mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			706 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			706 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Software floating-point emulation.
 | |
|    Basic two-word fraction declaration and manipulation.
 | |
|    Copyright (C) 1997-2016 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Richard Henderson (rth@cygnus.com),
 | |
| 		  Jakub Jelinek (jj@ultra.linux.cz),
 | |
| 		  David S. Miller (davem@redhat.com) and
 | |
| 		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    In addition to the permissions in the GNU Lesser General Public
 | |
|    License, the Free Software Foundation gives you unlimited
 | |
|    permission to link the compiled version of this file into
 | |
|    combinations with other programs, and to distribute those
 | |
|    combinations without any restriction coming from the use of this
 | |
|    file.  (The Lesser General Public License restrictions do apply in
 | |
|    other respects; for example, they cover modification of the file,
 | |
|    and distribution when not linked into a combine executable.)
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #ifndef SOFT_FP_OP_2_H
 | |
| #define SOFT_FP_OP_2_H	1
 | |
| 
 | |
| #define _FP_FRAC_DECL_2(X)				\
 | |
|   _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
 | |
| #define _FP_FRAC_COPY_2(D, S)	(D##_f0 = S##_f0, D##_f1 = S##_f1)
 | |
| #define _FP_FRAC_SET_2(X, I)	__FP_FRAC_SET_2 (X, I)
 | |
| #define _FP_FRAC_HIGH_2(X)	(X##_f1)
 | |
| #define _FP_FRAC_LOW_2(X)	(X##_f0)
 | |
| #define _FP_FRAC_WORD_2(X, w)	(X##_f##w)
 | |
| 
 | |
| #define _FP_FRAC_SLL_2(X, N)						\
 | |
|   (void) (((N) < _FP_W_TYPE_SIZE)					\
 | |
| 	  ? ({								\
 | |
| 	      if (__builtin_constant_p (N) && (N) == 1)			\
 | |
| 		{							\
 | |
| 		  X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \
 | |
| 		  X##_f0 += X##_f0;					\
 | |
| 		}							\
 | |
| 	      else							\
 | |
| 		{							\
 | |
| 		  X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
 | |
| 		  X##_f0 <<= (N);					\
 | |
| 		}							\
 | |
| 	      0;							\
 | |
| 	    })								\
 | |
| 	  : ({								\
 | |
| 	      X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);		\
 | |
| 	      X##_f0 = 0;						\
 | |
| 	    }))
 | |
| 
 | |
| 
 | |
| #define _FP_FRAC_SRL_2(X, N)						\
 | |
|   (void) (((N) < _FP_W_TYPE_SIZE)					\
 | |
| 	  ? ({								\
 | |
| 	      X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \
 | |
| 	      X##_f1 >>= (N);						\
 | |
| 	    })								\
 | |
| 	  : ({								\
 | |
| 	      X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);		\
 | |
| 	      X##_f1 = 0;						\
 | |
| 	    }))
 | |
| 
 | |
| /* Right shift with sticky-lsb.  */
 | |
| #define _FP_FRAC_SRST_2(X, S, N, sz)					\
 | |
|   (void) (((N) < _FP_W_TYPE_SIZE)					\
 | |
| 	  ? ({								\
 | |
| 	      S = (__builtin_constant_p (N) && (N) == 1			\
 | |
| 		   ? X##_f0 & 1						\
 | |
| 		   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0);		\
 | |
| 	      X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \
 | |
| 	      X##_f1 >>= (N);						\
 | |
| 	    })								\
 | |
| 	  : ({								\
 | |
| 	      S = ((((N) == _FP_W_TYPE_SIZE				\
 | |
| 		     ? 0						\
 | |
| 		     : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N))))		\
 | |
| 		    | X##_f0) != 0);					\
 | |
| 	      X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE));		\
 | |
| 	      X##_f1 = 0;						\
 | |
| 	    }))
 | |
| 
 | |
| #define _FP_FRAC_SRS_2(X, N, sz)					\
 | |
|   (void) (((N) < _FP_W_TYPE_SIZE)					\
 | |
| 	  ? ({								\
 | |
| 	      X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
 | |
| 			| (__builtin_constant_p (N) && (N) == 1		\
 | |
| 			   ? X##_f0 & 1					\
 | |
| 			   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
 | |
| 	      X##_f1 >>= (N);						\
 | |
| 	    })								\
 | |
| 	  : ({								\
 | |
| 	      X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)		\
 | |
| 			| ((((N) == _FP_W_TYPE_SIZE			\
