mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1100 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Subroutines needed for unwinding stack frames for exception handling.  */
 | ||
| /* Copyright (C) 1997-2016 Free Software Foundation, Inc.
 | ||
|    Contributed by Jason Merrill <jason@cygnus.com>.
 | ||
| 
 | ||
| This file is part of GCC.
 | ||
| 
 | ||
| GCC is free software; you can redistribute it and/or modify it under
 | ||
| the terms of the GNU General Public License as published by the Free
 | ||
| Software Foundation; either version 3, or (at your option) any later
 | ||
| version.
 | ||
| 
 | ||
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | ||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
| for more details.
 | ||
| 
 | ||
| Under Section 7 of GPL version 3, you are granted additional
 | ||
| permissions described in the GCC Runtime Library Exception, version
 | ||
| 3.1, as published by the Free Software Foundation.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License and
 | ||
| a copy of the GCC Runtime Library Exception along with this program;
 | ||
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | ||
| <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #ifndef _Unwind_Find_FDE
 | ||
| #include "tconfig.h"
 | ||
| #include "tsystem.h"
 | ||
| #include "coretypes.h"
 | ||
| #include "tm.h"
 | ||
| #include "libgcc_tm.h"
 | ||
| #include "dwarf2.h"
 | ||
| #include "unwind.h"
 | ||
| #define NO_BASE_OF_ENCODED_VALUE
 | ||
| #include "unwind-pe.h"
 | ||
| #include "unwind-dw2-fde.h"
 | ||
| #include "gthr.h"
 | ||
| #else
 | ||
| #if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \
 | ||
|     && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
 | ||
| #define ATOMIC_FDE_FAST_PATH 1
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| /* The unseen_objects list contains objects that have been registered
 | ||
|    but not yet categorized in any way.  The seen_objects list has had
 | ||
|    its pc_begin and count fields initialized at minimum, and is sorted
 | ||
|    by decreasing value of pc_begin.  */
 | ||
| static struct object *unseen_objects;
 | ||
| static struct object *seen_objects;
 | ||
| #ifdef ATOMIC_FDE_FAST_PATH
 | ||
| static int any_objects_registered;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef __GTHREAD_MUTEX_INIT
 | ||
| static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
 | ||
| #define init_object_mutex_once()
 | ||
| #else
 | ||
| #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
 | ||
| static __gthread_mutex_t object_mutex;
 | ||
| 
 | ||
| static void
 | ||
| init_object_mutex (void)
 | ||
| {
 | ||
|   __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| init_object_mutex_once (void)
 | ||
| {
 | ||
|   static __gthread_once_t once = __GTHREAD_ONCE_INIT;
 | ||
|   __gthread_once (&once, init_object_mutex);
 | ||
| }
 | ||
| #else
 | ||
| /* ???  Several targets include this file with stubbing parts of gthr.h
 | ||
|    and expect no locking to be done.  */
 | ||
| #define init_object_mutex_once()
 | ||
| static __gthread_mutex_t object_mutex;
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| /* Called from crtbegin.o to register the unwind info for an object.  */
 | ||
| 
 | ||
| void
 | ||
| __register_frame_info_bases (const void *begin, struct object *ob,
 | ||
| 			     void *tbase, void *dbase)
 | ||
| {
 | ||
|   /* If .eh_frame is empty, don't register at all.  */
 | ||
|   if ((const uword *) begin == 0 || *(const uword *) begin == 0)
 | ||
|     return;
 | ||
| 
 | ||
|   ob->pc_begin = (void *)-1;
 | ||
|   ob->tbase = tbase;
 | ||
|   ob->dbase = dbase;
 | ||
|   ob->u.single = begin;
 | ||
|   ob->s.i = 0;
 | ||
|   ob->s.b.encoding = DW_EH_PE_omit;
 | ||
| #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
 | ||
|   ob->fde_end = NULL;
 | ||
| #endif
 | ||
| 
 | ||
|   init_object_mutex_once ();
 | ||
|   __gthread_mutex_lock (&object_mutex);
 | ||
| 
 | ||
|   ob->next = unseen_objects;
 | ||
|   unseen_objects = ob;
 | ||
| #ifdef ATOMIC_FDE_FAST_PATH
 | ||
|   /* Set flag that at least one library has registered FDEs.
 | ||
|      Use relaxed MO here, it is up to the app to ensure that the library
 | ||
|      loading/initialization happens-before using that library in other
 | ||
|      threads (in particular unwinding with that library's functions
 | ||
|      appearing in the backtraces).  Calling that library's functions
 | ||
|      without waiting for the library to initialize would be racy.  */
 | ||
|   if (!any_objects_registered)
 | ||
|     __atomic_store_n (&any_objects_registered, 1, __ATOMIC_RELAXED);
 | ||
| #endif
 | ||
| 
 | ||
|   __gthread_mutex_unlock (&object_mutex);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| __register_frame_info (const void *begin, struct object *ob)
 | ||
| {
 | ||
|   __register_frame_info_bases (begin, ob, 0, 0);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| __register_frame (void *begin)
 | ||
| {
 | ||
|   struct object *ob;
 | ||
| 
 | ||
|   /* If .eh_frame is empty, don't register at all.  */
 | ||
|   if (*(uword *) begin == 0)
 | ||
|     return;
 | ||
| 
 | ||
|   ob = malloc (sizeof (struct object));
 | ||
|   __register_frame_info (begin, ob);
 | ||
| }
 | ||
| 
 | ||
| /* Similar, but BEGIN is actually a pointer to a table of unwind entries
 | ||
|    for different translation units.  Called from the file generated by
 | ||
|    collect2.  */
 | ||
| 
 | ||
| void
 | ||
| __register_frame_info_table_bases (void *begin, struct object *ob,
 | ||
| 				   void *tbase, void *dbase)
 | ||
| {
 | ||
|   ob->pc_begin = (void *)-1;
 | ||
|   ob->tbase = tbase;
 | ||
|   ob->dbase = dbase;
 | ||
|   ob->u.array = begin;
 | ||
|   ob->s.i = 0;
 | ||
|   ob->s.b.from_array = 1;
 | ||
|   ob->s.b.encoding = DW_EH_PE_omit;
 | ||
| 
 | ||
|   init_object_mutex_once ();
 | ||
|   __gthread_mutex_lock (&object_mutex);
 | ||
| 
 | ||
|   ob->next = unseen_objects;
 | ||
|   unseen_objects = ob;
 | ||
| #ifdef ATOMIC_FDE_FAST_PATH
 | ||
|   /* Set flag that at least one library has registered FDEs.
