mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3299 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			3299 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* Area.java -- represents a shape built by constructive area geometry
 | |
|    Copyright (C) 2002, 2004 Free Software Foundation
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| package java.awt.geom;
 | |
| 
 | |
| import java.awt.Rectangle;
 | |
| import java.awt.Shape;
 | |
| import java.util.Vector;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * The Area class represents any area for the purpose of
 | |
|  * Constructive Area Geometry (CAG) manipulations. CAG manipulations
 | |
|  * work as an area-wise form of boolean logic, where the basic operations are:
 | |
|  * <P><li>Add (in boolean algebra: A <B>or</B> B)<BR>
 | |
|  * <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR>
 | |
|  * <li>Intersect (in boolean algebra: A <B>and</B> B)<BR>
 | |
|  * <li>Exclusive Or <BR>
 | |
|  * <img src="doc-files/Area-1.png" width="342" height="302"
 | |
|  * alt="Illustration of CAG operations" /><BR>
 | |
|  * Above is an illustration of the CAG operations on two ring shapes.<P>
 | |
|  *
 | |
|  * The contains and intersects() methods are also more accurate than the
 | |
|  * specification of #Shape requires.<P>
 | |
|  *
 | |
|  * Please note that constructing an Area can be slow
 | |
|  * (Self-intersection resolving is proportional to the square of
 | |
|  * the number of segments).<P>
 | |
|  * @see #add(Area)
 | |
|  * @see #subtract(Area)
 | |
|  * @see #intersect(Area)
 | |
|  * @see #exclusiveOr(Area)
 | |
|  *
 | |
|  * @author Sven de Marothy (sven@physto.se)
 | |
|  *
 | |
|  * @since 1.2
 | |
|  * @status Works, but could be faster and more reliable.
 | |
|  */
 | |
| public class Area implements Shape, Cloneable
 | |
| {
 | |
|   /**
 | |
|    * General numerical precision
 | |
|    */
 | |
|   private static final double EPSILON = 1E-11;
 | |
| 
 | |
|   /**
 | |
|    * recursive subdivision epsilon - (see getRecursionDepth)
 | |
|    */
 | |
|   private static final double RS_EPSILON = 1E-13;
 | |
| 
 | |
|   /**
 | |
|    * Snap distance - points within this distance are considered equal
 | |
|    */
 | |
|   private static final double PE_EPSILON = 1E-11;
 | |
| 
 | |
|   /**
 | |
|    * Segment vectors containing solid areas and holes
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Vector<Segment> solids;
 | |
| 
 | |
|   /**
 | |
|    * Segment vectors containing solid areas and holes
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Vector<Segment> holes;
 | |
| 
 | |
|   /**
 | |
|    * Vector (temporary) storing curve-curve intersections
 | |
|    */
 | |
|   private Vector<double[]> ccIntersections;
 | |
| 
 | |
|   /**
 | |
|    * Winding rule WIND_NON_ZERO used, after construction,
 | |
|    * this is irrelevant.
 | |
|    */
 | |
|   private int windingRule;
 | |
| 
 | |
|   /**
 | |
|    * Constructs an empty Area
 | |
|    */
 | |
|   public Area()
 | |
|   {
 | |
|     solids = new Vector<Segment>();
 | |
|     holes = new Vector<Segment>();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs an Area from any given Shape. <P>
 | |
|    *
 | |
|    * If the Shape is self-intersecting, the created Area will consist
 | |
|    * of non-self-intersecting subpaths, and any inner paths which
 | |
|    * are found redundant in accordance with the Shape's winding rule
 | |
|    * will not be included.
 | |
|    *
 | |
|    * @param s  the shape (<code>null</code> not permitted).
 | |
|    *
 | |
|    * @throws NullPointerException if <code>s</code> is <code>null</code>.
 | |
|    */
 | |
|   public Area(Shape s)
 | |
|   {
 | |
|     this();
 | |
| 
 | |
|     Vector<Segment> p = makeSegment(s);
 | |
| 
 | |
|     // empty path
 | |
|     if (p == null)
 | |
|       return;
 | |
| 
 | |
|     // delete empty paths
 | |
|     for (int i = 0; i < p.size(); i++)
 | |
|       if (p.elementAt(i).getSignedArea() == 0.0)
 | |
|         p.remove(i--);
 | |
| 
 | |
|     /*
 | |
|      * Resolve self intersecting paths into non-intersecting
 | |
|      * solids and holes.
 | |
|      * Algorithm is as follows:
 | |
|      * 1: Create nodes at all self intersections
 | |
|      * 2: Put all segments into a list
 | |
|      * 3: Grab a segment, follow it, change direction at each node,
 | |
|      *    removing segments from the list in the process
 | |
|      * 4: Repeat (3) until no segments remain in the list
 | |
|      * 5: Remove redundant paths and sort into solids and holes
 | |
|      */
 | |
|     Segment v;
 | |
| 
 | |
|     for (int i = 0; i < p.size(); i++)
 | |
|       {
 | |
|         Segment path = p.elementAt(i);
 | |
|         createNodesSelf(path);
 | |
|       }
 | |
| 
 | |
|     if (p.size() > 1)
 | |
|       {
 | |
|         for (int i = 0; i < p.size() - 1; i++)
 | |
|           for (int j = i + 1; j < p.size(); j++)
 | |
|             {
 | |
|               Segment path1 = p.elementAt(i);
 | |
|               Segment path2 = p.elementAt(j);
 | |
|               createNodes(path1, path2);
 | |
|             }
 | |
|       }
 | |
| 
 | |
|     // we have intersecting points.
 | |
|     Vector<Segment> segments = new Vector<Segment>();
 | |
| 
 | |
|     for (int i = 0; i < p.size(); i++)
 | |
|       {
 | |
|         Segment path = v = p.elementAt(i);
 | |
|         do
 | |
|           {
 | |
|             segments.add(v);
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> paths = weilerAtherton(segments);
 | |
|     deleteRedundantPaths(paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs an add (union) operation on this area with another Area.<BR>
 | |
|    * @param area - the area to be unioned with this one
 | |
|    */
 | |
|   public void add(Area area)
 | |
|   {
 | |
|     if (equals(area))
 | |
|       return;
 | |
|     if (area.isEmpty())
 | |
|       return;
 | |
| 
 | |
|     Area B = (Area) area.clone();
 | |
| 
 | |
|     Vector<Segment> pathA = new Vector<Segment>();
 | |
|     Vector<Segment> pathB = new Vector<Segment>();
 | |
|     pathA.addAll(solids);
 | |
|     pathA.addAll(holes);
 | |
|     pathB.addAll(B.solids);
 | |
|     pathB.addAll(B.holes);
 | |
| 
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment a = pathA.elementAt(i);
 | |
|         for (int j = 0; j < pathB.size(); j++)
 | |
|           {
 | |
|             Segment b = pathB.elementAt(j);
 | |
|             createNodes(a, b);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> paths = new Vector<Segment>();
 | |
|     Segment v;
 | |
| 
 | |
|     // we have intersecting points.
 | |
|     Vector<Segment> segments = new Vector<Segment>();
 | |
| 
 | |
|     // In a union operation, we keep all
 | |
|     // segments of A oustide B and all B outside A
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         v = pathA.elementAt(i);
 | |
|         Segment path = v;
 | |
|         do
 | |
|           {
 | |
|             if (v.isSegmentOutside(area))
 | |
|               segments.add(v);
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < pathB.size(); i++)
 | |
|       {
 | |
|         v = pathB.elementAt(i);
 | |
|         Segment path = v;
 | |
|         do
 | |
|           {
 | |
|             if (v.isSegmentOutside(this))
 | |
|               segments.add(v);
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     paths = weilerAtherton(segments);
 | |
|     deleteRedundantPaths(paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs a subtraction operation on this Area.<BR>
 | |
|    * @param area the area to be subtracted from this area.
 | |
|    * @throws NullPointerException if <code>area</code> is <code>null</code>.
 | |
|    */
 | |
|   public void subtract(Area area)
 | |
|   {
 | |
|     if (isEmpty() || area.isEmpty())
 | |
|       return;
 | |
| 
 | |
|     if (equals(area))
 | |
|       {
 | |
|         reset();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> pathA = new Vector<Segment>();
 | |
|     Area B = (Area) area.clone();
 | |
|     pathA.addAll(solids);
 | |
|     pathA.addAll(holes);
 | |
| 
 | |
|     // reverse the directions of B paths.
 | |
|     setDirection(B.holes, true);
 | |
|     setDirection(B.solids, false);
 | |
| 
 | |
|     Vector<Segment> pathB = new Vector<Segment>();
 | |
|     pathB.addAll(B.solids);
 | |
|     pathB.addAll(B.holes);
 | |
| 
 | |
|     // create nodes
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment a = pathA.elementAt(i);
 | |
|         for (int j = 0; j < pathB.size(); j++)
 | |
|           {
 | |
|             Segment b = pathB.elementAt(j);
 | |
|             createNodes(a, b);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     // we have intersecting points.
 | |
|     Vector<Segment> segments = new Vector<Segment>();
 | |
| 
 | |
|     // In a subtraction operation, we keep all
 | |
|     // segments of A oustide B and all B within A
 | |
|     // We outsideness-test only one segment in each path
 | |
|     // and the segments before and after any node
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment v = pathA.elementAt(i);
 | |
|         Segment path = v;
 | |
|         if (v.isSegmentOutside(area) && v.node == null)
 | |
|           segments.add(v);
 | |
|         boolean node = false;
 | |
|         do
 | |
|           {
 | |
|             if ((v.node != null || node))
 | |
|               {
 | |
|                 node = (v.node != null);
 | |
|                 if (v.isSegmentOutside(area))
 | |
|                   segments.add(v);
 | |
|               }
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < pathB.size(); i++)
 | |
|       {
 | |
|         Segment v = (Segment) pathB.elementAt(i);
 | |
|         Segment path = v;
 | |
|         if (! v.isSegmentOutside(this) && v.node == null)
 | |
|           segments.add(v);
 | |
|         v = v.next;
 | |
|         boolean node = false;
 | |
|         do
 | |
|           {
 | |
|             if ((v.node != null || node))
 | |
|               {
 | |
|                 node = (v.node != null);
 | |
|                 if (! v.isSegmentOutside(this))
 | |
|                   segments.add(v);
 | |
|               }
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> paths = weilerAtherton(segments);
 | |
|     deleteRedundantPaths(paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs an intersection operation on this Area.<BR>
 | |
|    * @param area - the area to be intersected with this area.
 | |
|    * @throws NullPointerException if <code>area</code> is <code>null</code>.
 | |
|    */
 | |
|   public void intersect(Area area)
 | |
|   {
 | |
|     if (isEmpty() || area.isEmpty())
 | |
|       {
 | |
|         reset();
 | |
|         return;
 | |
|       }
 | |
|     if (equals(area))
 | |
|       return;
 | |
| 
 | |
|     Vector<Segment> pathA = new Vector<Segment>();
 | |
|     Area B = (Area) area.clone();
 | |
|     pathA.addAll(solids);
 | |
|     pathA.addAll(holes);
 | |
| 
 | |
|     Vector<Segment> pathB = new Vector<Segment>();
 | |
|     pathB.addAll(B.solids);
 | |
|     pathB.addAll(B.holes);
 | |
| 
 | |
|     // create nodes
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment a = pathA.elementAt(i);
 | |
|         for (int j = 0; j < pathB.size(); j++)
 | |
|           {
 | |
|             Segment b = pathB.elementAt(j);
 | |
|             createNodes(a, b);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     // we have intersecting points.
 | |
|     Vector<Segment> segments = new Vector<Segment>();
 | |
| 
 | |
|     // In an intersection operation, we keep all
 | |
|     // segments of A within B and all B within A
 | |
|     // (The rest must be redundant)
 | |
|     // We outsideness-test only one segment in each path
 | |
|     // and the segments before and after any node
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment v = pathA.elementAt(i);
 | |
|         Segment path = v;
 | |
|         if (! v.isSegmentOutside(area) && v.node == null)
 | |
|           segments.add(v);
 | |
|         boolean node = false;
 | |
|         do
 | |
|           {
 | |
|             if ((v.node != null || node))
 | |
|               {
 | |
|                 node = (v.node != null);
 | |
|                 if (! v.isSegmentOutside(area))
 | |
|                   segments.add(v);
 | |
|               }
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < pathB.size(); i++)
 | |
|       {
 | |
|         Segment v = pathB.elementAt(i);
 | |
|         Segment path = v;
 | |
|         if (! v.isSegmentOutside(this) && v.node == null)
 | |
|           segments.add(v);
 | |
|         v = v.next;
 | |
|         boolean node = false;
 | |
|         do
 | |
|           {
 | |
|             if ((v.node != null || node))
 | |
|               {
 | |
|                 node = (v.node != null);
 | |
|                 if (! v.isSegmentOutside(this))
 | |
|                   segments.add(v);
 | |
|               }
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> paths = weilerAtherton(segments);
 | |
|     deleteRedundantPaths(paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs an exclusive-or operation on this Area.<BR>
 | |
|    * @param area - the area to be XORed with this area.
 | |
|    * @throws NullPointerException if <code>area</code> is <code>null</code>.
