBJ(24);
 | |
| 	    DO_OBJ(28);
 | |
| #	    if CPP_WORDSZ == 64
 | |
| 	      DO_OBJ(32);
 | |
| 	      DO_OBJ(36);
 | |
| 	      DO_OBJ(40);
 | |
| 	      DO_OBJ(44);
 | |
| 	      DO_OBJ(48);
 | |
| 	      DO_OBJ(52);
 | |
| 	      DO_OBJ(56);
 | |
| 	      DO_OBJ(60);
 | |
| #	    endif
 | |
| 	    p += WORDSZ;
 | |
| 	}	        
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| #   undef DO_OBJ
 | |
| }
 | |
| 
 | |
| #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
 | |
| 
 | |
| /* The same thing, but don't clear objects: */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| register hdr * hhdr;
 | |
| register ptr_t list;
 | |
| register word sz;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register int word_no = 0;
 | |
|     register word *p, *plim;
 | |
|     NWORDS_DECL
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)((((word)hbp) + HBLKSIZE)
 | |
| 		   - WORDS_TO_BYTES(sz));
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p <= plim )  {
 | |
| 	    if( !mark_bit_from_hdr(hhdr, word_no) ) {
 | |
| 		INCR_WORDS(sz);
 | |
| 		/* object is available - put on list */
 | |
| 		    obj_link(p) = list;
 | |
| 		    list = ((ptr_t)p);
 | |
| 	    }
 | |
| 	    p += sz;
 | |
| 	    word_no += sz;
 | |
| 	}
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| }
 | |
| 
 | |
| /* Don't really reclaim objects, just check for unmarked ones: */
 | |
| /*ARGSUSED*/
 | |
| void GC_reclaim_check(hbp, hhdr, sz)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| register hdr * hhdr;
 | |
| register word sz;
 | |
| {
 | |
|     register int word_no = 0;
 | |
|     register word *p, *plim;
 | |
| #   ifdef GATHERSTATS
 | |
|         register int n_words_found = 0;
 | |
| #   endif
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)((((word)hbp) + HBLKSIZE)
 | |
| 		   - WORDS_TO_BYTES(sz));
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p <= plim )  {
 | |
| 	    if( !mark_bit_from_hdr(hhdr, word_no) ) {
 | |
| 		FOUND_FREE(hbp, word_no);
 | |
| 	    }
 | |
| 	    p += sz;
 | |
| 	    word_no += sz;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
| /*
 | |
|  * Another special case for 2 word atomic objects:
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_uninit2(hbp, hhdr, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| register ptr_t list;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p, *plim;
 | |
|     register word mark_word;
 | |
|     register int i;
 | |
|     NWORDS_DECL
 | |
| #   define DO_OBJ(start_displ) \
 | |
| 	if (!(mark_word & ((word)1 << start_displ))) { \
 | |
| 	    p[start_displ] = (word)list; \
 | |
| 	    list = (ptr_t)(p+start_displ); \
 | |
| 	    INCR_WORDS(2); \
 | |
| 	}
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)(((word)hbp) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    for (i = 0; i < WORDSZ; i += 8) {
 | |
| 		DO_OBJ(0);
 | |
| 		DO_OBJ(2);
 | |
| 		DO_OBJ(4);
 | |
| 		DO_OBJ(6);
 | |
| 		p += 8;
 | |
| 		mark_word >>= 8;
 | |
| 	    }
 | |
| 	}	        
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| #   undef DO_OBJ
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Another special case for 4 word atomic objects:
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim_uninit4(hbp, hhdr, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| register ptr_t list;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p, *plim;
 | |
|     register word mark_word;
 | |
|     NWORDS_DECL
 | |
| #   define DO_OBJ(start_displ) \
 | |
| 	if (!(mark_word & ((word)1 << start_displ))) { \
 | |
| 	    p[start_displ] = (word)list; \
 | |
| 	    list = (ptr_t)(p+start_displ); \
 | |
| 	    INCR_WORDS(4); \
 | |
| 	}
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)(((word)hbp) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    DO_OBJ(0);
 | |
| 	    DO_OBJ(4);
 | |
| 	    DO_OBJ(8);
 | |
| 	    DO_OBJ(12);
 | |
| 	    DO_OBJ(16);
 | |
| 	    DO_OBJ(20);
 | |
| 	    DO_OBJ(24);
 | |
| 	    DO_OBJ(28);
 | |
| #	    if CPP_WORDSZ == 64
 | |
| 	      DO_OBJ(32);
 | |
| 	      DO_OBJ(36);
 | |
| 	      DO_OBJ(40);
 | |
| 	      DO_OBJ(44);
 | |
| 	      DO_OBJ(48);
 | |
| 	      DO_OBJ(52);
 | |
| 	      DO_OBJ(56);
 | |
| 	      DO_OBJ(60);
 | |
| #	    endif
 | |
| 	    p += WORDSZ;
 | |
| 	}	        
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| #   undef DO_OBJ
 | |
| }
 | |
| 
 | |
