mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			487 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
| /* A Fibonacci heap datatype.
 | ||
|    Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
 | ||
|    Contributed by Daniel Berlin (dan@cgsoftware.com).
 | ||
|    
 | ||
| This file is part of GNU CC.
 | ||
|    
 | ||
| GNU CC is free software; you can redistribute it and/or modify it
 | ||
| under the terms of the GNU General Public License as published by
 | ||
| the Free Software Foundation; either version 2, or (at your option)
 | ||
| any later version.
 | ||
| 
 | ||
| GNU CC is distributed in the hope that it will be useful, but
 | ||
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
| General Public License for more details.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License
 | ||
| along with GNU CC; see the file COPYING.  If not, write to
 | ||
| the Free Software Foundation, 51 Franklin Street - Fifth Floor,
 | ||
| Boston, MA 02110-1301, USA.  */
 | ||
| 
 | ||
| #ifdef HAVE_CONFIG_H
 | ||
| #include "config.h"
 | ||
| #endif
 | ||
| #ifdef HAVE_LIMITS_H
 | ||
| #include <limits.h>
 | ||
| #endif
 | ||
| #ifdef HAVE_STDLIB_H
 | ||
| #include <stdlib.h>
 | ||
| #endif
 | ||
| #ifdef HAVE_STRING_H
 | ||
| #include <string.h>
 | ||
| #endif
 | ||
| #include "libiberty.h"
 | ||
| #include "fibheap.h"
 | ||
| 
 | ||
| 
 | ||
| #define FIBHEAPKEY_MIN	LONG_MIN
 | ||
| 
 | ||
| static void fibheap_ins_root (fibheap_t, fibnode_t);
 | ||
| static void fibheap_rem_root (fibheap_t, fibnode_t);
 | ||
| static void fibheap_consolidate (fibheap_t);
 | ||
| static void fibheap_link (fibheap_t, fibnode_t, fibnode_t);
 | ||
| static void fibheap_cut (fibheap_t, fibnode_t, fibnode_t);
 | ||
| static void fibheap_cascading_cut (fibheap_t, fibnode_t);
 | ||
| static fibnode_t fibheap_extr_min_node (fibheap_t);
 | ||
| static int fibheap_compare (fibheap_t, fibnode_t, fibnode_t);
 | ||
| static int fibheap_comp_data (fibheap_t, fibheapkey_t, void *, fibnode_t);
 | ||
| static fibnode_t fibnode_new (void);
 | ||
| static void fibnode_insert_after (fibnode_t, fibnode_t);
 | ||
| #define fibnode_insert_before(a, b) fibnode_insert_after (a->left, b)
 | ||
| static fibnode_t fibnode_remove (fibnode_t);
 | ||
| 
 | ||
| 
 | ||
| /* Create a new fibonacci heap.  */
 | ||
| fibheap_t
 | ||
| fibheap_new (void)
 | ||
| {
 | ||
|   return (fibheap_t) xcalloc (1, sizeof (struct fibheap));
 | ||
| }
 | ||
| 
 | ||
| /* Create a new fibonacci heap node.  */
 | ||
| static fibnode_t
 | ||
| fibnode_new (void)
 | ||
| {
 | ||
|   fibnode_t node;
 | ||
| 
 | ||
|   node = (fibnode_t) xcalloc (1, sizeof *node);
 | ||
|   node->left = node;
 | ||
|   node->right = node;
 | ||
| 
 | ||
|   return node;
 | ||
| }
 | ||
| 
 | ||
| static inline int
 | ||
| fibheap_compare (fibheap_t heap ATTRIBUTE_UNUSED, fibnode_t a, fibnode_t b)
 | ||
| {
 | ||
|   if (a->key < b->key)
 | ||
|     return -1;
 | ||
|   if (a->key > b->key)
 | ||
|     return 1;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static inline int
 | ||
| fibheap_comp_data (fibheap_t heap, fibheapkey_t key, void *data, fibnode_t b)
 | ||
| {
 | ||
|   struct fibnode a;
 | ||
| 
 | ||
|   a.key = key;
 | ||
|   a.data = data;
 | ||
| 
 | ||
|   return fibheap_compare (heap, &a, b);
 | ||
| }
 | ||
| 
 | ||
| /* Insert DATA, with priority KEY, into HEAP.  */
 | ||
| fibnode_t
 | ||
| fibheap_insert (fibheap_t heap, fibheapkey_t key, void *data)
 | ||
| {
 | ||
|   fibnode_t node;
 | ||
| 
 | ||
|   /* Create the new node.  */
 | ||
|   node = fibnode_new ();
 | ||
| 
 | ||
|   /* Set the node's data.  */
 | ||
|   node->data = data;
 | ||
|   node->key = key;
 | ||
| 
 | ||
|   /* Insert it into the root list.  */