 | |
|    */
 | |
|   public void exclusiveOr(Area area)
 | |
|   {
 | |
|     if (area.isEmpty())
 | |
|       return;
 | |
| 
 | |
|     if (isEmpty())
 | |
|       {
 | |
|         Area B = (Area) area.clone();
 | |
|         solids = B.solids;
 | |
|         holes = B.holes;
 | |
|         return;
 | |
|       }
 | |
|     if (equals(area))
 | |
|       {
 | |
|         reset();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> pathA = new Vector<Segment>();
 | |
| 
 | |
|     Area B = (Area) area.clone();
 | |
|     Vector<Segment> pathB = new Vector<Segment>();
 | |
|     pathA.addAll(solids);
 | |
|     pathA.addAll(holes);
 | |
| 
 | |
|     // reverse the directions of B paths.
 | |
|     setDirection(B.holes, true);
 | |
|     setDirection(B.solids, false);
 | |
|     pathB.addAll(B.solids);
 | |
|     pathB.addAll(B.holes);
 | |
| 
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         Segment a = pathA.elementAt(i);
 | |
|         for (int j = 0; j < pathB.size(); j++)
 | |
|           {
 | |
|             Segment b = pathB.elementAt(j);
 | |
|             createNodes(a, b);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     Segment v;
 | |
| 
 | |
|     // we have intersecting points.
 | |
|     Vector<Segment> segments = new Vector<Segment>();
 | |
| 
 | |
|     // In an XOR operation, we operate on all segments
 | |
|     for (int i = 0; i < pathA.size(); i++)
 | |
|       {
 | |
|         v = pathA.elementAt(i);
 | |
|         Segment path = v;
 | |
|         do
 | |
|           {
 | |
|             segments.add(v);
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < pathB.size(); i++)
 | |
|       {
 | |
|         v = pathB.elementAt(i);
 | |
|         Segment path = v;
 | |
|         do
 | |
|           {
 | |
|             segments.add(v);
 | |
|             v = v.next;
 | |
|           }
 | |
|         while (v != path);
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> paths = weilerAtherton(segments);
 | |
|     deleteRedundantPaths(paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Clears the Area object, creating an empty area.
 | |
|    */
 | |
|   public void reset()
 | |
|   {
 | |
|     solids = new Vector<Segment>();
 | |
|     holes = new Vector<Segment>();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns whether this area encloses any area.
 | |
|    * @return true if the object encloses any area.
 | |
|    */
 | |
|   public boolean isEmpty()
 | |
|   {
 | |
|     if (solids.size() == 0)
 | |
|       return true;
 | |
| 
 | |
|     double totalArea = 0;
 | |
|     for (int i = 0; i < solids.size(); i++)
 | |
|       totalArea += Math.abs(solids.elementAt(i).getSignedArea());
 | |
|     for (int i = 0; i < holes.size(); i++)
 | |
|       totalArea -= Math.abs(holes.elementAt(i).getSignedArea());
 | |
|     if (totalArea <= EPSILON)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines whether the Area consists entirely of line segments
 | |
|    * @return true if the Area lines-only, false otherwise
 | |
|    */
 | |
|   public boolean isPolygonal()
 | |
|   {
 | |
|     for (int i = 0; i < holes.size(); i++)
 | |
|       if (!holes.elementAt(i).isPolygonal())
 | |
|         return false;
 | |
|     for (int i = 0; i < solids.size(); i++)
 | |
|       if (!solids.elementAt(i).isPolygonal())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the Area is rectangular.<P>
 | |
|    *
 | |
|    * This is strictly qualified. An area is considered rectangular if:<BR>
 | |
|    * <li>It consists of a single polygonal path.<BR>
 | |
|    * <li>It is oriented parallel/perpendicular to the xy axis<BR>
 | |
|    * <li>It must be exactly rectangular, i.e. small errors induced by
 | |
|    * transformations may cause a false result, although the area is
 | |
|    * visibly rectangular.<P>
 | |
|    * @return true if the above criteria are met, false otherwise
 | |
|    */
 | |
|   public boolean isRectangular()
 | |
|   {
 | |
|     if (isEmpty())
 | |
|       return true;
 | |
| 
 | |
|     if (holes.size() != 0 || solids.size() != 1)
 | |
|       return false;
 | |
| 
 | |
|     Segment path = solids.elementAt(0);
 | |
|     if (! path.isPolygonal())
 | |
|       return false;
 | |
| 
 | |
|     int nCorners = 0;
 | |
|     Segment s = path;
 | |
|     do
 | |
|       {
 | |
|         Segment s2 = s.next;
 | |
|         double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/
 | |
|             ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
 | |
|         double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/
 | |
|             ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
 | |
|         double dotproduct = d1 + d2;
 | |
| 
 | |
|         // For some reason, only rectangles on the XY axis count.
 | |
|         if (d1 != 0 && d2 != 0)
 | |
|           return false;
 | |
| 
 | |
|         if (Math.abs(dotproduct) == 0) // 90 degree angle
 | |
|           nCorners++;
 | |
|         else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle?
 | |
|           return false; // if not, return false
 | |
| 
 | |
|         s = s.next;
 | |
|       }
 | |
|     while (s != path);
 | |
| 
 | |
|     return nCorners == 4;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns whether the Area consists of more than one simple
 | |
|    * (non self-intersecting) subpath.
 | |
|    *
 | |
|    * @return true if the Area consists of none or one simple subpath,
 | |
|    * false otherwise.
 | |
|    */
 | |
|   public boolean isSingular()
 | |
|   {
 | |
|     return (holes.size() == 0 && solids.size() <= 1);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and
 | |
|    * QuadraticCurve2D classes, this method will return the tightest possible
 | |
|    * bounding box, evaluating the extreme points of each curved segment.<P>
 | |
|    * @return the bounding box
 | |
|    */
 | |
|   public Rectangle2D getBounds2D()
 | |
|   {
 | |
|     if (solids.size() == 0)
 | |
|       return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0);
 | |
| 
 | |
|     double xmin;
 | |
|     double xmax;
 | |
|     double ymin;
 | |
|     double ymax;
 | |
|     xmin = xmax = solids.elementAt(0).P1.getX();
 | |
|     ymin = ymax = solids.elementAt(0).P1.getY();
 | |
| 
 | |
|     for (int path = 0; path < solids.size(); path++)
 | |
|       {
 | |
|         Rectangle2D r = solids.elementAt(path).getPathBounds();
 | |
|         xmin = Math.min(r.getMinX(), xmin);
 | |
|         ymin = Math.min(r.getMinY(), ymin);
 | |
|         xmax = Math.max(r.getMaxX(), xmax);
 | |
|         ymax = Math.max(r.getMaxY(), ymax);
 | |
|       }
 | |
| 
 | |
|     return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the bounds of this object in Rectangle format.
 | |
|    * Please note that this may lead to loss of precision.
 | |
|    *
 | |
|    * @return The bounds.
 | |
|    * @see #getBounds2D()
 | |
|    */
 | |
|   public Rectangle getBounds()
 | |
|   {
 | |
|     return getBounds2D().getBounds();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new area of the same run-time type with the same contents as
 | |
|    * this one.
 | |
|    *
 | |
|    * @return the clone
 | |
|    */
 | |
|   public Object clone()
 | |
|   {
 | |
|     try
 | |
|       {
 | |
|         Area clone = new Area();
 | |
|         for (int i = 0; i < solids.size(); i++)
 | |
|           clone.solids.add(solids.elementAt(i).cloneSegmentList());
 | |
|         for (int i = 0; i < holes.size(); i++)
 | |
|           clone.holes.add(holes.elementAt(i).cloneSegmentList());
 | |
|         return clone;
 | |
|       }
 | |
|     catch (CloneNotSupportedException e)
 | |
|       {
 | |
|         throw (Error) new InternalError().initCause(e); // Impossible
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compares two Areas.
 | |
|    *
 | |
|    * @param area  the area to compare against this area (<code>null</code>
 | |
|    *              permitted).
 | |
|    * @return <code>true</code> if the areas are equal, and <code>false</code>
 | |
|    *         otherwise.
 | |
|    */
 | |
|   public boolean equals(Area area)
 | |
|   {
 | |
|     if (area == null)
 | |
|       return false;
 | |
| 
 | |
|     if (! getBounds2D().equals(area.getBounds2D()))
 | |
|       return false;
 | |
| 
 | |
|     if (solids.size() != area.solids.size()
 | |
|         || holes.size() != area.holes.size())
 | |
|       return false;
 | |
| 
 | |
|     Vector<Segment> pathA = new Vector<Segment>();
 | |
|     pathA.addAll(solids);
 | |
|     pathA.addAll(holes);
 | |
|     Vector<Segment> pathB = new Vector<Segment>();
 | |
|     pathB.addAll(area.solids);
 | |
|     pathB.addAll(area.holes);
 | |
| 
 | |
|     int nPaths = pathA.size();
 | |
|     boolean[][] match = new boolean[2][nPaths];
 | |
| 
 | |
|     for (int i = 0; i < nPaths; i++)
 | |
|       {
 | |
|         for (int j = 0; j < nPaths; j++)
 | |
|           {
 | |
|             Segment p1 = pathA.elementAt(i);
 | |
|             Segment p2 = pathB.elementAt(j);
 | |
|             if (! match[0][i] && ! match[1][j])
 | |
|               if (p1.pathEquals(p2))
 | |
|                 match[0][i] = match[1][j] = true;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     boolean result = true;
 | |
|     for (int i = 0; i < nPaths; i++)
 | |
|       result = result && match[0][i] && match[1][i];
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Transforms this area by the AffineTransform at.
 | |
|    *
 | |
|    * @param at  the transform.
 | |
|    */
 | |
|   public void transform(AffineTransform at)
 | |
|   {
 | |
|     for (int i = 0; i < solids.size(); i++)
 | |
|       solids.elementAt(i).transformSegmentList(at);
 | |
|     for (int i = 0; i < holes.size(); i++)
 | |
|       holes.elementAt(i).transformSegmentList(at);
 | |
| 
 | |
|     // Note that the orientation is not invariant under inversion
 | |
|     if ((at.getType() & AffineTransform.TYPE_FLIP) != 0)
 | |
|       {
 | |
|         setDirection(holes, false);
 | |
|         setDirection(solids, true);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a new Area equal to this one, transformed
 | |
|    * by the AffineTransform at.
 | |
|    * @param at  the transform.
 | |
|    * @return the transformed area
 | |
|    * @throws NullPointerException if <code>at</code> is <code>null</code>.
 | |
|    */
 | |
|   public Area createTransformedArea(AffineTransform at)
 | |
|   {
 | |
|     Area a = (Area) clone();
 | |
|     a.transform(at);
 | |
|     return a;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the point (x,y) is contained within this Area.
 | |
|    *
 | |
|    * @param x the x-coordinate of the point.
 | |
|    * @param y the y-coordinate of the point.
 | |
|    * @return true if the point is contained, false otherwise.
 | |
|    */
 | |
|   public boolean contains(double x, double y)
 | |
|   {
 | |
|     int n = 0;
 | |
|     for (int i = 0; i < solids.size(); i++)
 | |
|       if (solids.elementAt(i).contains(x, y))
 | |
|         n++;
 | |
| 
 | |
|     for (int i = 0; i < holes.size(); i++)
 | |
|       if (holes.elementAt(i).contains(x, y))
 | |
|         n--;
 | |
| 
 | |
|     return (n != 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the Point2D p is contained within this Area.
 | |
|    *
 | |
|    * @param p the point.
 | |
|    * @return <code>true</code> if the point is contained, <code>false</code>
 | |
|    *         otherwise.
 | |
|    * @throws NullPointerException if <code>p</code> is <code>null</code>.
 | |
|    */
 | |
|   public boolean contains(Point2D p)
 | |
|   {
 | |
|     return contains(p.getX(), p.getY());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the rectangle specified by (x,y) as the upper-left
 | |
|    * and with width w and height h is completely contained within this Area,
 | |
|    * returns false otherwise.<P>
 | |
|    *
 | |
|    * This method should always produce the correct results, unlike for other
 | |
|    * classes in geom.
 | |
|    *
 | |
|    * @param x the x-coordinate of the rectangle.
 | |
|    * @param y the y-coordinate of the rectangle.
 | |
|    * @param w the width of the the rectangle.
 | |
|    * @param h the height of the rectangle.
 | |
|    * @return <code>true</code> if the rectangle is considered contained
 | |
|    */
 | |
|   public boolean contains(double x, double y, double w, double h)
 | |
|   {
 | |
|     LineSegment[] l = new LineSegment[4];
 | |
|     l[0] = new LineSegment(x, y, x + w, y);
 | |
|     l[1] = new LineSegment(x, y + h, x + w, y + h);
 | |
|     l[2] = new LineSegment(x, y, x, y + h);
 | |
|     l[3] = new LineSegment(x + w, y, x + w, y + h);
 | |
| 
 | |
|     // Since every segment in the area must a contour
 | |
|     // between inside/outside segments, ANY intersection
 | |
|     // will mean the rectangle is not entirely contained.
 | |
|     for (int i = 0; i < 4; i++)
 | |
|       {
 | |
|         for (int path = 0; path < solids.size(); path++)
 | |
|           {
 | |
|             Segment v;
 | |
|             Segment start;
 | |
|             start = v = solids.elementAt(path);
 | |
|             do
 | |
|               {
 | |
|                 if (l[i].hasIntersections(v))
 | |
|                   return false;
 | |
|                 v = v.next;
 | |
|               }
 | |
|             while (v != start);
 | |
|           }
 | |
|         for (int path = 0; path < holes.size(); path++)
 | |
|           {
 | |
|             Segment v;
 | |
|             Segment start;
 | |
|             start = v = holes.elementAt(path);
 | |
|             do
 | |
|               {
 | |
|                 if (l[i].hasIntersections(v))
 | |
|                   return false;
 | |
|                 v = v.next;
 | |
|               }
 | |
|             while (v != start);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     // Is any point inside?