| /* Finally the one word case, which never requires any clearing: */
 | |
| /*ARGSUSED*/
 | |
| ptr_t GC_reclaim1(hbp, hhdr, list COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| register ptr_t list;
 | |
| COUNT_DECL
 | |
| {
 | |
|     register word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p, *plim;
 | |
|     register word mark_word;
 | |
|     register int i;
 | |
|     NWORDS_DECL
 | |
| #   define DO_OBJ(start_displ) \
 | |
| 	if (!(mark_word & ((word)1 << start_displ))) { \
 | |
| 	    p[start_displ] = (word)list; \
 | |
| 	    list = (ptr_t)(p+start_displ); \
 | |
| 	    INCR_WORDS(1); \
 | |
| 	}
 | |
|     
 | |
|     p = (word *)(hbp->hb_body);
 | |
|     plim = (word *)(((word)hbp) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    for (i = 0; i < WORDSZ; i += 4) {
 | |
| 		DO_OBJ(0);
 | |
| 		DO_OBJ(1);
 | |
| 		DO_OBJ(2);
 | |
| 		DO_OBJ(3);
 | |
| 		p += 4;
 | |
| 		mark_word >>= 4;
 | |
| 	    }
 | |
| 	}	        
 | |
|     COUNT_UPDATE
 | |
|     return(list);
 | |
| #   undef DO_OBJ
 | |
| }
 | |
| 
 | |
| #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
 | |
| 
 | |
| /*
 | |
|  * Generic procedure to rebuild a free list in hbp.
 | |
|  * Also called directly from GC_malloc_many.
 | |
|  */
 | |
| ptr_t GC_reclaim_generic(hbp, hhdr, sz, init, list COUNT_PARAM)
 | |
| struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| hdr * hhdr;
 | |
| GC_bool init;
 | |
| ptr_t list;
 | |
| word sz;
 | |
| COUNT_DECL
 | |
| {
 | |
|     ptr_t result = list;
 | |
| 
 | |
|     GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
 | |
|     GC_remove_protection(hbp, 1, (hhdr)->hb_descr == 0 /* Pointer-free? */);
 | |
|     if (init) {
 | |
|       switch(sz) {
 | |
| #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
|         case 1:
 | |
| 	    /* We now issue the hint even if GC_nearly_full returned	*/
 | |
| 	    /* DONT_KNOW.						*/
 | |
|             result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
|         case 2:
 | |
|             result = GC_reclaim_clear2(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
|         case 4:
 | |
|             result = GC_reclaim_clear4(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
| #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
 | |
|         default:
 | |
|             result = GC_reclaim_clear(hbp, hhdr, sz, list COUNT_ARG);
 | |
|             break;
 | |
|       }
 | |
|     } else {
 | |
|       GC_ASSERT((hhdr)->hb_descr == 0 /* Pointer-free block */);
 | |
|       switch(sz) {
 | |
| #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
|         case 1:
 | |
|             result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
|         case 2:
 | |
|             result = GC_reclaim_uninit2(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
|         case 4:
 | |
|             result = GC_reclaim_uninit4(hbp, hhdr, list COUNT_ARG);
 | |
|             break;
 | |
| #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
 | |
|         default:
 | |
|             result = GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_ARG);
 | |
|             break;
 | |
|       }
 | |
|     } 
 | |
|     if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore unmarked small objects in the block pointed to by hbp
 | |
|  * to the appropriate object free list.
 | |
|  * If entirely empty blocks are to be completely deallocated, then
 | |
|  * caller should perform that check.
 | |
|  */
 | |
| void GC_reclaim_small_nonempty_block(hbp, report_if_found COUNT_PARAM)
 | |
| register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
| int report_if_found;		/* Abort if a reclaimable object is found */
 | |
| COUNT_DECL
 | |
| {
 | |
|     hdr *hhdr = HDR(hbp);
 | |
|     word sz = hhdr -> hb_sz;
 | |
|     int kind = hhdr -> hb_obj_kind;
 | |
|     struct obj_kind * ok = &GC_obj_kinds[kind];
 | |
|     ptr_t * flh = &(ok -> ok_freelist[sz]);
 | |
|     
 | |
|     hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
 | |
| 
 | |
|     if (report_if_found) {
 | |
| 	GC_reclaim_check(hbp, hhdr, sz);
 | |
|     } else {
 | |
|         *flh = GC_reclaim_generic(hbp, hhdr, sz,
 | |
| 				  (ok -> ok_init || GC_debugging_started),
 | |
| 	 			  *flh MEM_FOUND_ADDR);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore an unmarked large object or an entirely empty blocks of small objects
 | |
|  * to the heap block free list.