 | |
| 			     ? 0					\
 | |
| 			     : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N))))	\
 | |
| 			    | X##_f0) != 0));				\
 | |
| 	      X##_f1 = 0;						\
 | |
| 	    }))
 | |
| 
 | |
| #define _FP_FRAC_ADDI_2(X, I)	\
 | |
|   __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I)
 | |
| 
 | |
| #define _FP_FRAC_ADD_2(R, X, Y)	\
 | |
|   __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
 | |
| 
 | |
| #define _FP_FRAC_SUB_2(R, X, Y)	\
 | |
|   __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
 | |
| 
 | |
| #define _FP_FRAC_DEC_2(X, Y)	\
 | |
|   __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0)
 | |
| 
 | |
| #define _FP_FRAC_CLZ_2(R, X)			\
 | |
|   do						\
 | |
|     {						\
 | |
|       if (X##_f1)				\
 | |
| 	__FP_CLZ ((R), X##_f1);			\
 | |
|       else					\
 | |
| 	{					\
 | |
| 	  __FP_CLZ ((R), X##_f0);		\
 | |
| 	  (R) += _FP_W_TYPE_SIZE;		\
 | |
| 	}					\
 | |
|     }						\
 | |
|   while (0)
 | |
| 
 | |
| /* Predicates.  */
 | |
| #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE) X##_f1 < 0)
 | |
| #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0)
 | |
| #define _FP_FRAC_OVERP_2(fs, X)	(_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
 | |
| #define _FP_FRAC_CLEAR_OVERP_2(fs, X)	(_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
 | |
| #define _FP_FRAC_HIGHBIT_DW_2(fs, X)	\
 | |
|   (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
 | |
| #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
 | |
| #define _FP_FRAC_GT_2(X, Y)	\
 | |
|   (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
 | |
| #define _FP_FRAC_GE_2(X, Y)	\
 | |
|   (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
 | |
| 
 | |
| #define _FP_ZEROFRAC_2		0, 0
 | |
| #define _FP_MINFRAC_2		0, 1
 | |
| #define _FP_MAXFRAC_2		(~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
 | |
| 
 | |
| /* Internals.  */
 | |
| 
 | |
| #define __FP_FRAC_SET_2(X, I1, I0)	(X##_f0 = I0, X##_f1 = I1)
 | |
| 
 | |
| #define __FP_CLZ_2(R, xh, xl)			\
 | |
|   do						\
 | |
|     {						\
 | |
|       if (xh)					\
 | |
| 	__FP_CLZ ((R), xh);			\
 | |
|       else					\
 | |
| 	{					\
 | |
| 	  __FP_CLZ ((R), xl);			\
 | |
| 	  (R) += _FP_W_TYPE_SIZE;		\
 | |
| 	}					\
 | |
|     }						\
 | |
|   while (0)
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| # ifndef __FP_FRAC_ADDI_2
 | |
| #  define __FP_FRAC_ADDI_2(xh, xl, i)	\
 | |
|   (xh += ((xl += i) < i))
 | |
| # endif
 | |
| # ifndef __FP_FRAC_ADD_2
 | |
| #  define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\
 | |
|   (rh = xh + yh + ((rl = xl + yl) < xl))
 | |
| # endif
 | |
| # ifndef __FP_FRAC_SUB_2
 | |
| #  define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\
 | |
|   (rh = xh - yh - ((rl = xl - yl) > xl))
 | |
| # endif
 | |
| # ifndef __FP_FRAC_DEC_2
 | |
| #  define __FP_FRAC_DEC_2(xh, xl, yh, yl)		\
 | |
|   do							\
 | |
|     {							\
 | |
|       UWtype __FP_FRAC_DEC_2_t = xl;			\
 | |
|       xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t);	\
 | |
|     }							\
 | |
|   while (0)
 | |
| # endif
 | |
| 
 | |
| #else
 | |
| 
 | |
| # undef __FP_FRAC_ADDI_2
 | |
| # define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa (xh, xl, xh, xl, 0, i)
 | |
| # undef __FP_FRAC_ADD_2
 | |
| # define __FP_FRAC_ADD_2		add_ssaaaa
 | |
| # undef __FP_FRAC_SUB_2
 | |
| # define __FP_FRAC_SUB_2		sub_ddmmss
 | |
| # undef __FP_FRAC_DEC_2
 | |
| # define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\
 | |
|   sub_ddmmss (xh, xl, xh, xl, yh, yl)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Unpack the raw bits of a native fp value.  Do not classify or
 | |
|    normalize the data.  */
 | |
| 
 | |
| #define _FP_UNPACK_RAW_2(fs, X, val)			\
 | |
|   do							\
 | |
|     {							\
 | |
|       union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo;	\
 | |
|       _FP_UNPACK_RAW_2_flo.flt = (val);			\
 | |
| 							\
 | |
|       X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0;		\
 | |