 | |
|     if (! contains(x, y))
 | |
|       return false;
 | |
| 
 | |
|     // Final hoop: Is the rectangle non-intersecting and inside,
 | |
|     // but encloses a hole?
 | |
|     Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
 | |
|     for (int path = 0; path < holes.size(); path++)
 | |
|       if (! holes.elementAt(path).isSegmentOutside(r))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the Rectangle2D specified by r is completely contained
 | |
|    * within this Area, returns false otherwise.<P>
 | |
|    *
 | |
|    * This method should always produce the correct results, unlike for other
 | |
|    * classes in geom.
 | |
|    *
 | |
|    * @param r the rectangle.
 | |
|    * @return <code>true</code> if the rectangle is considered contained
 | |
|    *
 | |
|    * @throws NullPointerException if <code>r</code> is <code>null</code>.
 | |
|    */
 | |
|   public boolean contains(Rectangle2D r)
 | |
|   {
 | |
|     return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the rectangle specified by (x,y) as the upper-left
 | |
|    * and with width w and height h intersects any part of this Area.
 | |
|    *
 | |
|    * @param x  the x-coordinate for the rectangle.
 | |
|    * @param y  the y-coordinate for the rectangle.
 | |
|    * @param w  the width of the rectangle.
 | |
|    * @param h  the height of the rectangle.
 | |
|    * @return <code>true</code> if the rectangle intersects the area,
 | |
|    *         <code>false</code> otherwise.
 | |
|    */
 | |
|   public boolean intersects(double x, double y, double w, double h)
 | |
|   {
 | |
|     if (solids.size() == 0)
 | |
|       return false;
 | |
| 
 | |
|     LineSegment[] l = new LineSegment[4];
 | |
|     l[0] = new LineSegment(x, y, x + w, y);
 | |
|     l[1] = new LineSegment(x, y + h, x + w, y + h);
 | |
|     l[2] = new LineSegment(x, y, x, y + h);
 | |
|     l[3] = new LineSegment(x + w, y, x + w, y + h);
 | |
| 
 | |
|     // Return true on any intersection
 | |
|     for (int i = 0; i < 4; i++)
 | |
|       {
 | |
|         for (int path = 0; path < solids.size(); path++)
 | |
|           {
 | |
|             Segment v;
 | |
|             Segment start;
 | |
|             start = v = solids.elementAt(path);
 | |
|             do
 | |
|               {
 | |
|                 if (l[i].hasIntersections(v))
 | |
|                   return true;
 | |
|                 v = v.next;
 | |
|               }
 | |
|             while (v != start);
 | |
|           }
 | |
|         for (int path = 0; path < holes.size(); path++)
 | |
|           {
 | |
|             Segment v;
 | |
|             Segment start;
 | |
|             start = v = holes.elementAt(path);
 | |
|             do
 | |
|               {
 | |
|                 if (l[i].hasIntersections(v))
 | |
|                   return true;
 | |
|                 v = v.next;
 | |
|               }
 | |
|             while (v != start);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     // Non-intersecting, Is any point inside?
 | |
|     if (contains(x + w * 0.5, y + h * 0.5))
 | |
|       return true;
 | |
| 
 | |
|     // What if the rectangle encloses the whole shape?
 | |
|     Point2D p = solids.elementAt(0).getMidPoint();
 | |
|     if ((new Rectangle2D.Double(x, y, w, h)).contains(p))
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if the Rectangle2D specified by r intersects any
 | |
|    * part of this Area.
 | |
|    * @param r  the rectangle to test intersection with (<code>null</code>
 | |
|    *           not permitted).
 | |
|    * @return <code>true</code> if the rectangle intersects the area,
 | |
|    *         <code>false</code> otherwise.
 | |
|    * @throws NullPointerException if <code>r</code> is <code>null</code>.
 | |
|    */
 | |
|   public boolean intersects(Rectangle2D r)
 | |
|   {
 | |
|     return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a PathIterator object defining the contour of this Area,
 | |
|    * transformed by at.
 | |
|    *
 | |
|    * @param at  the transform.
 | |
|    * @return A path iterator.
 | |
|    */
 | |
|   public PathIterator getPathIterator(AffineTransform at)
 | |
|   {
 | |
|     return (new AreaIterator(at));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a flattened PathIterator object defining the contour of this
 | |
|    * Area, transformed by at and with a defined flatness.
 | |
|    *
 | |
|    * @param at  the transform.
 | |
|    * @param flatness the flatness.
 | |
|    * @return A path iterator.
 | |
|    */
 | |
|   public PathIterator getPathIterator(AffineTransform at, double flatness)
 | |
|   {
 | |
|     return new FlatteningPathIterator(getPathIterator(at), flatness);
 | |
|   }
 | |
| 
 | |
|   //---------------------------------------------------------------------
 | |
|   // Non-public methods and classes
 | |
| 
 | |
|   /**
 | |
|    * Private pathiterator object.
 | |
|    */
 | |
|   private class AreaIterator implements PathIterator
 | |
|   {
 | |
|     private Vector<IteratorSegment> segments;
 | |
|     private int index;
 | |
|     private AffineTransform at;
 | |
| 
 | |
|     // Simple compound type for segments
 | |
|     class IteratorSegment
 | |
|     {
 | |
|       int type;
 | |
|       double[] coords;
 | |
| 
 | |
|       IteratorSegment()
 | |
|       {
 | |
|         coords = new double[6];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * The contructor here does most of the work,
 | |
|      * creates a vector of IteratorSegments, which can
 | |
|      * readily be returned
 | |
|      */
 | |
|     public AreaIterator(AffineTransform at)
 | |
|     {
 | |
|       this.at = at;
 | |
|       index = 0;
 | |
|       segments = new Vector<IteratorSegment>();
 | |
|       Vector<Segment> allpaths = new Vector<Segment>();
 | |
|       allpaths.addAll(solids);
 | |
|       allpaths.addAll(holes);
 | |
| 
 | |
|       for (int i = 0; i < allpaths.size(); i++)
 | |
|         {
 | |
|           Segment v = allpaths.elementAt(i);
 | |
|           Segment start = v;
 | |
| 
 | |
|           IteratorSegment is = new IteratorSegment();
 | |
|           is.type = SEG_MOVETO;
 | |
|           is.coords[0] = start.P1.getX();
 | |
|           is.coords[1] = start.P1.getY();
 | |
|           segments.add(is);
 | |
| 
 | |
|           do
 | |
|             {
 | |
|               is = new IteratorSegment();
 | |
|               is.type = v.pathIteratorFormat(is.coords);
 | |
|               segments.add(is);
 | |
|               v = v.next;
 | |
|             }
 | |
|           while (v != start);
 | |
| 
 | |
|           is = new IteratorSegment();
 | |
|           is.type = SEG_CLOSE;
 | |
|           segments.add(is);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     public int currentSegment(double[] coords)
 | |
|     {
 | |
|       IteratorSegment s = segments.elementAt(index);
 | |
|       if (at != null)
 | |
|         at.transform(s.coords, 0, coords, 0, 3);
 | |
|       else
 | |
|         for (int i = 0; i < 6; i++)
 | |
|           coords[i] = s.coords[i];
 | |
|       return (s.type);
 | |
|     }
 | |
| 
 | |
|     public int currentSegment(float[] coords)
 | |
|     {
 | |
|       IteratorSegment s = segments.elementAt(index);
 | |
|       double[] d = new double[6];
 | |
|       if (at != null)
 | |
|         {
 | |
|           at.transform(s.coords, 0, d, 0, 3);
 | |
|           for (int i = 0; i < 6; i++)
 | |
|             coords[i] = (float) d[i];
 | |
|         }
 | |
|       else
 | |
|         for (int i = 0; i < 6; i++)
 | |
|           coords[i] = (float) s.coords[i];
 | |
|       return (s.type);
 | |
|     }
 | |
| 
 | |
|     // Note that the winding rule should not matter here,
 | |
|     // EVEN_ODD is chosen because it renders faster.
 | |
|     public int getWindingRule()
 | |
|     {
 | |
|       return (PathIterator.WIND_EVEN_ODD);
 | |
|     }
 | |
| 
 | |
|     public boolean isDone()
 | |
|     {
 | |
|       return (index >= segments.size());
 | |
|     }
 | |
| 
 | |
|     public void next()
 | |
|     {
 | |
|       index++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs the fundamental task of the Weiler-Atherton algorithm,
 | |
|    * traverse a list of segments, for each segment:
 | |
|    * Follow it, removing segments from the list and switching paths
 | |
|    * at each node. Do so until the starting segment is reached.
 | |
|    *
 | |
|    * Returns a Vector of the resulting paths.
 | |
|    */
 | |
|   private Vector<Segment> weilerAtherton(Vector<Segment> segments)
 | |
|   {
 | |
|     Vector<Segment> paths = new Vector<Segment>();
 | |
|     while (segments.size() > 0)
 | |
|       {
 | |
|         // Iterate over the path
 | |
|         Segment start = segments.elementAt(0);
 | |
|         Segment s = start;
 | |
|         do
 | |
|           {
 | |
|             segments.remove(s);
 | |
|             if (s.node != null)
 | |
|               { // switch over
 | |
|                 s.next = s.node;
 | |
|                 s.node = null;
 | |
|               }
 | |
|             s = s.next; // continue
 | |
|           }
 | |
|         while (s != start);
 | |
| 
 | |
|         paths.add(start);
 | |
|       }
 | |
|     return paths;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A small wrapper class to store intersection points
 | |
|    */
 | |
|   private class Intersection
 | |
|   {
 | |
|     Point2D p; // the 2D point of intersection
 | |
|     double ta; // the parametric value on a
 | |
|     double tb; // the parametric value on b
 | |
|     Segment seg; // segment placeholder for node setting
 | |
| 
 | |
|     public Intersection(Point2D p, double ta, double tb)
 | |
|     {
 | |
|       this.p = p;
 | |
|       this.ta = ta;
 | |
|       this.tb = tb;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the recursion depth necessary to approximate the
 | |
|    * curve by line segments within the error RS_EPSILON.
 | |
|    *
 | |
|    * This is done with Wang's formula:
 | |
|    * L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|)
 | |
|    * r0 = log4(sqrt(2)*N*(N-1)*L0/8e)
 | |
|    * Where e is the maximum distance error (RS_EPSILON)
 | |
|    */
 | |
|   private int getRecursionDepth(CubicSegment curve)
 | |
|   {
 | |
|     double x0 = curve.P1.getX();
 | |
|     double y0 = curve.P1.getY();
 | |
| 
 | |
|     double x1 = curve.cp1.getX();
 | |
|     double y1 = curve.cp1.getY();
 | |
| 
 | |
|     double x2 = curve.cp2.getX();
 | |
|     double y2 = curve.cp2.getY();
 | |
| 
 | |
|     double x3 = curve.P2.getX();
 | |
|     double y3 = curve.P2.getY();
 | |
| 
 | |
|     double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2),
 | |
|                                   Math.abs(x1 - 2 * x2 + x3)),
 | |
|                          Math.max(Math.abs(y0 - 2 * y1 + y2),
 | |
|                                   Math.abs(y1 - 2 * y2 + y3)));
 | |
| 
 | |
|     double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON);
 | |
| 
 | |
|     int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0));
 | |
|     return (r0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Performs recursive subdivision:
 | |
|    * @param c1 - curve 1
 | |
|    * @param c2 - curve 2
 | |
|    * @param depth1 - recursion depth of curve 1
 | |
|    * @param depth2 - recursion depth of curve 2
 | |
|    * @param t1 - global parametric value of the first curve's starting point
 | |
|    * @param t2 - global parametric value of the second curve's starting point
 | |
|    * @param w1 - global parametric length of curve 1
 | |
|    * @param w2 - global parametric length of curve 2
 | |
|    *
 | |
|    * The final four parameters are for keeping track of the parametric
 | |
|    * value of the curve. For a full curve t = 0, w = 1, w is halved with
 | |
|    * each subdivision.