 | ||
|   fibheap_ins_root (heap, node);
 | ||
| 
 | ||
|   /* If their was no minimum, or this key is less than the min,
 | ||
|      it's the new min.  */
 | ||
|   if (heap->min == NULL || node->key < heap->min->key)
 | ||
|     heap->min = node;
 | ||
| 
 | ||
|   heap->nodes++;
 | ||
| 
 | ||
|   return node;
 | ||
| }
 | ||
| 
 | ||
| /* Return the data of the minimum node (if we know it).  */
 | ||
| void *
 | ||
| fibheap_min (fibheap_t heap)
 | ||
| {
 | ||
|   /* If there is no min, we can't easily return it.  */
 | ||
|   if (heap->min == NULL)
 | ||
|     return NULL;
 | ||
|   return heap->min->data;
 | ||
| }
 | ||
| 
 | ||
| /* Return the key of the minimum node (if we know it).  */
 | ||
| fibheapkey_t
 | ||
| fibheap_min_key (fibheap_t heap)
 | ||
| {
 | ||
|   /* If there is no min, we can't easily return it.  */
 | ||
|   if (heap->min == NULL)
 | ||
|     return 0;
 | ||
|   return heap->min->key;
 | ||
| }
 | ||
| 
 | ||
| /* Union HEAPA and HEAPB into a new heap.  */
 | ||
| fibheap_t
 | ||
| fibheap_union (fibheap_t heapa, fibheap_t heapb)
 | ||
| {
 | ||
|   fibnode_t a_root, b_root, temp;
 | ||
| 
 | ||
|   /* If one of the heaps is empty, the union is just the other heap.  */
 | ||
|   if ((a_root = heapa->root) == NULL)
 | ||
|     {
 | ||
|       free (heapa);
 | ||
|       return heapb;
 | ||
|     }
 | ||
|   if ((b_root = heapb->root) == NULL)
 | ||
|     {
 | ||
|       free (heapb);
 | ||
|       return heapa;
 | ||
|     }
 | ||
| 
 | ||
|   /* Merge them to the next nodes on the opposite chain.  */
 | ||
|   a_root->left->right = b_root;
 | ||
|   b_root->left->right = a_root;
 | ||
|   temp = a_root->left;
 | ||
|   a_root->left = b_root->left;
 | ||
|   b_root->left = temp;
 | ||
|   heapa->nodes += heapb->nodes;
 | ||
| 
 | ||
|   /* And set the new minimum, if it's changed.  */
 | ||
|   if (fibheap_compare (heapa, heapb->min, heapa->min) < 0)
 | ||
|     heapa->min = heapb->min;
 | ||
| 
 | ||
|   free (heapb);
 | ||
|   return heapa;
 | ||
| }
 | ||
| 
 | ||
| /* Extract the data of the minimum node from HEAP.  */
 | ||
| void *
 | ||
| fibheap_extract_min (fibheap_t heap)
 | ||
| {
 | ||
|   fibnode_t z;
 | ||
|   void *ret = NULL;
 | ||
| 
 | ||
|   /* If we don't have a min set, it means we have no nodes.  */
 | ||
|   if (heap->min != NULL)
 | ||
|     {
 | ||
|       /* Otherwise, extract the min node, free the node, and return the
 | ||
|          node's data.  */
 | ||
|       z = fibheap_extr_min_node (heap);
 | ||
|       ret = z->data;
 | ||
|       free (z);
 | ||
|     }
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Replace both the KEY and the DATA associated with NODE.  */
 | ||
| void *
 | ||
| fibheap_replace_key_data (fibheap_t heap, fibnode_t node,
 | ||
|                           fibheapkey_t key, void *data)
 | ||
| {
 | ||
|   void *odata;
 | ||
|   fibheapkey_t okey;
 | ||
|   fibnode_t y;
 | ||
| 
 | ||
|   /* If we wanted to, we could actually do a real increase by redeleting and
 | ||
|      inserting. However, this would require O (log n) time. So just bail out
 | ||
|      for now.  */
 | ||
|   if (fibheap_comp_data (heap, key, data, node) > 0)
 | ||
|     return NULL;
 | ||
| 
 | ||
|   odata = node->data;
 | ||
|   okey = node->key;
 | ||
|   node->data = data;
 | ||
|   node->key = key;
 | ||
|   y = node->parent;
 | ||
| 
 | ||
|   /* Short-circuit if the key is the same, as we then don't have to
 | ||
|      do anything.  Except if we're trying to force the new node to
 | ||
|      be the new minimum for delete.  */
 | ||
|   if (okey == key && okey != FIBHEAPKEY_MIN)
 | ||
|     return odata;
 | ||
| 
 | ||
|   /* These two compares are specifically <= 0 to make sure that in the case