 | ||
|      Use relaxed MO here, it is up to the app to ensure that the library
 | ||
|      loading/initialization happens-before using that library in other
 | ||
|      threads (in particular unwinding with that library's functions
 | ||
|      appearing in the backtraces).  Calling that library's functions
 | ||
|      without waiting for the library to initialize would be racy.  */
 | ||
|   if (!any_objects_registered)
 | ||
|     __atomic_store_n (&any_objects_registered, 1, __ATOMIC_RELAXED);
 | ||
| #endif
 | ||
| 
 | ||
|   __gthread_mutex_unlock (&object_mutex);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| __register_frame_info_table (void *begin, struct object *ob)
 | ||
| {
 | ||
|   __register_frame_info_table_bases (begin, ob, 0, 0);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| __register_frame_table (void *begin)
 | ||
| {
 | ||
|   struct object *ob = malloc (sizeof (struct object));
 | ||
|   __register_frame_info_table (begin, ob);
 | ||
| }
 | ||
| 
 | ||
| /* Called from crtbegin.o to deregister the unwind info for an object.  */
 | ||
| /* ??? Glibc has for a while now exported __register_frame_info and
 | ||
|    __deregister_frame_info.  If we call __register_frame_info_bases
 | ||
|    from crtbegin (wherein it is declared weak), and this object does
 | ||
|    not get pulled from libgcc.a for other reasons, then the
 | ||
|    invocation of __deregister_frame_info will be resolved from glibc.
 | ||
|    Since the registration did not happen there, we'll die.
 | ||
| 
 | ||
|    Therefore, declare a new deregistration entry point that does the
 | ||
|    exact same thing, but will resolve to the same library as
 | ||
|    implements __register_frame_info_bases.  */
 | ||
| 
 | ||
| void *
 | ||
| __deregister_frame_info_bases (const void *begin)
 | ||
| {
 | ||
|   struct object **p;
 | ||
|   struct object *ob = 0;
 | ||
| 
 | ||
|   /* If .eh_frame is empty, we haven't registered.  */
 | ||
|   if ((const uword *) begin == 0 || *(const uword *) begin == 0)
 | ||
|     return ob;
 | ||
| 
 | ||
|   init_object_mutex_once ();
 | ||
|   __gthread_mutex_lock (&object_mutex);
 | ||
| 
 | ||
|   for (p = &unseen_objects; *p ; p = &(*p)->next)
 | ||
|     if ((*p)->u.single == begin)
 | ||
|       {
 | ||
| 	ob = *p;
 | ||
| 	*p = ob->next;
 | ||
| 	goto out;
 | ||
|       }
 | ||
| 
 | ||
|   for (p = &seen_objects; *p ; p = &(*p)->next)
 | ||
|     if ((*p)->s.b.sorted)
 | ||
|       {
 | ||
| 	if ((*p)->u.sort->orig_data == begin)
 | ||
| 	  {
 | ||
| 	    ob = *p;
 | ||
| 	    *p = ob->next;
 | ||
| 	    free (ob->u.sort);
 | ||
| 	    goto out;
 | ||
| 	  }
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	if ((*p)->u.single == begin)
 | ||
| 	  {
 | ||
| 	    ob = *p;
 | ||
| 	    *p = ob->next;
 | ||
| 	    goto out;
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|  out:
 | ||
|   __gthread_mutex_unlock (&object_mutex);
 | ||
|   gcc_assert (ob);
 | ||
|   return (void *) ob;
 | ||
| }
 | ||
| 
 | ||
| void *
 | ||
| __deregister_frame_info (const void *begin)
 | ||
| {
 | ||
|   return __deregister_frame_info_bases (begin);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| __deregister_frame (void *begin)
 | ||
| {
 | ||
|   /* If .eh_frame is empty, we haven't registered.  */
 | ||
|   if (*(uword *) begin != 0)
 | ||
|     free (__deregister_frame_info (begin));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Like base_of_encoded_value, but take the base from a struct object
 | ||
|    instead of an _Unwind_Context.  */
 | ||
| 
 | ||
| static _Unwind_Ptr
 | ||
| base_from_object (unsigned char encoding, struct object *ob)
 | ||
| {
 | ||
|   if (encoding == DW_EH_PE_omit)
 | ||
|     return 0;
 | ||
| 
 | ||
|   switch (encoding & 0x70)
 | ||
|     {
 | ||
|     case DW_EH_PE_absptr:
 | ||
|     case DW_EH_PE_pcrel:
 | ||
|     case DW_EH_PE_aligned:
 | ||
|       return 0;
 | ||
| 
 | ||
|     case DW_EH_PE_textrel:
 | ||
|       return (_Unwind_Ptr) ob->tbase;
 | ||
|     case DW_EH_PE_datarel:
 | ||
|       return (_Unwind_Ptr) ob->dbase;
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Return the FDE pointer encoding from the CIE.  */
 | ||
| /* ??? This is a subset of extract_cie_info from unwind-dw2.c.  */
 | ||
| 
 | ||
| static int
 | ||
| get_cie_encoding (const struct dwarf_cie *cie)
 | ||
| {
 | ||