 | |
|    */
 | |
|   private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2,
 | |
|                                   int depth1, int depth2, double t1,
 | |
|                                   double t2, double w1, double w2)
 | |
|   {
 | |
|     boolean flat1 = depth1 <= 0;
 | |
|     boolean flat2 = depth2 <= 0;
 | |
| 
 | |
|     if (flat1 && flat2)
 | |
|       {
 | |
|         double xlk = c1.getP2().getX() - c1.getP1().getX();
 | |
|         double ylk = c1.getP2().getY() - c1.getP1().getY();
 | |
| 
 | |
|         double xnm = c2.getP2().getX() - c2.getP1().getX();
 | |
|         double ynm = c2.getP2().getY() - c2.getP1().getY();
 | |
| 
 | |
|         double xmk = c2.getP1().getX() - c1.getP1().getX();
 | |
|         double ymk = c2.getP1().getY() - c1.getP1().getY();
 | |
|         double det = xnm * ylk - ynm * xlk;
 | |
| 
 | |
|         if (det + 1.0 == 1.0)
 | |
|           return;
 | |
| 
 | |
|         double detinv = 1.0 / det;
 | |
|         double s = (xnm * ymk - ynm * xmk) * detinv;
 | |
|         double t = (xlk * ymk - ylk * xmk) * detinv;
 | |
|         if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0))
 | |
|           return;
 | |
| 
 | |
|         double[] temp = new double[2];
 | |
|         temp[0] = t1 + s * w1;
 | |
|         temp[1] = t2 + t * w1;
 | |
|         ccIntersections.add(temp);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     CubicCurve2D.Double c11 = new CubicCurve2D.Double();
 | |
|     CubicCurve2D.Double c12 = new CubicCurve2D.Double();
 | |
|     CubicCurve2D.Double c21 = new CubicCurve2D.Double();
 | |
|     CubicCurve2D.Double c22 = new CubicCurve2D.Double();
 | |
| 
 | |
|     if (! flat1 && ! flat2)
 | |
|       {
 | |
|         depth1--;
 | |
|         depth2--;
 | |
|         w1 = w1 * 0.5;
 | |
|         w2 = w2 * 0.5;
 | |
|         c1.subdivide(c11, c12);
 | |
|         c2.subdivide(c21, c22);
 | |
|         if (c11.getBounds2D().intersects(c21.getBounds2D()))
 | |
|           recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2);
 | |
|         if (c11.getBounds2D().intersects(c22.getBounds2D()))
 | |
|           recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2);
 | |
|         if (c12.getBounds2D().intersects(c21.getBounds2D()))
 | |
|           recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2);
 | |
|         if (c12.getBounds2D().intersects(c22.getBounds2D()))
 | |
|           recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     if (! flat1)
 | |
|       {
 | |
|         depth1--;
 | |
|         c1.subdivide(c11, c12);
 | |
|         w1 = w1 * 0.5;
 | |
|         if (c11.getBounds2D().intersects(c2.getBounds2D()))
 | |
|           recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2);
 | |
|         if (c12.getBounds2D().intersects(c2.getBounds2D()))
 | |
|           recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     depth2--;
 | |
|     c2.subdivide(c21, c22);
 | |
|     w2 = w2 * 0.5;
 | |
|     if (c1.getBounds2D().intersects(c21.getBounds2D()))
 | |
|       recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2);
 | |
|     if (c1.getBounds2D().intersects(c22.getBounds2D()))
 | |
|       recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a set of interesections between two Cubic segments
 | |
|    * Or null if no intersections were found.
 | |
|    *
 | |
|    * The method used to find the intersection is recursive midpoint
 | |
|    * subdivision. Outline description:
 | |
|    *
 | |
|    * 1) Check if the bounding boxes of the curves intersect,
 | |
|    * 2) If so, divide the curves in the middle and test the bounding
 | |
|    * boxes again,
 | |
|    * 3) Repeat until a maximum recursion depth has been reached, where
 | |
|    * the intersecting curves can be approximated by line segments.
 | |
|    *
 | |
|    * This is a reasonably accurate method, although the recursion depth
 | |
|    * is typically around 20, the bounding-box tests allow for significant
 | |
|    * pruning of the subdivision tree.
 | |
|    *
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2)
 | |
|   {
 | |
|     Rectangle2D r1 = curve1.getBounds();
 | |
|     Rectangle2D r2 = curve2.getBounds();
 | |
| 
 | |
|     if (! r1.intersects(r2))
 | |
|       return null;
 | |
| 
 | |
|     ccIntersections = new Vector<double[]>();
 | |
|     recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(),
 | |
|                        getRecursionDepth(curve1), getRecursionDepth(curve2),
 | |
|                        0.0, 0.0, 1.0, 1.0);
 | |
| 
 | |
|     if (ccIntersections.size() == 0)
 | |
|       return null;
 | |
| 
 | |
|     Intersection[] results = new Intersection[ccIntersections.size()];
 | |
|     for (int i = 0; i < ccIntersections.size(); i++)
 | |
|       {
 | |
|         double[] temp = ccIntersections.elementAt(i);
 | |
|         results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0],
 | |
|                                       temp[1]);
 | |
|       }
 | |
|     ccIntersections = null;
 | |
|     return (results);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the intersections between a line and a quadratic bezier
 | |
|    * Or null if no intersections are found.
 | |
|    * This is done through combining the line's equation with the
 | |
|    * parametric form of the Bezier and solving the resulting quadratic.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c)
 | |
|   {
 | |
|     double[] y = new double[3];
 | |
|     double[] x = new double[3];
 | |
|     double[] r = new double[3];
 | |
|     int nRoots;
 | |
|     double x0 = c.P1.getX();
 | |
|     double y0 = c.P1.getY();
 | |
|     double x1 = c.cp.getX();
 | |
|     double y1 = c.cp.getY();
 | |
|     double x2 = c.P2.getX();
 | |
|     double y2 = c.P2.getY();
 | |
| 
 | |
|     double lx0 = l.P1.getX();
 | |
|     double ly0 = l.P1.getY();
 | |
|     double lx1 = l.P2.getX();
 | |
|     double ly1 = l.P2.getY();
 | |
|     double dx = lx1 - lx0;
 | |
|     double dy = ly1 - ly0;
 | |
| 
 | |
|     // form r(t) = y(t) - x(t) for the bezier
 | |
|     y[0] = y0;
 | |
|     y[1] = 2 * (y1 - y0);
 | |
|     y[2] = (y2 - 2 * y1 + y0);
 | |
| 
 | |
|     x[0] = x0;
 | |
|     x[1] = 2 * (x1 - x0);
 | |
|     x[2] = (x2 - 2 * x1 + x0);
 | |
| 
 | |
|     // a point, not a line
 | |
|     if (dy == 0 && dx == 0)
 | |
|       return null;
 | |
| 
 | |
|     // line on y axis
 | |
|     if (dx == 0 || (dy / dx) > 1.0)
 | |
|       {
 | |
|         double k = dx / dy;
 | |
|         x[0] -= lx0;
 | |
|         y[0] -= ly0;
 | |
|         y[0] *= k;
 | |
|         y[1] *= k;
 | |
|         y[2] *= k;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         double k = dy / dx;
 | |
|         x[0] -= lx0;
 | |
|         y[0] -= ly0;
 | |
|         x[0] *= k;
 | |
|         x[1] *= k;
 | |
|         x[2] *= k;
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < 3; i++)
 | |
|       r[i] = y[i] - x[i];
 | |
| 
 | |
|     if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0)
 | |
|       {
 | |
|         Intersection[] temp = new Intersection[nRoots];
 | |
|         int intersections = 0;
 | |
|         for (int i = 0; i < nRoots; i++)
 | |
|           {
 | |
|             double t = r[i];
 | |
|             if (t >= 0.0 && t <= 1.0)
 | |
|               {
 | |
|                 Point2D p = c.evaluatePoint(t);
 | |
| 
 | |
|                 // if the line is on an axis, snap the point to that axis.
 | |
|                 if (dx == 0)
 | |
|                   p.setLocation(lx0, p.getY());
 | |
|                 if (dy == 0)
 | |
|                   p.setLocation(p.getX(), ly0);
 | |
| 
 | |
|                 if (p.getX() <= Math.max(lx0, lx1)
 | |
|                     && p.getX() >= Math.min(lx0, lx1)
 | |
|                     && p.getY() <= Math.max(ly0, ly1)
 | |
|                     && p.getY() >= Math.min(ly0, ly1))
 | |
|                   {
 | |
|                     double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
 | |
|                     temp[i] = new Intersection(p, lineparameter, t);
 | |
|                     intersections++;
 | |
|                   }
 | |
|               }
 | |
|             else
 | |
|               temp[i] = null;
 | |
|           }
 | |
|         if (intersections == 0)
 | |
|           return null;
 | |
| 
 | |
|         Intersection[] rValues = new Intersection[intersections];
 | |
| 
 | |
|         for (int i = 0; i < nRoots; i++)
 | |
|           if (temp[i] != null)
 | |
|             rValues[--intersections] = temp[i];
 | |
|         return (rValues);
 | |
|       }
 | |
|     return null;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the intersections between a line and a cubic segment
 | |
|    * This is done through combining the line's equation with the
 | |
|    * parametric form of the Bezier and solving the resulting quadratic.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c)
 | |
|   {
 | |
|     double[] y = new double[4];
 | |
|     double[] x = new double[4];
 | |
|     double[] r = new double[4];
 | |
|     int nRoots;
 | |
|     double x0 = c.P1.getX();
 | |
|     double y0 = c.P1.getY();
 | |
|     double x1 = c.cp1.getX();
 | |
|     double y1 = c.cp1.getY();
 | |
|     double x2 = c.cp2.getX();
 | |
|     double y2 = c.cp2.getY();
 | |
|     double x3 = c.P2.getX();
 | |
|     double y3 = c.P2.getY();
 | |
| 
 | |
|     double lx0 = l.P1.getX();
 | |
|     double ly0 = l.P1.getY();
 | |
|     double lx1 = l.P2.getX();
 | |
|     double ly1 = l.P2.getY();
 | |
|     double dx = lx1 - lx0;
 | |
|     double dy = ly1 - ly0;
 | |
| 
 | |
|     // form r(t) = y(t) - x(t) for the bezier
 | |
|     y[0] = y0;
 | |
|     y[1] = 3 * (y1 - y0);
 | |
|     y[2] = 3 * (y2 + y0 - 2 * y1);
 | |
|     y[3] = y3 - 3 * y2 + 3 * y1 - y0;
 | |
| 
 | |
|     x[0] = x0;
 | |
|     x[1] = 3 * (x1 - x0);
 | |
|     x[2] = 3 * (x2 + x0 - 2 * x1);
 | |
|     x[3] = x3 - 3 * x2 + 3 * x1 - x0;
 | |
| 
 | |
|     // a point, not a line
 | |
|     if (dy == 0 && dx == 0)
 | |
|       return null;
 | |
| 
 | |
|     // line on y axis
 | |
|     if (dx == 0 || (dy / dx) > 1.0)
 | |
|       {
 | |
|         double k = dx / dy;
 | |
|         x[0] -= lx0;
 | |
|         y[0] -= ly0;
 | |
|         y[0] *= k;
 | |
|         y[1] *= k;
 | |
|         y[2] *= k;
 | |
|         y[3] *= k;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         double k = dy / dx;
 | |
|         x[0] -= lx0;
 | |
|         y[0] -= ly0;
 | |
|         x[0] *= k;
 | |
|         x[1] *= k;
 | |
|         x[2] *= k;
 | |
|         x[3] *= k;
 | |
|       }
 | |
|     for (int i = 0; i < 4; i++)
 | |
|       r[i] = y[i] - x[i];
 | |
| 
 | |
|     if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
 | |
|       {
 | |
|         Intersection[] temp = new Intersection[nRoots];
 | |
|         int intersections = 0;
 | |
|         for (int i = 0; i < nRoots; i++)
 | |
|           {
 | |
|             double t = r[i];
 | |
|             if (t >= 0.0 && t <= 1.0)
 | |
|               {
 | |
|                 // if the line is on an axis, snap the point to that axis.
 | |
|                 Point2D p = c.evaluatePoint(t);
 | |
|                 if (dx == 0)
 | |
|                   p.setLocation(lx0, p.getY());
 | |
|                 if (dy == 0)
 | |
|                   p.setLocation(p.getX(), ly0);
 | |
| 
 | |
|                 if (p.getX() <= Math.max(lx0, lx1)
 | |
|                     && p.getX() >= Math.min(lx0, lx1)
 | |
|                     && p.getY() <= Math.max(ly0, ly1)
 | |
|                     && p.getY() >= Math.min(ly0, ly1))
 | |
|                   {
 | |
|                     double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
 | |
|                     temp[i] = new Intersection(p, lineparameter, t);
 | |
|                     intersections++;
 | |
|                   }
 | |
|               }
 | |
|             else
 | |
|               temp[i] = null;
 | |
|           }
 | |
| 
 | |
|         if (intersections == 0)
 | |
|           return null;
 | |
| 
 | |
|         Intersection[] rValues = new Intersection[intersections];
 | |
|         for (int i = 0; i < nRoots; i++)
 | |
|           if (temp[i] != null)
 | |
|             rValues[--intersections] = temp[i];
 | |
|         return (rValues);
 | |
|       }
 | |
|     return null;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the intersection between two lines, or null if there is no
 | |
|    * intersection.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   Intersection linesIntersect(LineSegment a, LineSegment b)
 | |
|   {
 | |
|     Point2D P1 = a.P1;
 | |
|     Point2D P2 = a.P2;
 | |
|     Point2D P3 = b.P1;
 | |
|     Point2D P4 = b.P2;
 | |
| 
 | |
|     if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(),
 | |
|                                 P3.getX(), P3.getY(), P4.getX(), P4.getY()))
 | |
|       return null;
 | |
| 
 | |
|     double x1 = P1.getX();
 | |
|     double y1 = P1.getY();
 | |
|     double rx = P2.getX() - x1;
 | |
|     double ry = P2.getY() - y1;
 | |
| 
 | |
|     double x2 = P3.getX();
 | |
|     double y2 = P3.getY();
 | |
|     double sx = P4.getX() - x2;
 | |
|     double sy = P4.getY() - y2;
 | |
| 
 | |
|     double determinant = sx * ry - sy * rx;
 | |
|     double nom = (sx * (y2 - y1) + sy * (x1 - x2));
 | |
| 
 | |
|     // Parallel lines don't intersect. At least we pretend they don't.
