mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			354 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Division and remainder routines for Tile.
 | |
|    Copyright (C) 2011-2016 Free Software Foundation, Inc.
 | |
|    Contributed by Walter Lee (walt@tilera.com)
 | |
| 
 | |
|    This file is free software; you can redistribute it and/or modify it
 | |
|    under the terms of the GNU General Public License as published by the
 | |
|    Free Software Foundation; either version 3, or (at your option) any
 | |
|    later version.
 | |
| 
 | |
|    This file is distributed in the hope that it will be useful, but
 | |
|    WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    General Public License for more details.
 | |
| 
 | |
|    Under Section 7 of GPL version 3, you are granted additional
 | |
|    permissions described in the GCC Runtime Library Exception, version
 | |
|    3.1, as published by the Free Software Foundation.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License and
 | |
|    a copy of the GCC Runtime Library Exception along with this program;
 | |
|    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| typedef int int32_t;
 | |
| typedef unsigned uint32_t;
 | |
| typedef long long int64_t;
 | |
| typedef unsigned long long uint64_t;
 | |
| 
 | |
| /* Raise signal 8 (SIGFPE) with code 1 (FPE_INTDIV).  */
 | |
| static inline void
 | |
| raise_intdiv (void)
 | |
| {
 | |
|   asm ("{ raise; moveli zero, 8 + (1 << 6) }");
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| /*__udivsi3 - 32 bit integer unsigned divide  */
 | |
| static inline uint32_t __attribute__ ((always_inline))
 | |
| __udivsi3_inline (uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
|   /* Divide out any power of two factor from dividend and divisor.
 | |
|      Note that when dividing by zero the divisor will remain zero,
 | |
|      which is all we need to detect that case below.  */
 | |
|   const int power_of_two_factor = __insn_ctz (divisor);
 | |
|   divisor >>= power_of_two_factor;
 | |
|   dividend >>= power_of_two_factor;
 | |
| 
 | |
|   /* Checks for division by power of two or division by zero.  */
 | |
|   if (divisor <= 1)
 | |
|     {
 | |
|       if (divisor == 0)
 | |
| 	{
 | |
| 	  raise_intdiv ();
 | |
| 	  return 0;
 | |
| 	}
 | |
|       return dividend;
 | |
|     }
 | |
| 
 | |
|   /* Compute (a / b) by repeatedly finding the largest N
 | |
|      such that (b << N) <= a. For each such N, set bit N in the
 | |
|      quotient, subtract (b << N) from a, and keep going. Think of this as
 | |
|      the reverse of the "shift-and-add" that a multiply does. The values
 | |
|      of N are precisely those shift counts.
 | |
| 
 | |
|      Finding N is easy. First, use clz(b) - clz(a) to find the N
 | |
|      that lines up the high bit of (b << N) with the high bit of a.
 | |
|      Any larger value of N would definitely make (b << N) > a,
 | |
|      which is too big.
 | |
| 
 | |
|      Then, if (b << N) > a (because it has larger low bits), decrement
 | |
|      N by one.  This adjustment will definitely make (b << N) less
 | |
|      than a, because a's high bit is now one higher than b's.  */
 | |
| 
 | |
|   /* Precomputing the max_ values allows us to avoid a subtract
 | |
|      in the inner loop and just right shift by clz(remainder).  */
 | |
|   const int divisor_clz = __insn_clz (divisor);
 | |
|   const uint32_t max_divisor = divisor << divisor_clz;
 | |
|   const uint32_t max_qbit = 1 << divisor_clz;
 | |
| 
 | |
|   uint32_t quotient = 0;
 | |
|   uint32_t remainder = dividend;
 | |
| 
 | |
|   while (remainder >= divisor)
 | |
|     {
 | |
|       int shift = __insn_clz (remainder);
 | |
|       uint32_t scaled_divisor = max_divisor >> shift;
 | |
|       uint32_t quotient_bit = max_qbit >> shift;
 | |
| 
 | |
|       int too_big = (scaled_divisor > remainder);
 | |
|       scaled_divisor >>= too_big;
 | |
|       quotient_bit >>= too_big;
 | |
|       remainder -= scaled_divisor;
 | |
|       quotient |= quotient_bit;
 | |
|     }
 | |
|   return quotient;
 | |
| }
 | |
| #endif /* !__tilegx__ */
 | |
| 
 | |
| 
 | |
| /* __udivdi3 - 64 bit integer unsigned divide  */
 | |
| static inline uint64_t __attribute__ ((always_inline))
 | |
| __udivdi3_inline (uint64_t dividend, uint64_t divisor)
 | |
| {
 | |
|   /* Divide out any power of two factor from dividend and divisor.