|       X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1;		\
 | |
|       X##_e  = _FP_UNPACK_RAW_2_flo.bits.exp;		\
 | |
|       X##_s  = _FP_UNPACK_RAW_2_flo.bits.sign;		\
 | |
|     }							\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_UNPACK_RAW_2_P(fs, X, val)			\
 | |
|   do							\
 | |
|     {							\
 | |
|       union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo	\
 | |
| 	= (union _FP_UNION_##fs *) (val);		\
 | |
| 							\
 | |
|       X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0;	\
 | |
|       X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1;	\
 | |
|       X##_e  = _FP_UNPACK_RAW_2_P_flo->bits.exp;	\
 | |
|       X##_s  = _FP_UNPACK_RAW_2_P_flo->bits.sign;	\
 | |
|     }							\
 | |
|   while (0)
 | |
| 
 | |
| 
 | |
| /* Repack the raw bits of a native fp value.  */
 | |
| 
 | |
| #define _FP_PACK_RAW_2(fs, val, X)		\
 | |
|   do						\
 | |
|     {						\
 | |
|       union _FP_UNION_##fs _FP_PACK_RAW_2_flo;	\
 | |
| 						\
 | |
|       _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0;	\
 | |
|       _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1;	\
 | |
|       _FP_PACK_RAW_2_flo.bits.exp   = X##_e;	\
 | |
|       _FP_PACK_RAW_2_flo.bits.sign  = X##_s;	\
 | |
| 						\
 | |
|       (val) = _FP_PACK_RAW_2_flo.flt;		\
 | |
|     }						\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_PACK_RAW_2_P(fs, val, X)			\
 | |
|   do							\
 | |
|     {							\
 | |
|       union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo	\
 | |
| 	= (union _FP_UNION_##fs *) (val);		\
 | |
| 							\
 | |
|       _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0;	\
 | |
|       _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1;	\
 | |
|       _FP_PACK_RAW_2_P_flo->bits.exp   = X##_e;		\
 | |
|       _FP_PACK_RAW_2_P_flo->bits.sign  = X##_s;		\
 | |
|     }							\
 | |
|   while (0)
 | |
| 
 | |
| 
 | |
| /* Multiplication algorithms: */
 | |
| 
 | |
| /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
 | |
| 
 | |
| #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit)		\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b);			\
 | |
|       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c);			\
 | |
| 									\
 | |
|       doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0),		\
 | |
| 	    X##_f0, Y##_f0);						\
 | |
|       doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0,	\
 | |
| 	    X##_f0, Y##_f1);						\
 | |
|       doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0,	\
 | |
| 	    X##_f1, Y##_f0);						\
 | |
|       doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),		\
 | |
| 	    X##_f1, Y##_f1);						\
 | |
| 									\
 | |
|       __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1), 0,			\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_b_f1,			\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_b_f0,			\
 | |
| 		       _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1));				\
 | |
|       __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1), 0,			\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_c_f1,			\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_c_f0,			\
 | |
| 		       _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1));				\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z);				\
 | |
| 									\
 | |
|       _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z,	\
 | |
| 			      X, Y, doit);				\
 | |
| 									\
 | |
|       /* Normalize since we know where the msb of the multiplicands	\
 | |
| 	 were (bit B), we know that the msb of the of the product is	\
 | |
| 	 at either 2B or 2B-1.  */					\
 | |
|       _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1,		\
 | |
| 		      2*(wfracbits));					\
 | |
|       R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0);		\
 | |
|       R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1);		\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| /* Given a 1W * 1W => 2W primitive, do the extended multiplication.