 | |
|     if (Math.abs(determinant) < EPSILON)
 | |
|       return null;
 | |
| 
 | |
|     nom = nom / determinant;
 | |
| 
 | |
|     if (nom == 0.0)
 | |
|       return null;
 | |
|     if (nom == 1.0)
 | |
|       return null;
 | |
| 
 | |
|     Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
 | |
| 
 | |
|     return new Intersection(p, p.distance(P1) / P1.distance(P2),
 | |
|                             p.distance(P3) / P3.distance(P4));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines if two points are equal, within an error margin
 | |
|    * 'snap distance'
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   boolean pointEquals(Point2D a, Point2D b)
 | |
|   {
 | |
|     return (a.equals(b) || a.distance(b) < PE_EPSILON);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method
 | |
|    * Turns a shape into a Vector of Segments
 | |
|    */
 | |
|   private Vector<Segment> makeSegment(Shape s)
 | |
|   {
 | |
|     Vector<Segment> paths = new Vector<Segment>();
 | |
|     PathIterator pi = s.getPathIterator(null);
 | |
|     double[] coords = new double[6];
 | |
|     Segment subpath = null;
 | |
|     Segment current = null;
 | |
|     double cx;
 | |
|     double cy;
 | |
|     double subpathx;
 | |
|     double subpathy;
 | |
|     cx = cy = subpathx = subpathy = 0.0;
 | |
| 
 | |
|     this.windingRule = pi.getWindingRule();
 | |
| 
 | |
|     while (! pi.isDone())
 | |
|       {
 | |
|         Segment v;
 | |
|         switch (pi.currentSegment(coords))
 | |
|           {
 | |
|           case PathIterator.SEG_MOVETO:
 | |
|             if (subpath != null)
 | |
|               { // close existing open path
 | |
|                 current.next = new LineSegment(cx, cy, subpathx, subpathy);
 | |
|                 current = current.next;
 | |
|                 current.next = subpath;
 | |
|               }
 | |
|             subpath = null;
 | |
|             subpathx = cx = coords[0];
 | |
|             subpathy = cy = coords[1];
 | |
|             break;
 | |
| 
 | |
|           // replace 'close' with a line-to.
 | |
|           case PathIterator.SEG_CLOSE:
 | |
|             if (subpath != null && (subpathx != cx || subpathy != cy))
 | |
|               {
 | |
|                 current.next = new LineSegment(cx, cy, subpathx, subpathy);
 | |
|                 current = current.next;
 | |
|                 current.next = subpath;
 | |
|                 cx = subpathx;
 | |
|                 cy = subpathy;
 | |
|                 subpath = null;
 | |
|               }
 | |
|             else if (subpath != null)
 | |
|               {
 | |
|                 current.next = subpath;
 | |
|                 subpath = null;
 | |
|               }
 | |
|             break;
 | |
|           case PathIterator.SEG_LINETO:
 | |
|             if (cx != coords[0] || cy != coords[1])
 | |
|               {
 | |
|                 v = new LineSegment(cx, cy, coords[0], coords[1]);
 | |
|                 if (subpath == null)
 | |
|                   {
 | |
|                     subpath = current = v;
 | |
|                     paths.add(subpath);
 | |
|                   }
 | |
|                 else
 | |
|                   {
 | |
|                     current.next = v;
 | |
|                     current = current.next;
 | |
|                   }
 | |
|                 cx = coords[0];
 | |
|                 cy = coords[1];
 | |
|               }
 | |
|             break;
 | |
|           case PathIterator.SEG_QUADTO:
 | |
|             v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2],
 | |
|                                 coords[3]);
 | |
|             if (subpath == null)
 | |
|               {
 | |
|                 subpath = current = v;
 | |
|                 paths.add(subpath);
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 current.next = v;
 | |
|                 current = current.next;
 | |
|               }
 | |
|             cx = coords[2];
 | |
|             cy = coords[3];
 | |
|             break;
 | |
|           case PathIterator.SEG_CUBICTO:
 | |
|             v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2],
 | |
|                                  coords[3], coords[4], coords[5]);
 | |
|             if (subpath == null)
 | |
|               {
 | |
|                 subpath = current = v;
 | |
|                 paths.add(subpath);
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 current.next = v;
 | |
|                 current = current.next;
 | |
|               }
 | |
| 
 | |
|             // check if the cubic is self-intersecting
 | |
|             double[] lpts = ((CubicSegment) v).getLoop();
 | |
|             if (lpts != null)
 | |
|               {
 | |
|                 // if it is, break off the loop into its own path.
 | |
|                 v.subdivideInsert(lpts[0]);
 | |
|                 v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0]));
 | |
| 
 | |
|                 CubicSegment loop = (CubicSegment) v.next;
 | |
|                 v.next = loop.next;
 | |
|                 loop.next = loop;
 | |
| 
 | |
|                 v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points
 | |
|                 paths.add(loop);
 | |
|                 current = v.next;
 | |
|               }
 | |
| 
 | |
|             cx = coords[4];
 | |
|             cy = coords[5];
 | |
|             break;
 | |
|           }
 | |
|         pi.next();
 | |
|       }
 | |
| 
 | |
|     if (subpath != null)
 | |
|       { // close any open path
 | |
|         if (subpathx != cx || subpathy != cy)
 | |
|           {
 | |
|             current.next = new LineSegment(cx, cy, subpathx, subpathy);
 | |
|             current = current.next;
 | |
|             current.next = subpath;
 | |
|           }
 | |
|         else
 | |
|           current.next = subpath;
 | |
|       }
 | |
| 
 | |
|     if (paths.size() == 0)
 | |
|       return (null);
 | |
| 
 | |
|     return (paths);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the intersections of two separate closed paths,
 | |
|    * A and B, split the segments at the intersection points,
 | |
|    * and create nodes pointing from one to the other
 | |
|    */
 | |
|   private int createNodes(Segment A, Segment B)
 | |
|   {
 | |
|     int nNodes = 0;
 | |
| 
 | |
|     Segment a = A;
 | |
|     Segment b = B;
 | |
| 
 | |
|     do
 | |
|       {
 | |
|         do
 | |
|           {
 | |
|             nNodes += a.splitIntersections(b);
 | |
|             b = b.next;
 | |
|           }
 | |
|         while (b != B);
 | |
| 
 | |
|         a = a.next; // move to the next segment
 | |
|       }
 | |
|     while (a != A); // until one wrap.
 | |
| 
 | |
|     return nNodes;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the intersections of a path with itself.
 | |
|    * Splits the segments at the intersection points,
 | |
|    * and create nodes pointing from one to the other.
 | |
|    */
 | |
|   private int createNodesSelf(Segment A)
 | |
|   {
 | |
|     int nNodes = 0;
 | |
|     Segment a = A;
 | |
| 
 | |
|     if (A.next == A)
 | |
|       return 0;
 | |
| 
 | |
|     do
 | |
|       {
 | |
|         Segment b = a.next;
 | |
|         do
 | |
|           {
 | |
|             if (b != a) // necessary
 | |
|               nNodes += a.splitIntersections(b);
 | |
|             b = b.next;
 | |
|           }
 | |
|         while (b != A);
 | |
|         a = a.next; // move to the next segment
 | |
|       }
 | |
|     while (a != A); // until one wrap.
 | |
| 
 | |
|     return (nNodes);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Deletes paths which are redundant from a list, (i.e. solid areas within
 | |
|    * solid areas) Clears any nodes. Sorts the remaining paths into solids
 | |
|    * and holes, sets their orientation and sets the solids and holes lists.
 | |
|    */
 | |
|   private void deleteRedundantPaths(Vector<Segment> paths)
 | |
|   {
 | |
|     int npaths = paths.size();
 | |
| 
 | |
|     int[][] contains = new int[npaths][npaths];
 | |
|     int[][] windingNumbers = new int[npaths][2];
 | |
|     int neg;
 | |
|     Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes
 | |
| 
 | |
|     neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1);
 | |
| 
 | |
|     for (int i = 0; i < npaths; i++)
 | |
|       bb[i] = paths.elementAt(i).getPathBounds();
 | |
| 
 | |
|     // Find which path contains which, assign winding numbers
 | |
|     for (int i = 0; i < npaths; i++)
 | |
|       {
 | |
|         Segment pathA = paths.elementAt(i);
 | |
|         pathA.nullNodes(); // remove any now-redundant nodes, in case.
 | |
|         int windingA = pathA.hasClockwiseOrientation() ? 1 : neg;
 | |
| 
 | |
|         for (int j = 0; j < npaths; j++)
 | |
|           if (i != j)
 | |
|             {
 | |
|               Segment pathB = paths.elementAt(j);
 | |
| 
 | |
|               // A contains B
 | |
|               if (bb[i].intersects(bb[j]))
 | |
|                 {
 | |
|                   Segment s = pathB.next;
 | |
|                   while (s.P1.getY() == s.P2.getY() && s != pathB)
 | |
|                     s = s.next;
 | |
|                   Point2D p = s.getMidPoint();
 | |
|                   if (pathA.contains(p.getX(), p.getY()))
 | |
|                     contains[i][j] = windingA;
 | |
|                 }
 | |
|               else
 | |
|                 // A does not contain B
 | |
|                 contains[i][j] = 0;
 | |
|             }
 | |
|           else
 | |
|             contains[i][j] = windingA; // i == j
 | |
|       }
 | |
| 
 | |
|     for (int i = 0; i < npaths; i++)
 | |
|       {
 | |
|         windingNumbers[i][0] = 0;
 | |
|         for (int j = 0; j < npaths; j++)
 | |
|           windingNumbers[i][0] += contains[j][i];
 | |
|         windingNumbers[i][1] = contains[i][i];
 | |
|       }
 | |
| 
 | |
|     Vector<Segment> solids = new Vector<Segment>();
 | |
|     Vector<Segment> holes = new Vector<Segment>();
 | |
| 
 | |
|     if (windingRule == PathIterator.WIND_NON_ZERO)
 | |
|       {
 | |
|         for (int i = 0; i < npaths; i++)
 | |
|           {
 | |
|             if (windingNumbers[i][0] == 0)
 | |
|               holes.add(paths.elementAt(i));
 | |
|             else if (windingNumbers[i][0] - windingNumbers[i][1] == 0
 | |
|                      && Math.abs(windingNumbers[i][0]) == 1)
 | |
|               solids.add(paths.elementAt(i));
 | |
|           }
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         windingRule = PathIterator.WIND_NON_ZERO;
 | |
|         for (int i = 0; i < npaths; i++)
 | |
|           {
 | |
|             if ((windingNumbers[i][0] & 1) == 0)
 | |
|               holes.add(paths.elementAt(i));
 | |
|             else if ((windingNumbers[i][0] & 1) == 1)
 | |
|               solids.add(paths.elementAt(i));
 | |
|           }
 | |
|       }
 | |
| 
 | |
|     setDirection(holes, false);
 | |
|     setDirection(solids, true);
 | |
|     this.holes = holes;
 | |
|     this.solids = solids;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Sets the winding direction of a Vector of paths
 | |
|    * @param clockwise gives the direction,
 | |
|    * true = clockwise, false = counter-clockwise
 | |
|    */
 | |
|   private void setDirection(Vector<Segment> paths, boolean clockwise)
 | |
|   {
 | |
|     Segment v;
 | |
|     for (int i = 0; i < paths.size(); i++)
 | |
|       {
 | |
|         v = paths.elementAt(i);
 | |
|         if (clockwise != v.hasClockwiseOrientation())
 | |
|           v.reverseAll();
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Class representing a linked-list of vertices forming a closed polygon,
 | |
|    * convex or concave, without holes.
 | |
|    */
 | |
|   private abstract class Segment implements Cloneable
 | |
|   {
 | |
|     // segment type, PathIterator segment types are used.
 | |
|     Point2D P1;
 | |
|     Point2D P2;
 | |
|     Segment next;
 | |
|     Segment node;
 | |
| 
 | |
|     Segment()
 | |
|     {
 | |
|       P1 = P2 = null;
 | |
|       node = next = null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Reverses the direction of a single segment
 | |
|      */
 | |
|     abstract void reverseCoords();
 | |
| 
 | |
|     /**
 | |
|      * Returns the segment's midpoint
 | |
|      */
 | |
|     abstract Point2D getMidPoint();
 | |
| 
 | |
|     /**
 | |
|      * Returns the bounding box of this segment
 | |
|      */
 | |
|     abstract Rectangle2D getBounds();
 | |
| 
 | |
|     /**
 | |
|      * Transforms a single segment
 | |
|      */
 | |
|     abstract void transform(AffineTransform at);
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator type of a segment
 | |
|      */
 | |
|     abstract int getType();
 | |
| 
 | |
|     /**
 | |
|      */
 | |
|     abstract int splitIntersections(Segment b);
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator coords of a segment
 | |
|      */
 | |
|     abstract int pathIteratorFormat(double[] coords);
 | |
| 
 | |
|     /**
 | |
|      * Returns the number of intersections on the positive X axis,
 | |
|      * with the origin at (x,y), used for contains()-testing
 | |
|      *
 | |
|      * (Although that could be done by the line-intersect methods,
 | |
|      * a dedicated method is better to guarantee consitent handling
 | |
|      * of endpoint-special-cases)
 | |
|      */
 | |
|     abstract int rayCrossing(double x, double y);
 | |
| 
 | |
|     /**
 | |
|      * Subdivides the segment at parametric value t, inserting
 | |
|      * the new segment into the linked list after this,
 | |
|      * such that this becomes [0,t] and this.next becomes [t,1]
 | |
|      */
 | |
|     abstract void subdivideInsert(double t);
 | |
| 
 | |
|     /**
 | |
|      * Returns twice the area of a curve, relative the P1-P2 line
 | |
|      * Used for area calculations.
 | |
|      */
 | |
|     abstract double curveArea();
 | |
| 
 | |
|     /**
 | |
|      * Compare two segments.
 | |
|      */
 | |
|     abstract boolean equals(Segment b);
 | |
| 
 | |
|     /**
 | |
|      * Determines if this path of segments contains the point (x,y)
 | |
|      */
 | |
|     boolean contains(double x, double y)
 | |
|     {
 | |
|       Segment v = this;
 | |
|       int crossings = 0;
 | |
|       do
 | |
|         {
 | |
|           int n = v.rayCrossing(x, y);
 | |
|           crossings += n;
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
|       return ((crossings & 1) == 1);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Nulls all nodes of the path. Clean up any 'hairs'.