 | |
|      Note that when dividing by zero the divisor will remain zero,
 | |
|      which is all we need to detect that case below.  */
 | |
|   const int power_of_two_factor = __builtin_ctzll (divisor);
 | |
|   divisor >>= power_of_two_factor;
 | |
|   dividend >>= power_of_two_factor;
 | |
| 
 | |
|   /* Checks for division by power of two or division by zero.  */
 | |
|   if (divisor <= 1)
 | |
|     {
 | |
|       if (divisor == 0)
 | |
| 	{
 | |
| 	  raise_intdiv ();
 | |
| 	  return 0;
 | |
| 	}
 | |
|       return dividend;
 | |
|     }
 | |
| 
 | |
| #ifndef __tilegx__
 | |
|   if (((uint32_t) (dividend >> 32) | ((uint32_t) (divisor >> 32))) == 0)
 | |
|     {
 | |
|       /* Operands both fit in 32 bits, so use faster 32 bit algorithm.  */
 | |
|       return __udivsi3_inline ((uint32_t) dividend, (uint32_t) divisor);
 | |
|     }
 | |
| #endif /* !__tilegx__ */
 | |
| 
 | |
|   /* See algorithm description in __udivsi3  */
 | |
| 
 | |
|   const int divisor_clz = __builtin_clzll (divisor);
 | |
|   const uint64_t max_divisor = divisor << divisor_clz;
 | |
|   const uint64_t max_qbit = 1ULL << divisor_clz;
 | |
| 
 | |
|   uint64_t quotient = 0;
 | |
|   uint64_t remainder = dividend;
 | |
| 
 | |
|   while (remainder >= divisor)
 | |
|     {
 | |
|       int shift = __builtin_clzll (remainder);
 | |
|       uint64_t scaled_divisor = max_divisor >> shift;
 | |
|       uint64_t quotient_bit = max_qbit >> shift;
 | |
| 
 | |
|       int too_big = (scaled_divisor > remainder);
 | |
|       scaled_divisor >>= too_big;
 | |
|       quotient_bit >>= too_big;
 | |
|       remainder -= scaled_divisor;
 | |
|       quotient |= quotient_bit;
 | |
|     }
 | |
|   return quotient;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| /* __umodsi3 - 32 bit integer unsigned modulo  */
 | |
| static inline uint32_t __attribute__ ((always_inline))
 | |
| __umodsi3_inline (uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
|   /* Shortcircuit mod by a power of two (and catch mod by zero).  */
 | |
|   const uint32_t mask = divisor - 1;
 | |
|   if ((divisor & mask) == 0)
 | |
|     {
 | |
|       if (divisor == 0)
 | |
| 	{
 | |
| 	  raise_intdiv ();
 | |
| 	  return 0;
 | |
| 	}
 | |
|       return dividend & mask;
 | |
|     }
 | |
| 
 | |
|   /* We compute the remainder (a % b) by repeatedly subtracting off
 | |
|      multiples of b from a until a < b. The key is that subtracting
 | |
|      off a multiple of b does not affect the result mod b.
 | |
| 
 | |
|      To make the algorithm run efficiently, we need to subtract
 | |
|      off a large multiple of b at each step. We subtract the largest
 | |
|      (b << N) that is <= a.
 | |
| 
 | |
|      Finding N is easy. First, use clz(b) - clz(a) to find the N
 | |
|      that lines up the high bit of (b << N) with the high bit of a.
 | |
|      Any larger value of N would definitely make (b << N) > a,
 | |
|      which is too big.
 | |
| 
 | |
|      Then, if (b << N) > a (because it has larger low bits), decrement
 | |
|      N by one.  This adjustment will definitely make (b << N) less
 | |
|      than a, because a's high bit is now one higher than b's.  */
 | |
|   const uint32_t max_divisor = divisor << __insn_clz (divisor);
 | |
| 
 | |
|   uint32_t remainder = dividend;
 | |
|   while (remainder >= divisor)
 | |
|     {
 | |
|       const int shift = __insn_clz (remainder);
 | |
|       uint32_t scaled_divisor = max_divisor >> shift;
 | |
|       scaled_divisor >>= (scaled_divisor > remainder);
 | |
|       remainder -= scaled_divisor;
 | |
|     }
 | |
| 
 | |
|   return remainder;
 | |
| }
 | |
| #endif /* !__tilegx__ */
 | |
| 
 | |
| 
 | |
| /* __umoddi3 - 64 bit integer unsigned modulo  */
 | |
| static inline uint64_t __attribute__ ((always_inline))
 | |
| __umoddi3_inline (uint64_t dividend, uint64_t divisor)
 | |
| {
 | |
| #ifndef __tilegx__
 | |
|   if (((uint32_t) (dividend >> 32) | ((uint32_t) (divisor >> 32))) == 0)
 | |
|     {
 | |
|       /* Operands both fit in 32 bits, so use faster 32 bit algorithm.  */
 | |
|       return __umodsi3_inline ((uint32_t) dividend, (uint32_t) divisor);
 | |
|     }
 | |
| #endif /* !__tilegx__ */
 | |
| 
 | |
|   /* Shortcircuit mod by a power of two (and catch mod by zero).  */
 | |
|   const uint64_t mask = divisor - 1;