 | |
|    Do only 3 multiplications instead of four. This one is for machines
 | |
|    where multiplication is much more expensive than subtraction.  */
 | |
| 
 | |
| #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit)		\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b);			\
 | |
|       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c);			\
 | |
|       _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d;				\
 | |
|       int _FP_MUL_MEAT_DW_2_wide_3mul_c1;				\
 | |
|       int _FP_MUL_MEAT_DW_2_wide_3mul_c2;				\
 | |
| 									\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1;		\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_c1					\
 | |
| 	= _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0;			\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1;		\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_c2					\
 | |
| 	= _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0;			\
 | |
|       doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0),	\
 | |
| 	    X##_f0, Y##_f0);						\
 | |
|       doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1),		\
 | |
| 	    _FP_MUL_MEAT_DW_2_wide_3mul_b_f0,				\
 | |
| 	    _FP_MUL_MEAT_DW_2_wide_3mul_b_f1);				\
 | |
|       doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1,				\
 | |
| 	    _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1);		\
 | |
| 									\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_b_f0					\
 | |
| 	&= -_FP_MUL_MEAT_DW_2_wide_3mul_c2;				\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul_b_f1					\
 | |
| 	&= -_FP_MUL_MEAT_DW_2_wide_3mul_c1;				\
 | |
|       __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1),				\
 | |
| 		       (_FP_MUL_MEAT_DW_2_wide_3mul_c1			\
 | |
| 			& _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0,		\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_3mul_d,			\
 | |
| 		       0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \
 | |
|       __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 			_FP_MUL_MEAT_DW_2_wide_3mul_b_f0);		\
 | |
|       __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 			_FP_MUL_MEAT_DW_2_wide_3mul_b_f1);		\
 | |
|       __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1),				\
 | |
| 		       0, _FP_MUL_MEAT_DW_2_wide_3mul_d,		\
 | |
| 		       _FP_FRAC_WORD_4 (R, 0));				\
 | |
|       __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_FRAC_WORD_4 (R, 1), 0,			\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_3mul_c_f1,		\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_3mul_c_f0);		\
 | |
|       __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_3mul_c_f1,		\
 | |
| 		       _FP_MUL_MEAT_DW_2_wide_3mul_c_f0,		\
 | |
| 		       _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2));	\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z);			\
 | |
| 									\
 | |
|       _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits),				\
 | |
| 				   _FP_MUL_MEAT_2_wide_3mul_z,		\
 | |
| 				   X, Y, doit);				\
 | |
| 									\
 | |
|       /* Normalize since we know where the msb of the multiplicands	\
 | |
| 	 were (bit B), we know that the msb of the of the product is	\
 | |
| 	 at either 2B or 2B-1.  */					\
 | |
|       _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z,			\
 | |
| 		      (wfracbits)-1, 2*(wfracbits));			\
 | |
|       R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0);		\
 | |
|       R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1);		\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y)	\
 | |
|   do							\
 | |
|     {							\
 | |
|       _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2];		\
 | |
|       _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2];		\
 | |
|       _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0;		\
 | |
|       _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1;		\
 | |
|       _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0;		\
 | |
|       _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1;		\
 | |
| 							\
 | |
|       mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x,	\
 | |
| 		 _FP_MUL_MEAT_DW_2_gmp_y, 2);		\
 | |
|     }							\
 | |
|   while (0)
 | |
| 
 | |
| #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z);				\
 | |
| 									\
 | |
|       _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y);	\
 | |
| 									\
 | |
|       /* Normalize since we know where the msb of the multiplicands	\
 | |
| 	 were (bit B), we know that the msb of the of the product is	\
 | |
| 	 at either 2B or 2B-1.  */					\
 | |
|       _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1,		\
 | |
| 		      2*(wfracbits));					\
 | |
|       R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0];				\
 | |
|       R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1];				\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| /* Do at most 120x120=240 bits multiplication using double floating
 | |
|    point multiplication.  This is useful if floating point
 | |
|    multiplication has much bigger throughput than integer multiply.
 | |
|    It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
 | |
|    between 106 and 120 only.