 | |
|      */
 | |
|     void nullNodes()
 | |
|     {
 | |
|       Segment v = this;
 | |
|       do
 | |
|         {
 | |
|           v.node = null;
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Transforms each segment in the closed path
 | |
|      */
 | |
|     void transformSegmentList(AffineTransform at)
 | |
|     {
 | |
|       Segment v = this;
 | |
|       do
 | |
|         {
 | |
|           v.transform(at);
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines the winding direction of the path
 | |
|      * By the sign of the area.
 | |
|      */
 | |
|     boolean hasClockwiseOrientation()
 | |
|     {
 | |
|       return (getSignedArea() > 0.0);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the bounds of this path
 | |
|      */
 | |
|     public Rectangle2D getPathBounds()
 | |
|     {
 | |
|       double xmin;
 | |
|       double xmax;
 | |
|       double ymin;
 | |
|       double ymax;
 | |
|       xmin = xmax = P1.getX();
 | |
|       ymin = ymax = P1.getY();
 | |
| 
 | |
|       Segment v = this;
 | |
|       do
 | |
|         {
 | |
|           Rectangle2D r = v.getBounds();
 | |
|           xmin = Math.min(r.getMinX(), xmin);
 | |
|           ymin = Math.min(r.getMinY(), ymin);
 | |
|           xmax = Math.max(r.getMaxX(), xmax);
 | |
|           ymax = Math.max(r.getMaxY(), ymax);
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
| 
 | |
|       return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Calculates twice the signed area of the path;
 | |
|      */
 | |
|     double getSignedArea()
 | |
|     {
 | |
|       Segment s;
 | |
|       double area = 0.0;
 | |
| 
 | |
|       s = this;
 | |
|       do
 | |
|         {
 | |
|           area += s.curveArea();
 | |
| 
 | |
|           area += s.P1.getX() * s.next.P1.getY()
 | |
|           - s.P1.getY() * s.next.P1.getX();
 | |
|           s = s.next;
 | |
|         }
 | |
|       while (s != this);
 | |
| 
 | |
|       return area;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Reverses the orientation of the whole polygon
 | |
|      */
 | |
|     void reverseAll()
 | |
|     {
 | |
|       reverseCoords();
 | |
|       Segment v = next;
 | |
|       Segment former = this;
 | |
|       while (v != this)
 | |
|         {
 | |
|           v.reverseCoords();
 | |
|           Segment vnext = v.next;
 | |
|           v.next = former;
 | |
|           former = v;
 | |
|           v = vnext;
 | |
|         }
 | |
|       next = former;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Inserts a Segment after this one
 | |
|      */
 | |
|     void insert(Segment v)
 | |
|     {
 | |
|       Segment n = next;
 | |
|       next = v;
 | |
|       v.next = n;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns if this segment path is polygonal
 | |
|      */
 | |
|     boolean isPolygonal()
 | |
|     {
 | |
|       Segment v = this;
 | |
|       do
 | |
|         {
 | |
|           if (! (v instanceof LineSegment))
 | |
|             return false;
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Clones this path
 | |
|      */
 | |
|     Segment cloneSegmentList() throws CloneNotSupportedException
 | |
|     {
 | |
|       Vector<Segment> list = new Vector<Segment>();
 | |
|       Segment v = next;
 | |
| 
 | |
|       while (v != this)
 | |
|         {
 | |
|           list.add(v);
 | |
|           v = v.next;
 | |
|         }
 | |
| 
 | |
|       Segment clone = (Segment) this.clone();
 | |
|       v = clone;
 | |
|       for (int i = 0; i < list.size(); i++)
 | |
|         {
 | |
|           clone.next = (Segment) list.elementAt(i).clone();
 | |
|           clone = clone.next;
 | |
|         }
 | |
|       clone.next = v;
 | |
|       return v;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates a node between this segment and segment b
 | |
|      * at the given intersection
 | |
|      * @return the number of nodes created (0 or 1)
 | |
|      */
 | |
|     int createNode(Segment b, Intersection i)
 | |
|     {
 | |
|       Point2D p = i.p;
 | |
|       if ((pointEquals(P1, p) || pointEquals(P2, p))
 | |
|           && (pointEquals(b.P1, p) || pointEquals(b.P2, p)))
 | |
|         return 0;
 | |
| 
 | |
|       subdivideInsert(i.ta);
 | |
|       b.subdivideInsert(i.tb);
 | |
| 
 | |
|       // snap points
 | |
|       b.P2 = b.next.P1 = P2 = next.P1 = i.p;
 | |
| 
 | |
|       node = b.next;
 | |
|       b.node = next;
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates multiple nodes from a list of intersections,
 | |
|      * This must be done in the order of ascending parameters,
 | |
|      * and the parameters must be recalculated in accordance
 | |
|      * with each split.
 | |
|      * @return the number of nodes created
 | |
|      */
 | |
|     protected int createNodes(Segment b, Intersection[] x)
 | |
|     {
 | |
|       Vector<Intersection> v = new Vector<Intersection>();
 | |
|       for (int i = 0; i < x.length; i++)
 | |
|         {
 | |
|           Point2D p = x[i].p;
 | |
|           if (! ((pointEquals(P1, p) || pointEquals(P2, p))
 | |
|               && (pointEquals(b.P1, p) || pointEquals(b.P2, p))))
 | |
|             v.add(x[i]);
 | |
|         }
 | |
| 
 | |
|       int nNodes = v.size();
 | |
|       Intersection[] A = new Intersection[nNodes];
 | |
|       Intersection[] B = new Intersection[nNodes];
 | |
|       for (int i = 0; i < nNodes; i++)
 | |
|         A[i] = B[i] = v.elementAt(i);
 | |
| 
 | |
|       // Create two lists sorted by the parameter
 | |
|       // Bubble sort, OK I suppose, since the number of intersections
 | |
|       // cannot be larger than 9 (cubic-cubic worst case) anyway
 | |
|       for (int i = 0; i < nNodes - 1; i++)
 | |
|         {
 | |
|           for (int j = i + 1; j < nNodes; j++)
 | |
|             {
 | |
|               if (A[i].ta > A[j].ta)
 | |
|                 {
 | |
|                   Intersection swap = A[i];
 | |
|                   A[i] = A[j];
 | |
|                   A[j] = swap;
 | |
|                 }
 | |
|               if (B[i].tb > B[j].tb)
 | |
|                 {
 | |
|                   Intersection swap = B[i];
 | |
|                   B[i] = B[j];
 | |
|                   B[j] = swap;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|       // subdivide a
 | |
|       Segment s = this;
 | |
|       for (int i = 0; i < nNodes; i++)
 | |
|         {
 | |
|           s.subdivideInsert(A[i].ta);
 | |
| 
 | |
|           // renormalize the parameters
 | |
|           for (int j = i + 1; j < nNodes; j++)
 | |
|             A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta);
 | |
| 
 | |
|           A[i].seg = s;
 | |
|           s = s.next;
 | |
|         }
 | |
| 
 | |
|       // subdivide b, set nodes
 | |
|       s = b;
 | |
|       for (int i = 0; i < nNodes; i++)
 | |
|         {
 | |
|           s.subdivideInsert(B[i].tb);
 | |
| 
 | |
|           for (int j = i + 1; j < nNodes; j++)
 | |
|             B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb);
 | |
| 
 | |
|           // set nodes
 | |
|           B[i].seg.node = s.next; // node a -> b
 | |
|           s.node = B[i].seg.next; // node b -> a
 | |
| 
 | |
|           // snap points
 | |
|           B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p;
 | |
|           s = s.next;
 | |
|         }
 | |
|       return nNodes;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines if two paths are equal.
 | |
|      * Colinear line segments are ignored in the comparison.
 | |
|      */
 | |
|     boolean pathEquals(Segment B)
 | |
|     {
 | |
|       if (! getPathBounds().equals(B.getPathBounds()))
 | |
|         return false;
 | |
| 
 | |
|       Segment startA = getTopLeft();
 | |
|       Segment startB = B.getTopLeft();
 | |
|       Segment a = startA;
 | |
|       Segment b = startB;
 | |
|       do
 | |
|         {
 | |
|           if (! a.equals(b))
 | |
|             return false;
 | |
| 
 | |
|           if (a instanceof LineSegment)
 | |
|             a = ((LineSegment) a).lastCoLinear();
 | |
|           if (b instanceof LineSegment)
 | |
|             b = ((LineSegment) b).lastCoLinear();
 | |
| 
 | |
|           a = a.next;
 | |
|           b = b.next;
 | |
|         }
 | |
|       while (a != startA && b != startB);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the segment with the top-leftmost first point
 | |
|      */
 | |
|     Segment getTopLeft()
 | |
|     {
 | |
|       Segment v = this;
 | |
|       Segment tl = this;
 | |
|       do
 | |
|         {
 | |
|           if (v.P1.getY() < tl.P1.getY())
 | |
|             tl = v;
 | |
|           else if (v.P1.getY() == tl.P1.getY())
 | |
|             {
 | |
|               if (v.P1.getX() < tl.P1.getX())
 | |
|                 tl = v;
 | |
|             }
 | |
|           v = v.next;
 | |
|         }
 | |
|       while (v != this);
 | |
|       return tl;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns if the path has a segment outside a shape
 | |
|      */
 | |
|     boolean isSegmentOutside(Shape shape)
 | |
|     {
 | |
|       return ! shape.contains(getMidPoint());
 | |
|     }
 | |
|   } // class Segment
 | |
| 
 | |
|   private class LineSegment extends Segment
 | |
|   {
 | |
|     public LineSegment(double x1, double y1, double x2, double y2)
 | |
|     {
 | |
|       super();
 | |
|       P1 = new Point2D.Double(x1, y1);
 | |
|       P2 = new Point2D.Double(x2, y2);
 | |
|     }
 | |
| 
 | |
|     public LineSegment(Point2D p1, Point2D p2)
 | |
|     {
 | |
|       super();
 | |
|       P1 = (Point2D) p1.clone();
 | |
|       P2 = (Point2D) p2.clone();
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Clones this segment
 | |
|      */
 | |
|     public Object clone()
 | |
|     {
 | |
|       return new LineSegment(P1, P2);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Transforms the segment
 | |
|      */
 | |
|     void transform(AffineTransform at)
 | |
|     {
 | |
|       P1 = at.transform(P1, null);
 | |
|       P2 = at.transform(P2, null);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Swap start and end points
 | |
|      */
 | |
|     void reverseCoords()
 | |
|     {
 | |
|       Point2D p = P1;
 | |
|       P1 = P2;
 | |
|       P2 = p;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the segment's midpoint
 | |
|      */
 | |
|     Point2D getMidPoint()
 | |
|     {
 | |
|       return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()),
 | |
|                                  0.5 * (P1.getY() + P2.getY())));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns twice the area of a curve, relative the P1-P2 line
 | |
|      * Obviously, a line does not enclose any area besides the line
 | |
|      */
 | |
|     double curveArea()
 | |
|     {
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator type of a segment
 | |
|      */
 | |
|     int getType()
 | |
|     {
 | |
|       return (PathIterator.SEG_LINETO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Subdivides the segment at parametric value t, inserting
 | |
|      * the new segment into the linked list after this,
 | |
|      * such that this becomes [0,t] and this.next becomes [t,1]
 | |
|      */
 | |
|     void subdivideInsert(double t)
 | |
|     {
 | |
|       Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(),
 | |
|                                      (P2.getY() - P1.getY()) * t + P1.getY());
 | |
|       insert(new LineSegment(p, P2));
 | |
|       P2 = p;
 | |
|       next.node = node;
 | |
|       node = null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines if two line segments are strictly colinear
 | |
|      */
 | |
|     boolean isCoLinear(LineSegment b)
 | |
|     {
 | |
|       double x1 = P1.getX();
 | |
|       double y1 = P1.getY();
 | |
|       double x2 = P2.getX();
 | |
|       double y2 = P2.getY();
 | |
|       double x3 = b.P1.getX();
 | |
|       double y3 = b.P1.getY();
 | |
|       double x4 = b.P2.getX();
 | |
|       double y4 = b.P2.getY();
 | |
| 
 | |
|       if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0)
 | |
|         return false;
 | |
| 
 | |
|       return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the last segment colinear with this one.
 | |
|      * Used in comparing paths.
 | |
|      */
 | |
|     Segment lastCoLinear()
 | |
|     {
 | |
|       Segment prev = this;
 | |
|       Segment v = next;
 | |
| 
 | |
|       while (v instanceof LineSegment)
 | |
|         {
 | |
|           if (isCoLinear((LineSegment) v))
 | |
|             {
 | |
|               prev = v;
 | |
|               v = v.next;
 | |
|             }
 | |
|           else
 | |
|             return prev;
 | |
|         }
 | |
|       return prev;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Compare two segments.
 | |
|      * We must take into account that the lines may be broken into colinear
 | |
|      * subsegments and ignore them.
 | |
|      */
 | |
|     boolean equals(Segment b)
 | |
|     {
 | |
|       if (! (b instanceof LineSegment))
 | |
|         return false;
 | |
|       Point2D p1 = P1;
 | |
|       Point2D p3 = b.P1;
 | |
| 
 | |
|       if (! p1.equals(p3))
 | |
|         return false;
 | |
| 
 | |
|       Point2D p2 = lastCoLinear().P2;
 | |
|       Point2D p4 = ((LineSegment) b).lastCoLinear().P2;
 | |
|       return (p2.equals(p4));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a line segment
 | |
|      */
 | |
|     int pathIteratorFormat(double[] coords)
 | |
|     {
 | |
|       coords[0] = P2.getX();
 | |
|       coords[1] = P2.getY();
 | |
|       return (PathIterator.SEG_LINETO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns if the line has intersections.