|   const unsigned char *aug, *p;
 | ||
|   _Unwind_Ptr dummy;
 | ||
|   _uleb128_t utmp;
 | ||
|   _sleb128_t stmp;
 | ||
| 
 | ||
|   aug = cie->augmentation;
 | ||
|   p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string.  */
 | ||
|   if (__builtin_expect (cie->version >= 4, 0))
 | ||
|     {
 | ||
|       if (p[0] != sizeof (void *) || p[1] != 0)
 | ||
| 	return DW_EH_PE_omit;		/* We are not prepared to handle unexpected
 | ||
| 					   address sizes or segment selectors.  */
 | ||
|       p += 2;				/* Skip address size and segment size.  */
 | ||
|     }
 | ||
| 
 | ||
|   if (aug[0] != 'z')
 | ||
|     return DW_EH_PE_absptr;
 | ||
| 
 | ||
|   p = read_uleb128 (p, &utmp);		/* Skip code alignment.  */
 | ||
|   p = read_sleb128 (p, &stmp);		/* Skip data alignment.  */
 | ||
|   if (cie->version == 1)		/* Skip return address column.  */
 | ||
|     p++;
 | ||
|   else
 | ||
|     p = read_uleb128 (p, &utmp);
 | ||
| 
 | ||
|   aug++;				/* Skip 'z' */
 | ||
|   p = read_uleb128 (p, &utmp);		/* Skip augmentation length.  */
 | ||
|   while (1)
 | ||
|     {
 | ||
|       /* This is what we're looking for.  */
 | ||
|       if (*aug == 'R')
 | ||
| 	return *p;
 | ||
|       /* Personality encoding and pointer.  */
 | ||
|       else if (*aug == 'P')
 | ||
| 	{
 | ||
| 	  /* ??? Avoid dereferencing indirect pointers, since we're
 | ||
| 	     faking the base address.  Gotta keep DW_EH_PE_aligned
 | ||
| 	     intact, however.  */
 | ||
| 	  p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
 | ||
| 	}
 | ||
|       /* LSDA encoding.  */
 | ||
|       else if (*aug == 'L')
 | ||
| 	p++;
 | ||
|       /* Otherwise end of string, or unknown augmentation.  */
 | ||
|       else
 | ||
| 	return DW_EH_PE_absptr;
 | ||
|       aug++;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static inline int
 | ||
| get_fde_encoding (const struct dwarf_fde *f)
 | ||
| {
 | ||
|   return get_cie_encoding (get_cie (f));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Sorting an array of FDEs by address.
 | ||
|    (Ideally we would have the linker sort the FDEs so we don't have to do
 | ||
|    it at run time. But the linkers are not yet prepared for this.)  */
 | ||
| 
 | ||
| /* Comparison routines.  Three variants of increasing complexity.  */
 | ||
| 
 | ||
| static int
 | ||
| fde_unencoded_compare (struct object *ob __attribute__((unused)),
 | ||
| 		       const fde *x, const fde *y)
 | ||
| {
 | ||
|   _Unwind_Ptr x_ptr, y_ptr;
 | ||
|   memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr));
 | ||
|   memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr));
 | ||
| 
 | ||
|   if (x_ptr > y_ptr)
 | ||
|     return 1;
 | ||
|   if (x_ptr < y_ptr)
 | ||
|     return -1;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
 | ||
| {
 | ||
|   _Unwind_Ptr base, x_ptr, y_ptr;
 | ||
| 
 | ||
|   base = base_from_object (ob->s.b.encoding, ob);
 | ||
|   read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
 | ||
|   read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
 | ||
| 
 | ||
|   if (x_ptr > y_ptr)
 | ||
|     return 1;
 | ||
|   if (x_ptr < y_ptr)
 | ||
|     return -1;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
 | ||
| {
 | ||
|   int x_encoding, y_encoding;
 | ||
|   _Unwind_Ptr x_ptr, y_ptr;
 | ||
| 
 | ||
|   x_encoding = get_fde_encoding (x);
 | ||
|   read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
 | ||
| 				x->pc_begin, &x_ptr);
 | ||
| 
 | ||
|   y_encoding = get_fde_encoding (y);
 | ||
|   read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
 | ||
| 				y->pc_begin, &y_ptr);
 | ||
| 
 | ||
|   if (x_ptr > y_ptr)
 | ||
|     return 1;
 | ||
|   if (x_ptr < y_ptr)
 | ||
|     return -1;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
 | ||
| 
 | ||
| 
 | ||
| /* This is a special mix of insertion sort and heap sort, optimized for
 | ||
|    the data sets that actually occur. They look like
 | ||
|    101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
 | ||
|    I.e. a linearly increasing sequence (coming from functions in the text
 | ||
|    section), with additionally a few unordered elements (coming from functions
 | ||
|    in gnu_linkonce sections) whose values are higher than the values in the
 | ||
|    surrounding linear sequence (but not necessarily higher than the values
 | ||
|    at the end of the linear sequence!).