 | |
|    Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
 | |
|    SETFETZ is a macro which will disable all FPU exceptions and set rounding
 | |
|    towards zero,  RESETFE should optionally reset it back.  */
 | |
| 
 | |
| #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \
 | |
|   do									\
 | |
|     {									\
 | |
|       static const double _const[] =					\
 | |
| 	{								\
 | |
| 	  /* 2^-24 */ 5.9604644775390625e-08,				\
 | |
| 	  /* 2^-48 */ 3.5527136788005009e-15,				\
 | |
| 	  /* 2^-72 */ 2.1175823681357508e-22,				\
 | |
| 	  /* 2^-96 */ 1.2621774483536189e-29,				\
 | |
| 	  /* 2^28 */ 2.68435456e+08,					\
 | |
| 	  /* 2^4 */ 1.600000e+01,					\
 | |
| 	  /* 2^-20 */ 9.5367431640625e-07,				\
 | |
| 	  /* 2^-44 */ 5.6843418860808015e-14,				\
 | |
| 	  /* 2^-68 */ 3.3881317890172014e-21,				\
 | |
| 	  /* 2^-92 */ 2.0194839173657902e-28,				\
 | |
| 	  /* 2^-116 */ 1.2037062152420224e-35				\
 | |
| 	};								\
 | |
|       double _a240, _b240, _c240, _d240, _e240, _f240,			\
 | |
| 	_g240, _h240, _i240, _j240, _k240;				\
 | |
|       union { double d; UDItype i; } _l240, _m240, _n240, _o240,	\
 | |
| 				       _p240, _q240, _r240, _s240;	\
 | |
|       UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;		\
 | |
| 									\
 | |
|       _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120,	\
 | |
| 			 "wfracbits out of range");			\
 | |
| 									\
 | |
|       setfetz;								\
 | |
| 									\
 | |
|       _e240 = (double) (long) (X##_f0 & 0xffffff);			\
 | |
|       _j240 = (double) (long) (Y##_f0 & 0xffffff);			\
 | |
|       _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff);		\
 | |
|       _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff);		\
 | |
|       _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \
 | |
|       _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \
 | |
|       _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff);		\
 | |
|       _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff);		\
 | |
|       _a240 = (double) (long) (X##_f1 >> 32);				\
 | |
|       _f240 = (double) (long) (Y##_f1 >> 32);				\
 | |
|       _e240 *= _const[3];						\
 | |
|       _j240 *= _const[3];						\
 | |
|       _d240 *= _const[2];						\
 | |
|       _i240 *= _const[2];						\
 | |
|       _c240 *= _const[1];						\
 | |
|       _h240 *= _const[1];						\
 | |
|       _b240 *= _const[0];						\
 | |
|       _g240 *= _const[0];						\
 | |
|       _s240.d =							      _e240*_j240; \
 | |
|       _r240.d =						_d240*_j240 + _e240*_i240; \
 | |
|       _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240; \
 | |
|       _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \
 | |
|       _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \
 | |
|       _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;	\
 | |
|       _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;		\
 | |
|       _l240.d = _a240*_g240 + _b240*_f240;				\
 | |
|       _k240 =   _a240*_f240;						\
 | |
|       _r240.d += _s240.d;						\
 | |
|       _q240.d += _r240.d;						\
 | |
|       _p240.d += _q240.d;						\
 | |
|       _o240.d += _p240.d;						\
 | |
|       _n240.d += _o240.d;						\
 | |
|       _m240.d += _n240.d;						\
 | |
|       _l240.d += _m240.d;						\
 | |
|       _k240 += _l240.d;							\
 | |
|       _s240.d -= ((_const[10]+_s240.d)-_const[10]);			\
 | |
|       _r240.d -= ((_const[9]+_r240.d)-_const[9]);			\
 | |
|       _q240.d -= ((_const[8]+_q240.d)-_const[8]);			\
 | |
|       _p240.d -= ((_const[7]+_p240.d)-_const[7]);			\
 | |
|       _o240.d += _const[7];						\
 | |
|       _n240.d += _const[6];						\
 | |
|       _m240.d += _const[5];						\
 | |
|       _l240.d += _const[4];						\
 | |
|       if (_s240.d != 0.0)						\
 | |
| 	_y240 = 1;							\
 | |