 | |
|   if ((divisor & mask) == 0)
 | |
|     {
 | |
|       if (divisor == 0)
 | |
| 	{
 | |
| 	  raise_intdiv ();
 | |
| 	  return 0;
 | |
| 	}
 | |
|       return dividend & mask;
 | |
|     }
 | |
| 
 | |
|   /* See algorithm description in __umodsi3  */
 | |
|   const uint64_t max_divisor = divisor << __builtin_clzll (divisor);
 | |
| 
 | |
|   uint64_t remainder = dividend;
 | |
|   while (remainder >= divisor)
 | |
|     {
 | |
|       const int shift = __builtin_clzll (remainder);
 | |
|       uint64_t scaled_divisor = max_divisor >> shift;
 | |
|       scaled_divisor >>= (scaled_divisor > remainder);
 | |
|       remainder -= scaled_divisor;
 | |
|     }
 | |
| 
 | |
|   return remainder;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t __udivsi3 (uint32_t dividend, uint32_t divisor);
 | |
| #ifdef L_tile_udivsi3
 | |
| uint32_t
 | |
| __udivsi3 (uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| #ifndef __tilegx__
 | |
|   return __udivsi3_inline (dividend, divisor);
 | |
| #else /* !__tilegx__ */
 | |
|   uint64_t n = __udivdi3_inline (((uint64_t) dividend), ((uint64_t) divisor));
 | |
|   return (uint32_t) n;
 | |
| #endif /* !__tilegx__ */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define ABS(x) ((x) >= 0 ? (x) : -(x))
 | |
| 
 | |
| int32_t __divsi3 (int32_t dividend, int32_t divisor);
 | |
| #ifdef L_tile_divsi3
 | |
| /* __divsi3 - 32 bit integer signed divide  */
 | |
| int32_t
 | |
| __divsi3 (int32_t dividend, int32_t divisor)
 | |
| {
 | |
| #ifndef __tilegx__
 | |
|   uint32_t n = __udivsi3_inline (ABS (dividend), ABS (divisor));
 | |
| #else /* !__tilegx__ */
 | |
|   uint64_t n =
 | |
|     __udivdi3_inline (ABS ((int64_t) dividend), ABS ((int64_t) divisor));
 | |
| #endif /* !__tilegx__ */
 | |
|   if ((dividend ^ divisor) < 0)
 | |
|     n = -n;
 | |
|   return (int32_t) n;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| uint64_t __udivdi3 (uint64_t dividend, uint64_t divisor);
 | |
| #ifdef L_tile_udivdi3
 | |
| uint64_t
 | |
| __udivdi3 (uint64_t dividend, uint64_t divisor)
 | |
| {
 | |
|   return __udivdi3_inline (dividend, divisor);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*__divdi3 - 64 bit integer signed divide  */
 | |
| int64_t __divdi3 (int64_t dividend, int64_t divisor);
 | |
| #ifdef L_tile_divdi3
 | |
| int64_t
 | |
| __divdi3 (int64_t dividend, int64_t divisor)
 | |
| {
 | |
|   uint64_t n = __udivdi3_inline (ABS (dividend), ABS (divisor));
 | |
|   if ((dividend ^ divisor) < 0)
 | |
|     n = -n;
 | |
|   return (int64_t) n;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| uint32_t __umodsi3 (uint32_t dividend, uint32_t divisor);
 | |
| #ifdef L_tile_umodsi3
 | |
| uint32_t
 | |
| __umodsi3 (uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| #ifndef __tilegx__
 | |
|   return __umodsi3_inline (dividend, divisor);
 | |
| #else /* !__tilegx__ */
 | |
|   return __umoddi3_inline ((uint64_t) dividend, (uint64_t) divisor);
 | |
| #endif /* !__tilegx__ */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* __modsi3 - 32 bit integer signed modulo  */
 | |
| int32_t __modsi3 (int32_t dividend, int32_t divisor);
 | |
| #ifdef L_tile_modsi3
 | |
| int32_t
 | |
| __modsi3 (int32_t dividend, int32_t divisor)
 | |
| {
 | |
| #ifndef __tilegx__
 | |
|   uint32_t remainder = __umodsi3_inline (ABS (dividend), ABS (divisor));
 | |
| #else /* !__tilegx__ */
 | |
|   uint64_t remainder =
 | |
|     __umoddi3_inline (ABS ((int64_t) dividend), ABS ((int64_t) divisor));
 | |
| #endif /* !__tilegx__ */
 | |
|   return (int32_t) ((dividend >= 0) ? remainder : -remainder);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| uint64_t __umoddi3 (uint64_t dividend, uint64_t divisor);
 | |
| #ifdef L_tile_umoddi3
 | |
| uint64_t
 | |
| __umoddi3 (uint64_t dividend, uint64_t divisor)
 | |
| {
 | |
|   return __umoddi3_inline (dividend, divisor);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* __moddi3 - 64 bit integer signed modulo  */
 | |
| int64_t __moddi3 (int64_t dividend, int64_t divisor);
 | |
| #ifdef L_tile_moddi3
 | |
| int64_t
 | |
| __moddi3 (int64_t dividend, int64_t divisor)
 | |
| {
 | |
|   uint64_t remainder = __umoddi3_inline (ABS (dividend), ABS (divisor));
 | |
|   return (int64_t) ((dividend >= 0) ? remainder : -remainder);
 | |
| }
 | |
| #endif
 |