 | ||
|    The worst-case total run time is O(N) + O(n log (n)), where N is the
 | ||
|    total number of FDEs and n is the number of erratic ones.  */
 | ||
| 
 | ||
| struct fde_accumulator
 | ||
| {
 | ||
|   struct fde_vector *linear;
 | ||
|   struct fde_vector *erratic;
 | ||
| };
 | ||
| 
 | ||
| static inline int
 | ||
| start_fde_sort (struct fde_accumulator *accu, size_t count)
 | ||
| {
 | ||
|   size_t size;
 | ||
|   if (! count)
 | ||
|     return 0;
 | ||
| 
 | ||
|   size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
 | ||
|   if ((accu->linear = malloc (size)))
 | ||
|     {
 | ||
|       accu->linear->count = 0;
 | ||
|       if ((accu->erratic = malloc (size)))
 | ||
| 	accu->erratic->count = 0;
 | ||
|       return 1;
 | ||
|     }
 | ||
|   else
 | ||
|     return 0;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| fde_insert (struct fde_accumulator *accu, const fde *this_fde)
 | ||
| {
 | ||
|   if (accu->linear)
 | ||
|     accu->linear->array[accu->linear->count++] = this_fde;
 | ||
| }
 | ||
| 
 | ||
| /* Split LINEAR into a linear sequence with low values and an erratic
 | ||
|    sequence with high values, put the linear one (of longest possible
 | ||
|    length) into LINEAR and the erratic one into ERRATIC. This is O(N).
 | ||
| 
 | ||
|    Because the longest linear sequence we are trying to locate within the
 | ||
|    incoming LINEAR array can be interspersed with (high valued) erratic
 | ||
|    entries.  We construct a chain indicating the sequenced entries.
 | ||
|    To avoid having to allocate this chain, we overlay it onto the space of
 | ||
|    the ERRATIC array during construction.  A final pass iterates over the
 | ||
|    chain to determine what should be placed in the ERRATIC array, and
 | ||
|    what is the linear sequence.  This overlay is safe from aliasing.  */
 | ||
| 
 | ||
| static inline void
 | ||
| fde_split (struct object *ob, fde_compare_t fde_compare,
 | ||
| 	   struct fde_vector *linear, struct fde_vector *erratic)
 | ||
| {
 | ||
|   static const fde *marker;
 | ||
|   size_t count = linear->count;
 | ||
|   const fde *const *chain_end = ▮
 | ||
|   size_t i, j, k;
 | ||
| 
 | ||
|   /* This should optimize out, but it is wise to make sure this assumption
 | ||
|      is correct. Should these have different sizes, we cannot cast between
 | ||
|      them and the overlaying onto ERRATIC will not work.  */
 | ||
|   gcc_assert (sizeof (const fde *) == sizeof (const fde **));
 | ||
| 
 | ||
|   for (i = 0; i < count; i++)
 | ||
|     {
 | ||
|       const fde *const *probe;
 | ||
| 
 | ||
|       for (probe = chain_end;
 | ||
| 	   probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
 | ||
| 	   probe = chain_end)
 | ||
| 	{
 | ||
| 	  chain_end = (const fde *const*) erratic->array[probe - linear->array];
 | ||
| 	  erratic->array[probe - linear->array] = NULL;
 | ||
| 	}
 | ||
|       erratic->array[i] = (const fde *) chain_end;
 | ||
|       chain_end = &linear->array[i];
 | ||
|     }
 | ||
| 
 | ||
|   /* Each entry in LINEAR which is part of the linear sequence we have
 | ||
|      discovered will correspond to a non-NULL entry in the chain we built in
 | ||
|      the ERRATIC array.  */
 | ||
|   for (i = j = k = 0; i < count; i++)
 | ||
|     if (erratic->array[i])
 | ||
|       linear->array[j++] = linear->array[i];
 | ||
|     else
 | ||
|       erratic->array[k++] = linear->array[i];
 | ||
|   linear->count = j;
 | ||
|   erratic->count = k;
 | ||
| }
 | ||
| 
 | ||
| #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
 | ||
| 
 | ||
| /* Convert a semi-heap to a heap.  A semi-heap is a heap except possibly
 | ||
|    for the first (root) node; push it down to its rightful place.  */
 | ||
| 
 | ||
| static void
 | ||
| frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
 | ||
| 		int lo, int hi)
 | ||
| {
 | ||
|   int i, j;
 | ||
| 
 | ||
|   for (i = lo, j = 2*i+1;
 | ||
|        j < hi;
 | ||
|        j = 2*i+1)
 | ||
|     {
 | ||
|       if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
 | ||
| 	++j;
 | ||
| 
 | ||
|       if (fde_compare (ob, a[i], a[j]) < 0)
 | ||
| 	{
 | ||
| 	  SWAP (a[i], a[j]);
 | ||
| 	  i = j;
 | ||
| 	}
 | ||
|       else
 | ||
| 	break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must
 | ||
|    use a name that does not conflict.  */
 | ||
| 
 | ||
| static void
 | ||
| frame_heapsort (struct object *ob, fde_compare_t fde_compare,
 | ||
| 		struct fde_vector *erratic)
 | ||
| {
 | ||
|   /* For a description of this algorithm, see:
 | ||
|      Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
 | ||
|      p. 60-61.  */
 | ||
|   const fde ** a = erratic->array;
 | ||
|   /* A portion of the array is called a "heap" if for all i>=0:
 | ||
|      If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
 | ||
|      If i and 2i+2 are valid indices, then a[i] >= a[2i+2].  */
 | ||
|   size_t n = erratic->count;
 | ||
|   int m;
 | ||
| 
 | ||
|   /* Expand our heap incrementally from the end of the array, heapifying
 | ||
|      each resulting semi-heap as we go.  After each step, a[m] is the top
 | ||
|      of a heap.  */
 | ||
|   for (m = n/2-1; m >= 0; --m)
 | ||
|     frame_downheap (ob, fde_compare, a, m, n);
 | ||
| 
 | ||
|   /* Shrink our heap incrementally from the end of the array, first
 | ||
|      swapping out the largest element a[0] and then re-heapifying the
 | ||
|      resulting semi-heap.  After each step, a[0..m) is a heap.  */
 | ||
|   for (m = n-1; m >= 1; --m)
 | ||
|     {
 | ||
|       SWAP (a[0], a[m]);
 | ||
|       frame_downheap (ob, fde_compare, a, 0, m);
 | ||
|     }
 | ||
| #undef SWAP
 | ||
| }
 | ||
| 
 | ||
| /* Merge V1 and V2, both sorted, and put the result into V1.  */
 | ||
| static inline void
 | ||
| fde_merge (struct object *ob, fde_compare_t fde_compare,
 | ||
| 	   struct fde_vector *v1, struct fde_vector *v2)
 | ||
| {
 | ||
|   size_t i1, i2;
 | ||
|   const fde * fde2;
 | ||
| 
 | ||
|   i2 = v2->count;
 | ||
|   if (i2 > 0)
 | ||
|     {
 | ||
|       i1 = v1->count;
 | ||
|       do
 | ||
| 	{
 | ||
| 	  i2--;
 | ||
| 	  fde2 = v2->array[i2];
 | ||
| 	  while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
 | ||
| 	    {
 | ||
| 	      v1->array[i1+i2] = v1->array[i1-1];
 | ||
| 	      i1--;
 | ||
| 	    }
 | ||
| 	  v1->array[i1+i2] = fde2;
 | ||
| 	}
 | ||
|       while (i2 > 0);
 | ||
|       v1->count += v2->count;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
 | ||
| {
 | ||
|   fde_compare_t fde_compare;
 | ||
| 
 | ||
|   gcc_assert (!accu->linear || accu->linear->count == count);
 | ||
| 
 | ||
|   if (ob->s.b.mixed_encoding)
 | ||
|     fde_compare = fde_mixed_encoding_compare;
 | ||
|   else if (ob->s.b.encoding == DW_EH_PE_absptr)
 | ||
|     fde_compare = fde_unencoded_compare;
 | ||
|   else
 | ||
|     fde_compare = fde_single_encoding_compare;
 | ||
| 
 | ||
|   if (accu->erratic)
 | ||
|     {
 | ||
|       fde_split (ob, fde_compare, accu->linear, accu->erratic);
 | ||
|       gcc_assert (accu->linear->count + accu->erratic->count == count);
 | ||
|       frame_heapsort (ob, fde_compare, accu->erratic);
 | ||
|       fde_merge (ob, fde_compare, accu->linear, accu->erratic);
 | ||
|       free (accu->erratic);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* We've not managed to malloc an erratic array,
 | ||
| 	 so heap sort in the linear one.  */
 | ||
|       frame_heapsort (ob, fde_compare, accu->linear);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Update encoding, mixed_encoding, and pc_begin for OB for the
 | ||
|    fde array beginning at THIS_FDE.  Return the number of fdes
 | ||
|    encountered along the way.  */
 | ||
| 
 | ||
| static size_t
 | ||
| classify_object_over_fdes (struct object *ob, const fde *this_fde)
 | ||
| {
 | ||
|   const struct dwarf_cie *last_cie = 0;
 | ||
|   size_t count = 0;
 | ||
|   int encoding = DW_EH_PE_absptr;
 | ||
|   _Unwind_Ptr base = 0;
 | ||
| 
 | ||
|   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | ||
|     {
 | ||
|       const struct dwarf_cie *this_cie;
 | ||
|       _Unwind_Ptr mask, pc_begin;
 | ||
| 
 | ||
|       /* Skip CIEs.  */
 | ||
|       if (this_fde->CIE_delta == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       /* Determine the encoding for this FDE.  Note mixed encoded
 | ||
| 	 objects for later.  */
 | ||
|       this_cie = get_cie (this_fde);
 | ||
|       if (this_cie != last_cie)
 | ||
| 	{
 | ||
| 	  last_cie = this_cie;
 | ||
| 	  encoding = get_cie_encoding (this_cie);
 | ||
| 	  if (encoding == DW_EH_PE_omit)
 | ||
| 	    return -1;
 | ||
| 	  base = base_from_object (encoding, ob);
 | ||
| 	  if (ob->s.b.encoding == DW_EH_PE_omit)
 | ||
| 	    ob->s.b.encoding = encoding;
 | ||
| 	  else if (ob->s.b.encoding != encoding)
 | ||
| 	    ob->s.b.mixed_encoding = 1;
 | ||
| 	}
 | ||
| 
 | ||
|       read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
 | ||
| 				    &pc_begin);
 | ||
| 
 | ||
|       /* Take care to ignore link-once functions that were removed.