|       if (_r240.d != 0.0)						\
 | |
| 	_y240 = 1;							\
 | |
|       if (_q240.d != 0.0)						\
 | |
| 	_y240 = 1;							\
 | |
|       if (_p240.d != 0.0)						\
 | |
| 	_y240 = 1;							\
 | |
|       _t240 = (DItype) _k240;						\
 | |
|       _u240 = _l240.i;							\
 | |
|       _v240 = _m240.i;							\
 | |
|       _w240 = _n240.i;							\
 | |
|       _x240 = _o240.i;							\
 | |
|       R##_f1 = ((_t240 << (128 - (wfracbits - 1)))			\
 | |
| 		| ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)));	\
 | |
|       R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1)))		\
 | |
| 		| ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))	\
 | |
| 		| ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))	\
 | |
| 		| ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))	\
 | |
| 		| _y240);						\
 | |
|       resetfe;								\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| /* Division algorithms: */
 | |
| 
 | |
| #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\
 | |
|   do									\
 | |
|     {									\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1;				\
 | |
|       _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0;				\
 | |
|       if (_FP_FRAC_GE_2 (X, Y))						\
 | |
| 	{								\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1;			\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f1					\
 | |
| 	    = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f0					\
 | |
| 	    = X##_f0 << (_FP_W_TYPE_SIZE - 1);				\
 | |
| 	}								\
 | |
|       else								\
 | |
| 	{								\
 | |
| 	  R##_e--;							\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1;				\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0;				\
 | |
| 	  _FP_DIV_MEAT_2_udiv_n_f0 = 0;					\
 | |
| 	}								\
 | |
| 									\
 | |
|       /* Normalize, i.e. make the most significant bit of the		\
 | |
| 	 denominator set.  */						\
 | |
|       _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs);				\
 | |
| 									\
 | |
|       udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1,			\
 | |
| 		  _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1,	\
 | |
| 		  Y##_f1);						\
 | |
|       umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0,	\
 | |
| 		 R##_f1, Y##_f0);					\
 | |
|       _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0;		\
 | |
|       if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r))	\
 | |
| 	{								\
 | |
| 	  R##_f1--;							\
 | |
| 	  _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\
 | |
| 			  _FP_DIV_MEAT_2_udiv_r);			\
 | |
| 	  if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y)			\
 | |
| 	      && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,			\
 | |
| 				_FP_DIV_MEAT_2_udiv_r))			\
 | |
| 	    {								\
 | |
| 	      R##_f1--;							\
 | |
| 	      _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\
 | |
| 			      _FP_DIV_MEAT_2_udiv_r);			\
 | |
| 	    }								\
 | |
| 	}								\
 | |
|       _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m);	\
 | |
| 									\
 | |
|       if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1)				\
 | |
| 	{								\
 | |
| 	  /* This is a special case, not an optimization		\
 | |
| 	     (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype).	\
 | |
| 	     As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y,		\
 | |
| 	     R##_f0 can be either (UWtype)-1 or (UWtype)-2.  But as we	\
 | |
| 	     know what kind of bits it is (sticky, guard, round),	\
 | |
| 	     we don't care.  We also don't care what the reminder is,	\
 | |
| 	     because the guard bit will be set anyway.  -jj */		\
 | |
| 	  R##_f0 = -1;							\
 | |
| 	}								\
 | |
|       else								\
 | |
| 	{								\
 | |
| 	  udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1,			\
 | |