 | |
|  * Otherwise enqueue the block for later processing
 | |
|  * by GC_reclaim_small_nonempty_block.
 | |
|  * If report_if_found is TRUE, then process any block immediately, and
 | |
|  * simply report free objects; do not actually reclaim them.
 | |
|  */
 | |
| # if defined(__STDC__) || defined(__cplusplus)
 | |
|     void GC_reclaim_block(register struct hblk *hbp, word report_if_found)
 | |
| # else
 | |
|     void GC_reclaim_block(hbp, report_if_found)
 | |
|     register struct hblk *hbp;	/* ptr to current heap block		*/
 | |
|     word report_if_found;	/* Abort if a reclaimable object is found */
 | |
| # endif
 | |
| {
 | |
|     register hdr * hhdr;
 | |
|     register word sz;		/* size of objects in current block	*/
 | |
|     register struct obj_kind * ok;
 | |
|     struct hblk ** rlh;
 | |
| 
 | |
|     hhdr = HDR(hbp);
 | |
|     sz = hhdr -> hb_sz;
 | |
|     ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
 | |
| 
 | |
|     if( sz > MAXOBJSZ ) {  /* 1 big object */
 | |
|         if( !mark_bit_from_hdr(hhdr, 0) ) {
 | |
| 	    if (report_if_found) {
 | |
| 	      FOUND_FREE(hbp, 0);
 | |
| 	    } else {
 | |
| 	      word blocks = OBJ_SZ_TO_BLOCKS(sz);
 | |
| 	      if (blocks > 1) {
 | |
| 	        GC_large_allocd_bytes -= blocks * HBLKSIZE;
 | |
| 	      }
 | |
| #	      ifdef GATHERSTATS
 | |
| 	        GC_mem_found += sz;
 | |
| #	      endif
 | |
| 	      GC_freehblk(hbp);
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
|         GC_bool empty = GC_block_empty(hhdr);
 | |
|         if (report_if_found) {
 | |
|     	  GC_reclaim_small_nonempty_block(hbp, (int)report_if_found
 | |
| 					  MEM_FOUND_ADDR);
 | |
|         } else if (empty) {
 | |
| #	  ifdef GATHERSTATS
 | |
|             GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
 | |
| #	  endif
 | |
|           GC_freehblk(hbp);
 | |
|         } else if (TRUE != GC_block_nearly_full(hhdr)){
 | |
|           /* group of smaller objects, enqueue the real work */
 | |
|           rlh = &(ok -> ok_reclaim_list[sz]);
 | |
|           hhdr -> hb_next = *rlh;
 | |
|           *rlh = hbp;
 | |
|         } /* else not worth salvaging. */
 | |
| 	/* We used to do the nearly_full check later, but we 	*/
 | |
| 	/* already have the right cache context here.  Also	*/
 | |
| 	/* doing it here avoids some silly lock contention in	*/
 | |
| 	/* GC_malloc_many.					*/
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(NO_DEBUGGING)
 | |
| /* Routines to gather and print heap block info 	*/
 | |
| /* intended for debugging.  Otherwise should be called	*/
 | |
| /* with lock.						*/
 | |
| 
 | |
| struct Print_stats
 | |
| {
 | |
| 	size_t number_of_blocks;
 | |
| 	size_t total_bytes;
 | |
| };
 | |
| 
 | |
| #ifdef USE_MARK_BYTES
 | |
| 
 | |
| /* Return the number of set mark bits in the given header	*/
 | |
| int GC_n_set_marks(hhdr)
 | |
| hdr * hhdr;
 | |
| {
 | |
|     register int result = 0;
 | |
|     register int i;
 | |
|     
 | |
|     for (i = 0; i < MARK_BITS_SZ; i++) {
 | |
|         result += hhdr -> hb_marks[i];
 | |
|     }
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Number of set bits in a word.  Not performance critical.	*/
 | |
| static int set_bits(n)
 | |
| word n;
 | |
| {
 | |
|     register word m = n;
 | |
|     register int result = 0;
 | |
|     
 | |
|     while (m > 0) {
 | |
|     	if (m & 1) result++;
 | |
|     	m >>= 1;
 | |
|     }
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| /* Return the number of set mark bits in the given header	*/
 | |
| int GC_n_set_marks(hhdr)
 | |
| hdr * hhdr;
 | |
| {
 | |
|     register int result = 0;
 | |
|     register int i;
 | |
|     
 | |
|     for (i = 0; i < MARK_BITS_SZ; i++) {
 | |
|         result += set_bits(hhdr -> hb_marks[i]);
 | |
|     }
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| #endif /* !USE_MARK_BYTES  */
 | |
| 
 | |
| /*ARGSUSED*/
 | |
| # if defined(__STDC__) || defined(__cplusplus)
 | |
|     void GC_print_block_descr(struct hblk *h, word dummy)
 | |
| # else
 | |
|     void GC_print_block_descr(h, dummy)
 | |
|     struct hblk *h;
 | |
|     word dummy;
 | |