 | ||
| 	 In these cases, the function address will be NULL, but if
 | ||
| 	 the encoding is smaller than a pointer a true NULL may not
 | ||
| 	 be representable.  Assume 0 in the representable bits is NULL.  */
 | ||
|       mask = size_of_encoded_value (encoding);
 | ||
|       if (mask < sizeof (void *))
 | ||
| 	mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
 | ||
|       else
 | ||
| 	mask = -1;
 | ||
| 
 | ||
|       if ((pc_begin & mask) == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       count += 1;
 | ||
|       if ((void *) pc_begin < ob->pc_begin)
 | ||
| 	ob->pc_begin = (void *) pc_begin;
 | ||
|     }
 | ||
| 
 | ||
|   return count;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
 | ||
| {
 | ||
|   const struct dwarf_cie *last_cie = 0;
 | ||
|   int encoding = ob->s.b.encoding;
 | ||
|   _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
 | ||
| 
 | ||
|   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | ||
|     {
 | ||
|       const struct dwarf_cie *this_cie;
 | ||
| 
 | ||
|       /* Skip CIEs.  */
 | ||
|       if (this_fde->CIE_delta == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       if (ob->s.b.mixed_encoding)
 | ||
| 	{
 | ||
| 	  /* Determine the encoding for this FDE.  Note mixed encoded
 | ||
| 	     objects for later.  */
 | ||
| 	  this_cie = get_cie (this_fde);
 | ||
| 	  if (this_cie != last_cie)
 | ||
| 	    {
 | ||
| 	      last_cie = this_cie;
 | ||
| 	      encoding = get_cie_encoding (this_cie);
 | ||
| 	      base = base_from_object (encoding, ob);
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       if (encoding == DW_EH_PE_absptr)
 | ||
| 	{
 | ||
| 	  _Unwind_Ptr ptr;
 | ||
| 	  memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr));
 | ||
| 	  if (ptr == 0)
 | ||
| 	    continue;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  _Unwind_Ptr pc_begin, mask;
 | ||
| 
 | ||
| 	  read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
 | ||
| 					&pc_begin);
 | ||
| 
 | ||
| 	  /* Take care to ignore link-once functions that were removed.
 | ||
| 	     In these cases, the function address will be NULL, but if
 | ||
| 	     the encoding is smaller than a pointer a true NULL may not
 | ||
| 	     be representable.  Assume 0 in the representable bits is NULL.  */
 | ||
| 	  mask = size_of_encoded_value (encoding);
 | ||
| 	  if (mask < sizeof (void *))
 | ||
| 	    mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
 | ||
| 	  else
 | ||
| 	    mask = -1;
 | ||
| 
 | ||
| 	  if ((pc_begin & mask) == 0)
 | ||
| 	    continue;
 | ||
| 	}
 | ||
| 
 | ||
|       fde_insert (accu, this_fde);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Set up a sorted array of pointers to FDEs for a loaded object.  We
 | ||
|    count up the entries before allocating the array because it's likely to
 | ||
|    be faster.  We can be called multiple times, should we have failed to
 | ||
|    allocate a sorted fde array on a previous occasion.  */
 | ||
| 
 | ||
| static inline void
 | ||
| init_object (struct object* ob)
 | ||
| {
 | ||
|   struct fde_accumulator accu;
 | ||
|   size_t count;
 | ||
| 
 | ||
|   count = ob->s.b.count;
 | ||
|   if (count == 0)
 | ||
|     {
 | ||
|       if (ob->s.b.from_array)
 | ||
| 	{
 | ||
| 	  fde **p = ob->u.array;
 | ||
| 	  for (count = 0; *p; ++p)
 | ||
| 	    {
 | ||
| 	      size_t cur_count = classify_object_over_fdes (ob, *p);
 | ||
| 	      if (cur_count == (size_t) -1)
 | ||
| 		goto unhandled_fdes;
 | ||
| 	      count += cur_count;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  count = classify_object_over_fdes (ob, ob->u.single);
 | ||
| 	  if (count == (size_t) -1)
 | ||
| 	    {
 | ||
| 	      static const fde terminator;
 | ||
| 	    unhandled_fdes:
 | ||
| 	      ob->s.i = 0;
 | ||
| 	      ob->s.b.encoding = DW_EH_PE_omit;
 | ||
| 	      ob->u.single = &terminator;
 | ||
| 	      return;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* The count field we have in the main struct object is somewhat
 | ||
| 	 limited, but should suffice for virtually all cases.  If the
 | ||
| 	 counted value doesn't fit, re-write a zero.  The worst that
 | ||
| 	 happens is that we re-count next time -- admittedly non-trivial
 | ||
| 	 in that this implies some 2M fdes, but at least we function.  */
 | ||
|       ob->s.b.count = count;
 | ||
|       if (ob->s.b.count != count)
 | ||
| 	ob->s.b.count = 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (!start_fde_sort (&accu, count))
 | ||
|     return;
 | ||
| 
 | ||
|   if (ob->s.b.from_array)
 | ||
|     {
 | ||
|       fde **p;
 | ||
|       for (p = ob->u.array; *p; ++p)
 | ||
| 	add_fdes (ob, &accu, *p);
 | ||
|     }
 | ||
|   else
 | ||
|     add_fdes (ob, &accu, ob->u.single);
 | ||
| 
 | ||
|   end_fde_sort (ob, &accu, count);
 | ||
| 
 | ||