 | |
|      */
 | |
|     boolean hasIntersections(Segment b)
 | |
|     {
 | |
|       if (b instanceof LineSegment)
 | |
|         return (linesIntersect(this, (LineSegment) b) != null);
 | |
| 
 | |
|       if (b instanceof QuadSegment)
 | |
|         return (lineQuadIntersect(this, (QuadSegment) b) != null);
 | |
| 
 | |
|       if (b instanceof CubicSegment)
 | |
|         return (lineCubicIntersect(this, (CubicSegment) b) != null);
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Splits intersections into nodes,
 | |
|      * This one handles line-line, line-quadratic, line-cubic
 | |
|      */
 | |
|     int splitIntersections(Segment b)
 | |
|     {
 | |
|       if (b instanceof LineSegment)
 | |
|         {
 | |
|           Intersection i = linesIntersect(this, (LineSegment) b);
 | |
| 
 | |
|           if (i == null)
 | |
|             return 0;
 | |
| 
 | |
|           return createNode(b, i);
 | |
|         }
 | |
| 
 | |
|       Intersection[] x = null;
 | |
| 
 | |
|       if (b instanceof QuadSegment)
 | |
|         x = lineQuadIntersect(this, (QuadSegment) b);
 | |
| 
 | |
|       if (b instanceof CubicSegment)
 | |
|         x = lineCubicIntersect(this, (CubicSegment) b);
 | |
| 
 | |
|       if (x == null)
 | |
|         return 0;
 | |
| 
 | |
|       if (x.length == 1)
 | |
|         return createNode(b, (Intersection) x[0]);
 | |
| 
 | |
|       return createNodes(b, x);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the bounding box of this segment
 | |
|      */
 | |
|     Rectangle2D getBounds()
 | |
|     {
 | |
|       return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()),
 | |
|                                      Math.min(P1.getY(), P2.getY()),
 | |
|                                      Math.abs(P1.getX() - P2.getX()),
 | |
|                                      Math.abs(P1.getY() - P2.getY())));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the number of intersections on the positive X axis,
 | |
|      * with the origin at (x,y), used for contains()-testing
 | |
|      */
 | |
|     int rayCrossing(double x, double y)
 | |
|     {
 | |
|       double x0 = P1.getX() - x;
 | |
|       double y0 = P1.getY() - y;
 | |
|       double x1 = P2.getX() - x;
 | |
|       double y1 = P2.getY() - y;
 | |
| 
 | |
|       if (y0 * y1 > 0)
 | |
|         return 0;
 | |
| 
 | |
|       if (x0 < 0 && x1 < 0)
 | |
|         return 0;
 | |
| 
 | |
|       if (y0 == 0.0)
 | |
|         y0 -= EPSILON;
 | |
| 
 | |
|       if (y1 == 0.0)
 | |
|         y1 -= EPSILON;
 | |
| 
 | |
|       if (Line2D.linesIntersect(x0, y0, x1, y1,
 | |
|                                 EPSILON, 0.0, Double.MAX_VALUE, 0.0))
 | |
|         return 1;
 | |
|       return 0;
 | |
|     }
 | |
|   } // class LineSegment
 | |
| 
 | |
|   /**
 | |
|    * Quadratic Bezier curve segment
 | |
|    *
 | |
|    * Note: Most peers don't support quadratics directly, so it might make
 | |
|    * sense to represent them as cubics internally and just be done with it.
 | |
|    * I think we should be peer-agnostic, however, and stay faithful to the
 | |
|    * input geometry types as far as possible.
 | |
|    */
 | |
|   private class QuadSegment extends Segment
 | |
|   {
 | |
|     Point2D cp; // control point
 | |
| 
 | |
|     /**
 | |
|      * Constructor, takes the coordinates of the start, control,
 | |
|      * and end point, respectively.
 | |
|      */
 | |
|     QuadSegment(double x1, double y1, double cx, double cy, double x2,
 | |
|                 double y2)
 | |
|     {
 | |
|       super();
 | |
|       P1 = new Point2D.Double(x1, y1);
 | |
|       P2 = new Point2D.Double(x2, y2);
 | |
|       cp = new Point2D.Double(cx, cy);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Clones this segment
 | |
|      */
 | |
|     public Object clone()
 | |
|     {
 | |
|       return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(),
 | |
|                              P2.getX(), P2.getY());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns twice the area of a curve, relative the P1-P2 line
 | |
|      *
 | |
|      * The area formula can be derived by using Green's formula in the
 | |
|      * plane on the parametric form of the bezier.
 | |
|      */
 | |
|     double curveArea()
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp.getX();
 | |
|       double y1 = cp.getY();
 | |
|       double x2 = P2.getX();
 | |
|       double y2 = P2.getY();
 | |
| 
 | |
|       double P = (y2 - 2 * y1 + y0);
 | |
|       double Q = 2 * (y1 - y0);
 | |
| 
 | |
|       double A = (x2 - 2 * x1 + x0);
 | |
|       double B = 2 * (x1 - x0);
 | |
| 
 | |
|       double area = (B * P - A * Q) / 3.0;
 | |
|       return (area);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Compare two segments.
 | |
|      */
 | |
|     boolean equals(Segment b)
 | |
|     {
 | |
|       if (! (b instanceof QuadSegment))
 | |
|         return false;
 | |
| 
 | |
|       return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp)
 | |
|              && P2.equals(b.P2));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a Point2D corresponding to the parametric value t
 | |
|      * of the curve
 | |
|      */
 | |
|     Point2D evaluatePoint(double t)
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp.getX();
 | |
|       double y1 = cp.getY();
 | |
|       double x2 = P2.getX();
 | |
|       double y2 = P2.getY();
 | |
| 
 | |
|       return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0)
 | |
|                                 + x0,
 | |
|                                 t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0)
 | |
|                                 + y0);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the bounding box of this segment
 | |
|      */
 | |
|     Rectangle2D getBounds()
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp.getX();
 | |
|       double y1 = cp.getY();
 | |
|       double x2 = P2.getX();
 | |
|       double y2 = P2.getY();
 | |
|       double r0;
 | |
|       double r1;
 | |
| 
 | |
|       double xmax = Math.max(x0, x2);
 | |
|       double ymax = Math.max(y0, y2);
 | |
|       double xmin = Math.min(x0, x2);
 | |
|       double ymin = Math.min(y0, y2);
 | |
| 
 | |
|       r0 = 2 * (y1 - y0);
 | |
|       r1 = 2 * (y2 - 2 * y1 + y0);
 | |
|       if (r1 != 0.0)
 | |
|         {
 | |
|           double t = -r0 / r1;
 | |
|           if (t > 0.0 && t < 1.0)
 | |
|             {
 | |
|               double y = evaluatePoint(t).getY();
 | |
|               ymax = Math.max(y, ymax);
 | |
|               ymin = Math.min(y, ymin);
 | |
|             }
 | |
|         }
 | |
|       r0 = 2 * (x1 - x0);
 | |
|       r1 = 2 * (x2 - 2 * x1 + x0);
 | |
|       if (r1 != 0.0)
 | |
|         {
 | |
|           double t = -r0 / r1;
 | |
|           if (t > 0.0 && t < 1.0)
 | |
|             {
 | |
|               double x = evaluatePoint(t).getY();
 | |
|               xmax = Math.max(x, xmax);
 | |
|               xmin = Math.min(x, xmin);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|       return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a cubic segment corresponding to this curve
 | |
|      */
 | |
|     CubicSegment getCubicSegment()
 | |
|     {
 | |
|       double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0;
 | |
|       double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0;
 | |
|       double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0;
 | |
|       double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0;
 | |
| 
 | |
|       return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(),
 | |
|                               P2.getY());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the segment's midpoint
 | |
|      */
 | |
|     Point2D getMidPoint()
 | |
|     {
 | |
|       return evaluatePoint(0.5);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator type of a segment
 | |
|      */
 | |
|     int getType()
 | |
|     {
 | |
|       return (PathIterator.SEG_QUADTO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator coords of a segment
 | |
|      */
 | |
|     int pathIteratorFormat(double[] coords)
 | |
|     {
 | |
|       coords[0] = cp.getX();
 | |
|       coords[1] = cp.getY();
 | |
|       coords[2] = P2.getX();
 | |
|       coords[3] = P2.getY();
 | |
|       return (PathIterator.SEG_QUADTO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the number of intersections on the positive X axis,
 | |
|      * with the origin at (x,y), used for contains()-testing
 | |
|      */
 | |
|     int rayCrossing(double x, double y)
 | |
|     {
 | |
|       double x0 = P1.getX() - x;
 | |
|       double y0 = P1.getY() - y;
 | |
|       double x1 = cp.getX() - x;
 | |
|       double y1 = cp.getY() - y;
 | |
|       double x2 = P2.getX() - x;
 | |
|       double y2 = P2.getY() - y;
 | |
|       double[] r = new double[3];
 | |
|       int nRoots;
 | |
|       int nCrossings = 0;
 | |
| 
 | |
|       /* check if curve may intersect X+ axis. */
 | |
|       if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0))
 | |
|         {
 | |
|           if (y0 == 0.0)
 | |
|             y0 -= EPSILON;
 | |
|           if (y2 == 0.0)
 | |
|             y2 -= EPSILON;
 | |
| 
 | |
|           r[0] = y0;
 | |
|           r[1] = 2 * (y1 - y0);
 | |
|           r[2] = (y2 - 2 * y1 + y0);
 | |
| 
 | |
|           nRoots = QuadCurve2D.solveQuadratic(r);
 | |
|           for (int i = 0; i < nRoots; i++)
 | |
|             if (r[i] > 0.0f && r[i] < 1.0f)
 | |
|               {
 | |
|                 double t = r[i];
 | |
|                 if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0)
 | |
|                   nCrossings++;
 | |
|               }
 | |
|         }
 | |
|       return nCrossings;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Swap start and end points
 | |
|      */
 | |
|     void reverseCoords()
 | |
|     {
 | |
|       Point2D temp = P1;
 | |
|       P1 = P2;
 | |
|       P2 = temp;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Splits intersections into nodes,
 | |
|      * This one handles quadratic-quadratic only,
 | |
|      * Quadratic-line is passed on to the LineSegment class,
 | |
|      * Quadratic-cubic is passed on to the CubicSegment class
 | |
|      */
 | |
|     int splitIntersections(Segment b)
 | |
|     {
 | |
|       if (b instanceof LineSegment)
 | |
|         return (b.splitIntersections(this));
 | |
| 
 | |
|       if (b instanceof CubicSegment)
 | |
|         return (b.splitIntersections(this));
 | |
| 
 | |
|       if (b instanceof QuadSegment)
 | |
|         {
 | |
|           // Use the cubic-cubic intersection routine for quads as well,
 | |
|           // Since a quadratic can be exactly described as a cubic, this
 | |
|           // should not be a problem;
 | |
|           // The recursion depth will be the same in any case.
 | |
|           Intersection[] x = cubicCubicIntersect(getCubicSegment(),
 | |
|                                                  ((QuadSegment) b)
 | |
|                                                  .getCubicSegment());
 | |
|           if (x == null)
 | |
|             return 0;
 | |
| 
 | |
|           if (x.length == 1)
 | |
|             return createNode(b, (Intersection) x[0]);
 | |
| 
 | |
|           return createNodes(b, x);
 | |
|         }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Subdivides the segment at parametric value t, inserting
 | |
|      * the new segment into the linked list after this,
 | |
|      * such that this becomes [0,t] and this.next becomes [t,1]
 | |
|      */
 | |
|     void subdivideInsert(double t)
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp.getX();
 | |
|       double y1 = cp.getY();
 | |
|       double x2 = P2.getX();
 | |
|       double y2 = P2.getY();
 | |
| 
 | |
|       double p10x = x0 + t * (x1 - x0);
 | |
|       double p10y = y0 + t * (y1 - y0);
 | |
|       double p11x = x1 + t * (x2 - x1);
 | |
|       double p11y = y1 + t * (y2 - y1);
 | |
|       double p20x = p10x + t * (p11x - p10x);
 | |
|       double p20y = p10y + t * (p11y - p10y);
 | |
| 
 | |
|       insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2));
 | |
|       P2 = next.P1;
 | |
|       cp.setLocation(p10x, p10y);
 | |
| 
 | |
|       next.node = node;
 | |
|       node = null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Transforms the segment
 | |
|      */
 | |
|     void transform(AffineTransform at)
 | |
|     {
 | |
|       P1 = at.transform(P1, null);
 | |
|       P2 = at.transform(P2, null);
 | |
|       cp = at.transform(cp, null);
 | |
|     }
 | |
|   } // class QuadSegment
 | |
| 
 | |
|   /**
 | |
|    * Cubic Bezier curve segment
 | |
|    */
 | |
|   private class CubicSegment extends Segment
 | |
|   {
 | |
|     Point2D cp1; // control points
 | |
|     Point2D cp2; // control points
 | |
| 
 | |
|     /**
 | |
|      * Constructor - takes coordinates of the starting point,
 | |
|      * first control point, second control point and end point,
 | |
|      * respecively.