| # endif
 | |
| {
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);
 | |
|     struct Print_stats *ps;
 | |
|     
 | |
|     GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),
 | |
|     			        (unsigned long)bytes,
 | |
|     			        (unsigned long)(GC_n_set_marks(hhdr)));
 | |
|     bytes += HBLKSIZE-1;
 | |
|     bytes &= ~(HBLKSIZE-1);
 | |
| 
 | |
|     ps = (struct Print_stats *)dummy;
 | |
|     ps->total_bytes += bytes;
 | |
|     ps->number_of_blocks++;
 | |
| }
 | |
| 
 | |
| void GC_print_block_list()
 | |
| {
 | |
|     struct Print_stats pstats;
 | |
| 
 | |
|     GC_printf1("(kind(0=ptrfree,1=normal,2=unc.,%lu=stubborn):size_in_bytes, #_marks_set)\n", STUBBORN);
 | |
|     pstats.number_of_blocks = 0;
 | |
|     pstats.total_bytes = 0;
 | |
|     GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
 | |
|     GC_printf2("\nblocks = %lu, bytes = %lu\n",
 | |
|     	       (unsigned long)pstats.number_of_blocks,
 | |
|     	       (unsigned long)pstats.total_bytes);
 | |
| }
 | |
| 
 | |
| #endif /* NO_DEBUGGING */
 | |
| 
 | |
| /*
 | |
|  * Clear all obj_link pointers in the list of free objects *flp.
 | |
|  * Clear *flp.
 | |
|  * This must be done before dropping a list of free gcj-style objects,
 | |
|  * since may otherwise end up with dangling "descriptor" pointers.
 | |
|  * It may help for other pointer-containing objects.
 | |
|  */
 | |
| void GC_clear_fl_links(flp)
 | |
| ptr_t *flp;
 | |
| {
 | |
|     ptr_t next = *flp;
 | |
| 
 | |
|     while (0 != next) {
 | |
|        *flp = 0;
 | |
|        flp = &(obj_link(next));
 | |
|        next = *flp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform GC_reclaim_block on the entire heap, after first clearing
 | |
|  * small object free lists (if we are not just looking for leaks).
 | |
|  */
 | |
| void GC_start_reclaim(report_if_found)
 | |
| int report_if_found;		/* Abort if a GC_reclaimable object is found */
 | |
| {
 | |
|     int kind;
 | |
|     
 | |
| #   if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
 | |
|       GC_ASSERT(0 == GC_fl_builder_count);
 | |
| #   endif
 | |
|     /* Clear reclaim- and free-lists */
 | |
|       for (kind = 0; kind < GC_n_kinds; kind++) {
 | |
|         ptr_t *fop;
 | |
|         ptr_t *lim;
 | |
|         struct hblk ** rlp;
 | |
|         struct hblk ** rlim;
 | |
|         struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
 | |
| 	GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
 | |
|         
 | |
|         if (rlist == 0) continue;	/* This kind not used.	*/
 | |
|         if (!report_if_found) {
 | |
|             lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
 | |
| 	    for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
 | |
| 	      if (*fop != 0) {
 | |
| 		if (should_clobber) {
 | |
| 		  GC_clear_fl_links(fop);
 | |
| 		} else {
 | |
| 	          *fop = 0;
 | |
| 		}
 | |
| 	      }
 | |
| 	    }
 | |
| 	} /* otherwise free list objects are marked, 	*/
 | |
| 	  /* and its safe to leave them			*/
 | |
| 	rlim = rlist + MAXOBJSZ+1;
 | |
| 	for( rlp = rlist; rlp < rlim; rlp++ ) {
 | |
| 	    *rlp = 0;
 | |
| 	}
 | |
|       }
 | |
|     
 | |
| #   ifdef PRINTBLOCKS
 | |
|         GC_printf0("GC_reclaim: current block sizes:\n");
 | |
|         GC_print_block_list();
 | |
| #   endif
 | |
| 
 | |
|   /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
 | |
|   /* or enqueue the block for later processing.				   */
 | |
|     GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
 | |
| 
 | |
| # ifdef EAGER_SWEEP
 | |
|     /* This is a very stupid thing to do.  We make it possible anyway,	*/
 | |
|     /* so that you can convince yourself that it really is very stupid.	*/
 | |
|     GC_reclaim_all((GC_stop_func)0, FALSE);
 | |
| # endif
 | |
| # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
 | |
|     GC_ASSERT(0 == GC_fl_builder_count);
 | |
| # endif
 | |
|     
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sweep blocks of the indicated object size and kind until either the
 | |
|  * appropriate free list is nonempty, or there are no more blocks to
 | |
|  * sweep.