|   /* Save the original fde pointer, since this is the key by which the
 | ||
|      DSO will deregister the object.  */
 | ||
|   accu.linear->orig_data = ob->u.single;
 | ||
|   ob->u.sort = accu.linear;
 | ||
| 
 | ||
|   ob->s.b.sorted = 1;
 | ||
| }
 | ||
| 
 | ||
| /* A linear search through a set of FDEs for the given PC.  This is
 | ||
|    used when there was insufficient memory to allocate and sort an
 | ||
|    array.  */
 | ||
| 
 | ||
| static const fde *
 | ||
| linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
 | ||
| {
 | ||
|   const struct dwarf_cie *last_cie = 0;
 | ||
|   int encoding = ob->s.b.encoding;
 | ||
|   _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
 | ||
| 
 | ||
|   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
 | ||
|     {
 | ||
|       const struct dwarf_cie *this_cie;
 | ||
|       _Unwind_Ptr pc_begin, pc_range;
 | ||
| 
 | ||
|       /* Skip CIEs.  */
 | ||
|       if (this_fde->CIE_delta == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       if (ob->s.b.mixed_encoding)
 | ||
| 	{
 | ||
| 	  /* Determine the encoding for this FDE.  Note mixed encoded
 | ||
| 	     objects for later.  */
 | ||
| 	  this_cie = get_cie (this_fde);
 | ||
| 	  if (this_cie != last_cie)
 | ||
| 	    {
 | ||
| 	      last_cie = this_cie;
 | ||
| 	      encoding = get_cie_encoding (this_cie);
 | ||
| 	      base = base_from_object (encoding, ob);
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       if (encoding == DW_EH_PE_absptr)
 | ||
| 	{
 | ||
| 	  const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin;
 | ||
| 	  pc_begin = pc_array[0];
 | ||
| 	  pc_range = pc_array[1];
 | ||
| 	  if (pc_begin == 0)
 | ||
| 	    continue;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  _Unwind_Ptr mask;
 | ||
| 	  const unsigned char *p;
 | ||
| 
 | ||
| 	  p = read_encoded_value_with_base (encoding, base,
 | ||
| 					    this_fde->pc_begin, &pc_begin);
 | ||
| 	  read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | ||
| 
 | ||
| 	  /* Take care to ignore link-once functions that were removed.
 | ||
| 	     In these cases, the function address will be NULL, but if
 | ||
| 	     the encoding is smaller than a pointer a true NULL may not
 | ||
| 	     be representable.  Assume 0 in the representable bits is NULL.  */
 | ||
| 	  mask = size_of_encoded_value (encoding);
 | ||
| 	  if (mask < sizeof (void *))
 | ||
| 	    mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
 | ||
| 	  else
 | ||
| 	    mask = -1;
 | ||
| 
 | ||
| 	  if ((pc_begin & mask) == 0)
 | ||
| 	    continue;
 | ||
| 	}
 | ||
| 
 | ||
|       if ((_Unwind_Ptr) pc - pc_begin < pc_range)
 | ||
| 	return this_fde;
 | ||
|     }
 | ||
| 
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Binary search for an FDE containing the given PC.  Here are three
 | ||
|    implementations of increasing complexity.  */
 | ||
| 
 | ||
| static inline const fde *
 | ||
| binary_search_unencoded_fdes (struct object *ob, void *pc)
 | ||
| {
 | ||
|   struct fde_vector *vec = ob->u.sort;
 | ||
|   size_t lo, hi;
 | ||
| 
 | ||
|   for (lo = 0, hi = vec->count; lo < hi; )
 | ||
|     {
 | ||
|       size_t i = (lo + hi) / 2;
 | ||
|       const fde *const f = vec->array[i];
 | ||
|       void *pc_begin;
 | ||
|       uaddr pc_range;
 | ||
|       memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *));
 | ||
|       memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr));
 | ||
| 
 | ||
|       if (pc < pc_begin)
 | ||
| 	hi = i;
 | ||
|       else if (pc >= pc_begin + pc_range)
 | ||
| 	lo = i + 1;
 | ||
|       else
 | ||
| 	return f;
 | ||
|     }
 | ||
| 
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| static inline const fde *
 | ||
| binary_search_single_encoding_fdes (struct object *ob, void *pc)
 | ||
| {
 | ||
|   struct fde_vector *vec = ob->u.sort;
 | ||
|   int encoding = ob->s.b.encoding;
 | ||
|   _Unwind_Ptr base = base_from_object (encoding, ob);
 | ||
|   size_t lo, hi;
 | ||
| 
 | ||
|   for (lo = 0, hi = vec->count; lo < hi; )
 | ||
|     {
 | ||
|       size_t i = (lo + hi) / 2;
 | ||
|       const fde *f = vec->array[i];
 | ||
|       _Unwind_Ptr pc_begin, pc_range;
 | ||
|       const unsigned char *p;
 | ||
| 
 | ||
|       p = read_encoded_value_with_base (encoding, base, f->pc_begin,
 | ||
| 					&pc_begin);
 | ||
|       read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | ||
| 
 | ||
|       if ((_Unwind_Ptr) pc < pc_begin)
 | ||
| 	hi = i;
 | ||
|       else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
 | ||
| 	lo = i + 1;
 | ||
|       else
 | ||
| 	return f;
 | ||
|     }
 | ||
| 
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| static inline const fde *
 | ||
| binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
 | ||
| {
 | ||
|   struct fde_vector *vec = ob->u.sort;
 | ||
|   size_t lo, hi;
 | ||
| 
 | ||