 | ||
|      of equality, a node we replaced the data on, becomes the new min.  This
 | ||
|      is needed so that delete's call to extractmin gets the right node.  */
 | ||
|   if (y != NULL && fibheap_compare (heap, node, y) <= 0)
 | ||
|     {
 | ||
|       fibheap_cut (heap, node, y);
 | ||
|       fibheap_cascading_cut (heap, y);
 | ||
|     }
 | ||
| 
 | ||
|   if (fibheap_compare (heap, node, heap->min) <= 0)
 | ||
|     heap->min = node;
 | ||
| 
 | ||
|   return odata;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the DATA associated with NODE.  */
 | ||
| void *
 | ||
| fibheap_replace_data (fibheap_t heap, fibnode_t node, void *data)
 | ||
| {
 | ||
|   return fibheap_replace_key_data (heap, node, node->key, data);
 | ||
| }
 | ||
| 
 | ||
| /* Replace the KEY associated with NODE.  */
 | ||
| fibheapkey_t
 | ||
| fibheap_replace_key (fibheap_t heap, fibnode_t node, fibheapkey_t key)
 | ||
| {
 | ||
|   int okey = node->key;
 | ||
|   fibheap_replace_key_data (heap, node, key, node->data);
 | ||
|   return okey;
 | ||
| }
 | ||
| 
 | ||
| /* Delete NODE from HEAP.  */
 | ||
| void *
 | ||
| fibheap_delete_node (fibheap_t heap, fibnode_t node)
 | ||
| {
 | ||
|   void *ret = node->data;
 | ||
| 
 | ||
|   /* To perform delete, we just make it the min key, and extract.  */
 | ||
|   fibheap_replace_key (heap, node, FIBHEAPKEY_MIN);
 | ||
|   if (node != heap->min)
 | ||
|     {
 | ||
|       fprintf (stderr, "Can't force minimum on fibheap.\n");
 | ||
|       abort ();
 | ||
|     }
 | ||
|   fibheap_extract_min (heap);
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Delete HEAP.  */
 | ||
| void
 | ||
| fibheap_delete (fibheap_t heap)
 | ||
| {
 | ||
|   while (heap->min != NULL)
 | ||
|     free (fibheap_extr_min_node (heap));
 | ||
| 
 | ||
|   free (heap);
 | ||
| }
 | ||
| 
 | ||
| /* Determine if HEAP is empty.  */
 | ||
| int
 | ||
| fibheap_empty (fibheap_t heap)
 | ||
| {
 | ||
|   return heap->nodes == 0;
 | ||
| }
 | ||
| 
 | ||
| /* Extract the minimum node of the heap.  */
 | ||
| static fibnode_t
 | ||
| fibheap_extr_min_node (fibheap_t heap)
 | ||
| {
 | ||
|   fibnode_t ret = heap->min;
 | ||
|   fibnode_t x, y, orig;
 | ||
| 
 | ||
|   /* Attach the child list of the minimum node to the root list of the heap.
 | ||
|      If there is no child list, we don't do squat.  */
 | ||
|   for (x = ret->child, orig = NULL; x != orig && x != NULL; x = y)
 | ||
|     {
 | ||
|       if (orig == NULL)
 | ||
| 	orig = x;
 | ||
|       y = x->right;
 | ||
|       x->parent = NULL;
 | ||
|       fibheap_ins_root (heap, x);
 | ||
|     }
 | ||
| 
 | ||
|   /* Remove the old root.  */
 | ||
|   fibheap_rem_root (heap, ret);
 | ||
|   heap->nodes--;
 | ||
| 
 | ||
|   /* If we are left with no nodes, then the min is NULL.  */
 | ||
|   if (heap->nodes == 0)
 | ||
|     heap->min = NULL;
 | ||
|   else
 | ||
|     {
 | ||
|       /* Otherwise, consolidate to find new minimum, as well as do the reorg
 | ||
|          work that needs to be done.  */
 | ||
|       heap->min = ret->right;
 | ||
|       fibheap_consolidate (heap);
 | ||
|     }
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Insert NODE into the root list of HEAP.  */
 | ||
| static void
 | ||
| fibheap_ins_root (fibheap_t heap, fibnode_t node)
 | ||
| {
 | ||
|   /* If the heap is currently empty, the new node becomes the singleton
 | ||
|      circular root list.  */
 | ||
|   if (heap->root == NULL)
 | ||
|     {
 | ||
|       heap->root = node;
 | ||
|       node->left = node;
 | ||
|       node->right = node;
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   /* Otherwise, insert it in the circular root list between the root
 | ||
|      and it's right node.  */
 | ||