| 		      _FP_DIV_MEAT_2_udiv_r_f1,				\
 | |
| 		      _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1);		\
 | |
| 	  umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1,				\
 | |
| 		     _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0);		\
 | |
| 	  _FP_DIV_MEAT_2_udiv_r_f0 = 0;					\
 | |
| 	  if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,			\
 | |
| 			     _FP_DIV_MEAT_2_udiv_r))			\
 | |
| 	    {								\
 | |
| 	      R##_f0--;							\
 | |
| 	      _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\
 | |
| 			      _FP_DIV_MEAT_2_udiv_r);			\
 | |
| 	      if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y)		\
 | |
| 		  && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,		\
 | |
| 				    _FP_DIV_MEAT_2_udiv_r))		\
 | |
| 		{							\
 | |
| 		  R##_f0--;						\
 | |
| 		  _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,		\
 | |
| 				  _FP_DIV_MEAT_2_udiv_r);		\
 | |
| 		}							\
 | |
| 	    }								\
 | |
| 	  if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r,			\
 | |
| 			      _FP_DIV_MEAT_2_udiv_m))			\
 | |
| 	    R##_f0 |= _FP_WORK_STICKY;					\
 | |
| 	}								\
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| 
 | |
| /* Square root algorithms:
 | |
|    We have just one right now, maybe Newton approximation
 | |
|    should be added for those machines where division is fast.  */
 | |
| 
 | |
| #define _FP_SQRT_MEAT_2(R, S, T, X, q)				\
 | |
|   do								\
 | |
|     {								\
 | |
|       while (q)							\
 | |
| 	{							\
 | |
| 	  T##_f1 = S##_f1 + (q);				\
 | |
| 	  if (T##_f1 <= X##_f1)					\
 | |
| 	    {							\
 | |
| 	      S##_f1 = T##_f1 + (q);				\
 | |
| 	      X##_f1 -= T##_f1;					\
 | |
| 	      R##_f1 += (q);					\
 | |
| 	    }							\
 | |
| 	  _FP_FRAC_SLL_2 (X, 1);				\
 | |
| 	  (q) >>= 1;						\
 | |
| 	}							\
 | |
|       (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);		\
 | |
|       while ((q) != _FP_WORK_ROUND)				\
 | |
| 	{							\
 | |
| 	  T##_f0 = S##_f0 + (q);				\
 | |
| 	  T##_f1 = S##_f1;					\
 | |
| 	  if (T##_f1 < X##_f1					\
 | |
| 	      || (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\
 | |
| 	    {							\
 | |
| 	      S##_f0 = T##_f0 + (q);				\
 | |
| 	      S##_f1 += (T##_f0 > S##_f0);			\
 | |
| 	      _FP_FRAC_DEC_2 (X, T);				\
 | |
| 	      R##_f0 += (q);					\
 | |
| 	    }							\
 | |
| 	  _FP_FRAC_SLL_2 (X, 1);				\
 | |
| 	  (q) >>= 1;						\
 | |
| 	}							\
 | |
|       if (X##_f0 | X##_f1)					\
 | |
| 	{							\
 | |
| 	  if (S##_f1 < X##_f1					\
 | |
| 	      || (S##_f1 == X##_f1 && S##_f0 < X##_f0))		\
 | |
| 	    R##_f0 |= _FP_WORK_ROUND;				\
 | |
| 	  R##_f0 |= _FP_WORK_STICKY;				\
 | |
| 	}							\
 | |
|     }								\
 | |
|   while (0)
 | |
| 
 | |
| 
 | |
| /* Assembly/disassembly for converting to/from integral types.
 | |
|    No shifting or overflow handled here.  */
 | |
| 
 | |
| #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\
 | |
|   (void) (((rsize) <= _FP_W_TYPE_SIZE)		\
 | |
| 	  ? ({ (r) = X##_f0; })			\
 | |
| 	  : ({					\
 | |
| 	      (r) = X##_f1;			\
 | |
| 	      (r) <<= _FP_W_TYPE_SIZE;		\
 | |
| 	      (r) += X##_f0;			\
 | |
| 	    }))
 | |
| 
 | |
| #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)	\
 | |
|   do						\
 | |
|     {						\
 | |
|       X##_f0 = (r);				\
 | |
|       X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE	\
 | |
| 		? 0				\
 | |
| 		: (r) >> _FP_W_TYPE_SIZE);	\
 | |
|     }						\
 | |
|   while (0)
 | |
| 
 | |
| /* Convert FP values between word sizes.  */
 | |
| 
 | |
| #define _FP_FRAC_COPY_1_2(D, S)		(D##_f = S##_f0)
 | |
| 
 | |
| #define _FP_FRAC_COPY_2_1(D, S)		((D##_f0 = S##_f), (D##_f1 = 0))
 | |
| 
 | |
| #define _FP_FRAC_COPY_2_2(D, S)		_FP_FRAC_COPY_2 (D, S)
 | |
| 
 | |
| #endif /* !SOFT_FP_OP_2_H */
 |