|   for (lo = 0, hi = vec->count; lo < hi; )
 | ||
|     {
 | ||
|       size_t i = (lo + hi) / 2;
 | ||
|       const fde *f = vec->array[i];
 | ||
|       _Unwind_Ptr pc_begin, pc_range;
 | ||
|       const unsigned char *p;
 | ||
|       int encoding;
 | ||
| 
 | ||
|       encoding = get_fde_encoding (f);
 | ||
|       p = read_encoded_value_with_base (encoding,
 | ||
| 					base_from_object (encoding, ob),
 | ||
| 					f->pc_begin, &pc_begin);
 | ||
|       read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
 | ||
| 
 | ||
|       if ((_Unwind_Ptr) pc < pc_begin)
 | ||
| 	hi = i;
 | ||
|       else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
 | ||
| 	lo = i + 1;
 | ||
|       else
 | ||
| 	return f;
 | ||
|     }
 | ||
| 
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| static const fde *
 | ||
| search_object (struct object* ob, void *pc)
 | ||
| {
 | ||
|   /* If the data hasn't been sorted, try to do this now.  We may have
 | ||
|      more memory available than last time we tried.  */
 | ||
|   if (! ob->s.b.sorted)
 | ||
|     {
 | ||
|       init_object (ob);
 | ||
| 
 | ||
|       /* Despite the above comment, the normal reason to get here is
 | ||
| 	 that we've not processed this object before.  A quick range
 | ||
| 	 check is in order.  */
 | ||
|       if (pc < ob->pc_begin)
 | ||
| 	return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   if (ob->s.b.sorted)
 | ||
|     {
 | ||
|       if (ob->s.b.mixed_encoding)
 | ||
| 	return binary_search_mixed_encoding_fdes (ob, pc);
 | ||
|       else if (ob->s.b.encoding == DW_EH_PE_absptr)
 | ||
| 	return binary_search_unencoded_fdes (ob, pc);
 | ||
|       else
 | ||
| 	return binary_search_single_encoding_fdes (ob, pc);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* Long slow laborious linear search, cos we've no memory.  */
 | ||
|       if (ob->s.b.from_array)
 | ||
| 	{
 | ||
| 	  fde **p;
 | ||
| 	  for (p = ob->u.array; *p ; p++)
 | ||
| 	    {
 | ||
| 	      const fde *f = linear_search_fdes (ob, *p, pc);
 | ||
| 	      if (f)
 | ||
| 		return f;
 | ||
| 	    }
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       else
 | ||
| 	return linear_search_fdes (ob, ob->u.single, pc);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| const fde *
 | ||
| _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
 | ||
| {
 | ||
|   struct object *ob;
 | ||
|   const fde *f = NULL;
 | ||
| 
 | ||
| #ifdef ATOMIC_FDE_FAST_PATH
 | ||
|   /* For targets where unwind info is usually not registered through these
 | ||
|      APIs anymore, avoid taking a global lock.
 | ||
|      Use relaxed MO here, it is up to the app to ensure that the library
 | ||
|      loading/initialization happens-before using that library in other
 | ||
|      threads (in particular unwinding with that library's functions
 | ||
|      appearing in the backtraces).  Calling that library's functions
 | ||
|      without waiting for the library to initialize would be racy.  */
 | ||
|   if (__builtin_expect (!__atomic_load_n (&any_objects_registered,
 | ||
| 					  __ATOMIC_RELAXED), 1))
 | ||
|     return NULL;
 | ||
| #endif
 | ||
| 
 | ||
|   init_object_mutex_once ();
 | ||
|   __gthread_mutex_lock (&object_mutex);
 | ||
| 
 | ||
|   /* Linear search through the classified objects, to find the one
 | ||
|      containing the pc.  Note that pc_begin is sorted descending, and
 | ||
|      we expect objects to be non-overlapping.  */
 | ||
|   for (ob = seen_objects; ob; ob = ob->next)
 | ||
|     if (pc >= ob->pc_begin)
 | ||
|       {
 | ||
| 	f = search_object (ob, pc);
 | ||
| 	if (f)
 | ||
| 	  goto fini;
 | ||
| 	break;
 | ||
|       }
 | ||
| 
 | ||
|   /* Classify and search the objects we've not yet processed.  */
 | ||
|   while ((ob = unseen_objects))
 | ||
|     {
 | ||
|       struct object **p;
 | ||
| 
 | ||
|       unseen_objects = ob->next;
 | ||
|       f = search_object (ob, pc);
 | ||
| 
 | ||
|       /* Insert the object into the classified list.  */
 | ||
|       for (p = &seen_objects; *p ; p = &(*p)->next)
 | ||
| 	if ((*p)->pc_begin < ob->pc_begin)
 | ||
| 	  break;
 | ||
|       ob->next = *p;
 | ||
|       *p = ob;
 | ||
| 
 | ||
|       if (f)
 | ||
| 	goto fini;
 | ||
|     }
 | ||
| 
 | ||
|  fini:
 | ||
|   __gthread_mutex_unlock (&object_mutex);
 | ||
| 
 | ||
|   if (f)
 | ||
|     {
 | ||
|       int encoding;
 | ||
|       _Unwind_Ptr func;
 | ||
| 
 | ||
|       bases->tbase = ob->tbase;
 | ||
|       bases->dbase = ob->dbase;
 | ||
| 
 | ||
|       encoding = ob->s.b.encoding;
 | ||
|       if (ob->s.b.mixed_encoding)
 | ||
| 	encoding = get_fde_encoding (f);
 | ||
|       read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
 | ||
| 				    f->pc_begin, &func);
 | ||
|       bases->func = (void *) func;
 | ||
|     }
 | ||
| 
 | ||
|   return f;
 | ||
| }
 |