 | |
|  */
 | |
| void GC_continue_reclaim(sz, kind)
 | |
| word sz;	/* words */
 | |
| int kind;
 | |
| {
 | |
|     register hdr * hhdr;
 | |
|     register struct hblk * hbp;
 | |
|     register struct obj_kind * ok = &(GC_obj_kinds[kind]);
 | |
|     struct hblk ** rlh = ok -> ok_reclaim_list;
 | |
|     ptr_t *flh = &(ok -> ok_freelist[sz]);
 | |
|     
 | |
|     if (rlh == 0) return;	/* No blocks of this kind.	*/
 | |
|     rlh += sz;
 | |
|     while ((hbp = *rlh) != 0) {
 | |
|         hhdr = HDR(hbp);
 | |
|         *rlh = hhdr -> hb_next;
 | |
|         GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
 | |
|         if (*flh != 0) break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaim all small blocks waiting to be reclaimed.
 | |
|  * Abort and return FALSE when/if (*stop_func)() returns TRUE.
 | |
|  * If this returns TRUE, then it's safe to restart the world
 | |
|  * with incorrectly cleared mark bits.
 | |
|  * If ignore_old is TRUE, then reclaim only blocks that have been 
 | |
|  * recently reclaimed, and discard the rest.
 | |
|  * Stop_func may be 0.
 | |
|  */
 | |
| GC_bool GC_reclaim_all(stop_func, ignore_old)
 | |
| GC_stop_func stop_func;
 | |
| GC_bool ignore_old;
 | |
| {
 | |
|     register word sz;
 | |
|     register int kind;
 | |
|     register hdr * hhdr;
 | |
|     register struct hblk * hbp;
 | |
|     register struct obj_kind * ok;
 | |
|     struct hblk ** rlp;
 | |
|     struct hblk ** rlh;
 | |
| #   ifdef PRINTTIMES
 | |
| 	CLOCK_TYPE start_time;
 | |
| 	CLOCK_TYPE done_time;
 | |
| 	
 | |
| 	GET_TIME(start_time);
 | |
| #   endif
 | |
|     
 | |
|     for (kind = 0; kind < GC_n_kinds; kind++) {
 | |
|     	ok = &(GC_obj_kinds[kind]);
 | |
|     	rlp = ok -> ok_reclaim_list;
 | |
|     	if (rlp == 0) continue;
 | |
|     	for (sz = 1; sz <= MAXOBJSZ; sz++) {
 | |
|     	    rlh = rlp + sz;
 | |
|     	    while ((hbp = *rlh) != 0) {
 | |
|     	        if (stop_func != (GC_stop_func)0 && (*stop_func)()) {
 | |
|     	            return(FALSE);
 | |
|     	        }
 | |
|         	hhdr = HDR(hbp);
 | |
|         	*rlh = hhdr -> hb_next;
 | |
|         	if (!ignore_old || hhdr -> hb_last_reclaimed == GC_gc_no - 1) {
 | |
|         	    /* It's likely we'll need it this time, too	*/
 | |
|         	    /* It's been touched recently, so this	*/
 | |
|         	    /* shouldn't trigger paging.		*/
 | |
|         	    GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
 | |
|         	}
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #   ifdef PRINTTIMES
 | |
| 	GET_TIME(done_time);
 | |
| 	GC_printf1("Disposing of reclaim lists took %lu msecs\n",
 | |
| 	           MS_TIME_DIFF(done_time,start_time));
 | |
| #   endif
 | |
|     return(TRUE);
 | |
| }
 |