 | |
|      */
 | |
|     public CubicSegment(double x1, double y1, double c1x, double c1y,
 | |
|                         double c2x, double c2y, double x2, double y2)
 | |
|     {
 | |
|       super();
 | |
|       P1 = new Point2D.Double(x1, y1);
 | |
|       P2 = new Point2D.Double(x2, y2);
 | |
|       cp1 = new Point2D.Double(c1x, c1y);
 | |
|       cp2 = new Point2D.Double(c2x, c2y);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Clones this segment
 | |
|      */
 | |
|     public Object clone()
 | |
|     {
 | |
|       return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(),
 | |
|                               cp2.getX(), cp2.getY(), P2.getX(), P2.getY());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns twice the area of a curve, relative the P1-P2 line
 | |
|      *
 | |
|      * The area formula can be derived by using Green's formula in the
 | |
|      * plane on the parametric form of the bezier.
 | |
|      */
 | |
|     double curveArea()
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp1.getX();
 | |
|       double y1 = cp1.getY();
 | |
|       double x2 = cp2.getX();
 | |
|       double y2 = cp2.getY();
 | |
|       double x3 = P2.getX();
 | |
|       double y3 = P2.getY();
 | |
| 
 | |
|       double P = y3 - 3 * y2 + 3 * y1 - y0;
 | |
|       double Q = 3 * (y2 + y0 - 2 * y1);
 | |
|       double R = 3 * (y1 - y0);
 | |
| 
 | |
|       double A = x3 - 3 * x2 + 3 * x1 - x0;
 | |
|       double B = 3 * (x2 + x0 - 2 * x1);
 | |
|       double C = 3 * (x1 - x0);
 | |
| 
 | |
|       double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0
 | |
|                     + (C * Q - B * R) / 3.0;
 | |
| 
 | |
|       return (area);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Compare two segments.
 | |
|      */
 | |
|     boolean equals(Segment b)
 | |
|     {
 | |
|       if (! (b instanceof CubicSegment))
 | |
|         return false;
 | |
| 
 | |
|       return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1)
 | |
|              && cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a Point2D corresponding to the parametric value t
 | |
|      * of the curve
 | |
|      */
 | |
|     Point2D evaluatePoint(double t)
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp1.getX();
 | |
|       double y1 = cp1.getY();
 | |
|       double x2 = cp2.getX();
 | |
|       double y2 = cp2.getY();
 | |
|       double x3 = P2.getX();
 | |
|       double y3 = P2.getY();
 | |
| 
 | |
|       return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
 | |
|                                 + 3 * t * t * (x0 - 2 * x1 + x2)
 | |
|                                 + 3 * t * (x1 - x0) + x0,
 | |
|                                 -(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3)
 | |
|                                 + 3 * t * t * (y0 - 2 * y1 + y2)
 | |
|                                 + 3 * t * (y1 - y0) + y0);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the bounding box of this segment
 | |
|      */
 | |
|     Rectangle2D getBounds()
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp1.getX();
 | |
|       double y1 = cp1.getY();
 | |
|       double x2 = cp2.getX();
 | |
|       double y2 = cp2.getY();
 | |
|       double x3 = P2.getX();
 | |
|       double y3 = P2.getY();
 | |
|       double[] r = new double[3];
 | |
| 
 | |
|       double xmax = Math.max(x0, x3);
 | |
|       double ymax = Math.max(y0, y3);
 | |
|       double xmin = Math.min(x0, x3);
 | |
|       double ymin = Math.min(y0, y3);
 | |
| 
 | |
|       r[0] = 3 * (y1 - y0);
 | |
|       r[1] = 6.0 * (y2 + y0 - 2 * y1);
 | |
|       r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0);
 | |
| 
 | |
|       int n = QuadCurve2D.solveQuadratic(r);
 | |
|       for (int i = 0; i < n; i++)
 | |
|         {
 | |
|           double t = r[i];
 | |
|           if (t > 0 && t < 1.0)
 | |
|             {
 | |
|               double y = evaluatePoint(t).getY();
 | |
|               ymax = Math.max(y, ymax);
 | |
|               ymin = Math.min(y, ymin);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|       r[0] = 3 * (x1 - x0);
 | |
|       r[1] = 6.0 * (x2 + x0 - 2 * x1);
 | |
|       r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0);
 | |
|       n = QuadCurve2D.solveQuadratic(r);
 | |
|       for (int i = 0; i < n; i++)
 | |
|         {
 | |
|           double t = r[i];
 | |
|           if (t > 0 && t < 1.0)
 | |
|             {
 | |
|               double x = evaluatePoint(t).getX();
 | |
|               xmax = Math.max(x, xmax);
 | |
|               xmin = Math.min(x, xmin);
 | |
|             }
 | |
|         }
 | |
|       return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a CubicCurve2D object corresponding to this segment.
 | |
|      */
 | |
|     CubicCurve2D getCubicCurve2D()
 | |
|     {
 | |
|       return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(),
 | |
|                                      cp1.getY(), cp2.getX(), cp2.getY(),
 | |
|                                      P2.getX(), P2.getY());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the parametric points of self-intersection if the cubic
 | |
|      * is self-intersecting, null otherwise.
 | |
|      */
 | |
|     double[] getLoop()
 | |
|     {
 | |
|       double x0 = P1.getX();
 | |
|       double y0 = P1.getY();
 | |
|       double x1 = cp1.getX();
 | |
|       double y1 = cp1.getY();
 | |
|       double x2 = cp2.getX();
 | |
|       double y2 = cp2.getY();
 | |
|       double x3 = P2.getX();
 | |
|       double y3 = P2.getY();
 | |
|       double[] r = new double[4];
 | |
|       double k;
 | |
|       double R;
 | |
|       double T;
 | |
|       double A;
 | |
|       double B;
 | |
|       double[] results = new double[2];
 | |
| 
 | |
|       R = x3 - 3 * x2 + 3 * x1 - x0;
 | |
|       T = y3 - 3 * y2 + 3 * y1 - y0;
 | |
| 
 | |
|       // A qudratic
 | |
|       if (R == 0.0 && T == 0.0)
 | |
|         return null;
 | |
| 
 | |
|       // true cubic
 | |
|       if (R != 0.0 && T != 0.0)
 | |
|         {
 | |
|           A = 3 * (x2 + x0 - 2 * x1) / R;
 | |
|           B = 3 * (x1 - x0) / R;
 | |
| 
 | |
|           double P = 3 * (y2 + y0 - 2 * y1) / T;
 | |
|           double Q = 3 * (y1 - y0) / T;
 | |
| 
 | |
|           if (A == P || Q == B)
 | |
|             return null;
 | |
| 
 | |
|           k = (Q - B) / (A - P);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
|           if (R == 0.0)
 | |
|             {
 | |
|               // quadratic in x
 | |
|               k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1));
 | |
|               A = 3 * (y2 + y0 - 2 * y1) / T;
 | |
|               B = 3 * (y1 - y0) / T;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               // quadratic in y
 | |
|               k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1));
 | |
|               A = 3 * (x2 + x0 - 2 * x1) / R;
 | |
|               B = 3 * (x1 - x0) / R;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|       r[0] = -k * k * k - A * k * k - B * k;
 | |
|       r[1] = 3 * k * k + 2 * k * A + 2 * B;
 | |
|       r[2] = -3 * k;
 | |
|       r[3] = 2;
 | |
| 
 | |
|       int n = CubicCurve2D.solveCubic(r);
 | |
|       if (n != 3)
 | |
|         return null;
 | |
| 
 | |
|       // sort r
 | |
|       double t;
 | |
|       for (int i = 0; i < 2; i++)
 | |
|         for (int j = i + 1; j < 3; j++)
 | |
|           if (r[j] < r[i])
 | |
|             {
 | |
|               t = r[i];
 | |
|               r[i] = r[j];
 | |
|               r[j] = t;
 | |
|             }
 | |
| 
 | |
|       if (Math.abs(r[0] + r[2] - k) < 1E-13)
 | |
|         if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0)
 | |
|           if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10)
 | |
|             { // we snap the points anyway
 | |
|               results[0] = r[0];
 | |
|               results[1] = r[2];
 | |
|               return (results);
 | |
|             }
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the segment's midpoint
 | |
|      */
 | |
|     Point2D getMidPoint()
 | |
|     {
 | |
|       return evaluatePoint(0.5);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator type of a segment
 | |
|      */
 | |
|     int getType()
 | |
|     {
 | |
|       return (PathIterator.SEG_CUBICTO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the PathIterator coords of a segment
 | |
|      */
 | |
|     int pathIteratorFormat(double[] coords)
 | |
|     {
 | |
|       coords[0] = cp1.getX();
 | |
|       coords[1] = cp1.getY();
 | |
|       coords[2] = cp2.getX();
 | |
|       coords[3] = cp2.getY();
 | |
|       coords[4] = P2.getX();
 | |
|       coords[5] = P2.getY();
 | |
|       return (PathIterator.SEG_CUBICTO);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the number of intersections on the positive X axis,
 | |
|      * with the origin at (x,y), used for contains()-testing
 | |
|      */
 | |
|     int rayCrossing(double x, double y)
 | |
|     {
 | |
|       double x0 = P1.getX() - x;
 | |
|       double y0 = P1.getY() - y;
 | |
|       double x1 = cp1.getX() - x;
 | |
|       double y1 = cp1.getY() - y;
 | |
|       double x2 = cp2.getX() - x;
 | |
|       double y2 = cp2.getY() - y;
 | |
|       double x3 = P2.getX() - x;
 | |
|       double y3 = P2.getY() - y;
 | |
|       double[] r = new double[4];
 | |
|       int nRoots;
 | |
|       int nCrossings = 0;
 | |
| 
 | |
|       /* check if curve may intersect X+ axis. */
 | |
|       if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
 | |
|           && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
 | |
|         {
 | |
|           if (y0 == 0.0)
 | |
|             y0 -= EPSILON;
 | |
|           if (y3 == 0.0)
 | |
|             y3 -= EPSILON;
 | |
| 
 | |
|           r[0] = y0;
 | |
|           r[1] = 3 * (y1 - y0);
 | |
|           r[2] = 3 * (y2 + y0 - 2 * y1);
 | |
|           r[3] = y3 - 3 * y2 + 3 * y1 - y0;
 | |
| 
 | |
|           if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
 | |
|             for (int i = 0; i < nRoots; i++)
 | |
|               {
 | |
|                 if (r[i] > 0.0 && r[i] < 1.0)
 | |
|                   {
 | |
|                     double t = r[i];
 | |
|                     if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
 | |
|                         + 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0)
 | |
|                         + x0 > 0.0)
 | |
|                       nCrossings++;
 | |
|                   }
 | |
|               }
 | |
|         }
 | |
|       return nCrossings;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Swap start and end points
 | |
|      */
 | |
|     void reverseCoords()
 | |
|     {
 | |
|       Point2D p = P1;
 | |
|       P1 = P2;
 | |
|       P2 = p;
 | |
|       p = cp1; // swap control points
 | |
|       cp1 = cp2;
 | |
|       cp2 = p;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Splits intersections into nodes,
 | |
|      * This one handles cubic-cubic and cubic-quadratic intersections
 | |
|      */
 | |
|     int splitIntersections(Segment b)
 | |
|     {
 | |
|       if (b instanceof LineSegment)
 | |
|         return (b.splitIntersections(this));
 | |
| 
 | |
|       Intersection[] x = null;
 | |
| 
 | |
|       if (b instanceof QuadSegment)
 | |
|         x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment());
 | |
| 
 | |
|       if (b instanceof CubicSegment)
 | |
|         x = cubicCubicIntersect(this, (CubicSegment) b);
 | |
| 
 | |
|       if (x == null)
 | |
|         return 0;
 | |
| 
 | |
|       if (x.length == 1)
 | |
|         return createNode(b, x[0]);
 | |
| 
 | |
|       return createNodes(b, x);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Subdivides the segment at parametric value t, inserting
 | |
|      * the new segment into the linked list after this,
 | |
|      * such that this becomes [0,t] and this.next becomes [t,1]
 | |
|      */
 | |
|     void subdivideInsert(double t)
 | |
|     {
 | |
|       CubicSegment s = (CubicSegment) clone();
 | |
|       double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX();
 | |
|       double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY();
 | |
| 
 | |
|       double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX();
 | |
|       double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY();
 | |
| 
 | |
|       s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(),
 | |
|                         (s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY());
 | |
| 
 | |
|       s.cp1.setLocation((s.cp2.getX() - px) * t + px,
 | |
|                         (s.cp2.getY() - py) * t + py);
 | |
| 
 | |
|       double p2x = (px - p1x) * t + p1x;
 | |
|       double p2y = (py - p1y) * t + p1y;
 | |
| 
 | |
|       double p3x = (s.cp1.getX() - p2x) * t + p2x;
 | |
|       double p3y = (s.cp1.getY() - p2y) * t + p2y;
 | |
|       s.P1.setLocation(p3x, p3y);
 | |
| 
 | |
|       // insert new curve
 | |
|       insert(s);
 | |
| 
 | |
|       // set this curve
 | |
|       cp1.setLocation(p1x, p1y);
 | |
|       cp2.setLocation(p2x, p2y);
 | |
|       P2 = s.P1;
 | |
|       next.node = node;
 | |
|       node = null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Transforms the segment
 | |
|      */
 | |
|     void transform(AffineTransform at)
 | |
|     {
 | |
|       P1 = at.transform(P1, null);
 | |
|       P2 = at.transform(P2, null);
 | |
|       cp1 = at.transform(cp1, null);
 | |
|       cp2 = at.transform(cp2, null);
 | |
|     }
 | |
|   } // class CubicSegment
 | |
| } // class Area
 |