|   fibnode_insert_after (heap->root, node);
 | ||
| }
 | ||
| 
 | ||
| /* Remove NODE from the rootlist of HEAP.  */
 | ||
| static void
 | ||
| fibheap_rem_root (fibheap_t heap, fibnode_t node)
 | ||
| {
 | ||
|   if (node->left == node)
 | ||
|     heap->root = NULL;
 | ||
|   else
 | ||
|     heap->root = fibnode_remove (node);
 | ||
| }
 | ||
| 
 | ||
| /* Consolidate the heap.  */
 | ||
| static void
 | ||
| fibheap_consolidate (fibheap_t heap)
 | ||
| {
 | ||
|   fibnode_t a[1 + 8 * sizeof (long)];
 | ||
|   fibnode_t w;
 | ||
|   fibnode_t y;
 | ||
|   fibnode_t x;
 | ||
|   int i;
 | ||
|   int d;
 | ||
|   int D;
 | ||
| 
 | ||
|   D = 1 + 8 * sizeof (long);
 | ||
| 
 | ||
|   memset (a, 0, sizeof (fibnode_t) * D);
 | ||
| 
 | ||
|   while ((w = heap->root) != NULL)
 | ||
|     {
 | ||
|       x = w;
 | ||
|       fibheap_rem_root (heap, w);
 | ||
|       d = x->degree;
 | ||
|       while (a[d] != NULL)
 | ||
| 	{
 | ||
| 	  y = a[d];
 | ||
| 	  if (fibheap_compare (heap, x, y) > 0)
 | ||
| 	    {
 | ||
| 	      fibnode_t temp;
 | ||
| 	      temp = x;
 | ||
| 	      x = y;
 | ||
| 	      y = temp;
 | ||
| 	    }
 | ||
| 	  fibheap_link (heap, y, x);
 | ||
| 	  a[d] = NULL;
 | ||
| 	  d++;
 | ||
| 	}
 | ||
|       a[d] = x;
 | ||
|     }
 | ||
|   heap->min = NULL;
 | ||
|   for (i = 0; i < D; i++)
 | ||
|     if (a[i] != NULL)
 | ||
|       {
 | ||
| 	fibheap_ins_root (heap, a[i]);
 | ||
| 	if (heap->min == NULL || fibheap_compare (heap, a[i], heap->min) < 0)
 | ||
| 	  heap->min = a[i];
 | ||
|       }
 | ||
| }
 | ||
| 
 | ||
| /* Make NODE a child of PARENT.  */
 | ||
| static void
 | ||
| fibheap_link (fibheap_t heap ATTRIBUTE_UNUSED,
 | ||
|               fibnode_t node, fibnode_t parent)
 | ||
| {
 | ||
|   if (parent->child == NULL)
 | ||
|     parent->child = node;
 | ||
|   else
 | ||
|     fibnode_insert_before (parent->child, node);
 | ||
|   node->parent = parent;
 | ||
|   parent->degree++;
 | ||
|   node->mark = 0;
 | ||
| }
 | ||
| 
 | ||
| /* Remove NODE from PARENT's child list.  */
 | ||
| static void
 | ||
| fibheap_cut (fibheap_t heap, fibnode_t node, fibnode_t parent)
 | ||
| {
 | ||
|   fibnode_remove (node);
 | ||
|   parent->degree--;
 | ||
|   fibheap_ins_root (heap, node);
 | ||
|   node->parent = NULL;
 | ||
|   node->mark = 0;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| fibheap_cascading_cut (fibheap_t heap, fibnode_t y)
 | ||
| {
 | ||
|   fibnode_t z;
 | ||
| 
 | ||
|   while ((z = y->parent) != NULL)
 | ||
|     {
 | ||
|       if (y->mark == 0)
 | ||
| 	{
 | ||
| 	  y->mark = 1;
 | ||
| 	  return;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  fibheap_cut (heap, y, z);
 | ||
| 	  y = z;
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| fibnode_insert_after (fibnode_t a, fibnode_t b)
 | ||
| {
 | ||
|   if (a == a->right)
 | ||
|     {
 | ||
|       a->right = b;
 | ||
|       a->left = b;
 | ||
|       b->right = a;
 | ||
|       b->left = a;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       b->right = a->right;
 | ||
|       a->right->left = b;
 | ||
|       a->right = b;
 | ||
|       b->left = a;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static fibnode_t
 | ||
| fibnode_remove (fibnode_t node)
 | ||
| {
 | ||
|   fibnode_t ret;
 | ||
| 
 | ||
|   if (node == node->left)
 | ||
|     ret = NULL;
 | ||
|   else
 | ||
|     ret = node->left;
 | ||
| 
 | ||
|   if (node->parent != NULL && node->parent->child == node)
 | ||
|     node->parent->child = ret;
 | ||
| 
 | ||
|   node->right->left = node->left;
 | ||
|   node->left->right = node->right;
 | ||
| 
 | ||
|   node->parent = NULL;
 | ||
|   node->left = node;
 | ||
|   node->right = node;
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 |