mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			460 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			460 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2015 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// This file implements Float-to-string conversion functions.
 | 
						|
// It is closely following the corresponding implementation
 | 
						|
// in strconv/ftoa.go, but modified and simplified for Float.
 | 
						|
 | 
						|
package big
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"fmt"
 | 
						|
	"strconv"
 | 
						|
)
 | 
						|
 | 
						|
// Text converts the floating-point number x to a string according
 | 
						|
// to the given format and precision prec. The format is one of:
 | 
						|
//
 | 
						|
//	'e'	-d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
 | 
						|
//	'E'	-d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
 | 
						|
//	'f'	-ddddd.dddd, no exponent
 | 
						|
//	'g'	like 'e' for large exponents, like 'f' otherwise
 | 
						|
//	'G'	like 'E' for large exponents, like 'f' otherwise
 | 
						|
//	'b'	-ddddddp±dd, binary exponent
 | 
						|
//	'p'	-0x.dddp±dd, binary exponent, hexadecimal mantissa
 | 
						|
//
 | 
						|
// For the binary exponent formats, the mantissa is printed in normalized form:
 | 
						|
//
 | 
						|
//	'b'	decimal integer mantissa using x.Prec() bits, or -0
 | 
						|
//	'p'	hexadecimal fraction with 0.5 <= 0.mantissa < 1.0, or -0
 | 
						|
//
 | 
						|
// If format is a different character, Text returns a "%" followed by the
 | 
						|
// unrecognized format character.
 | 
						|
//
 | 
						|
// The precision prec controls the number of digits (excluding the exponent)
 | 
						|
// printed by the 'e', 'E', 'f', 'g', and 'G' formats. For 'e', 'E', and 'f'
 | 
						|
// it is the number of digits after the decimal point. For 'g' and 'G' it is
 | 
						|
// the total number of digits. A negative precision selects the smallest
 | 
						|
// number of decimal digits necessary to identify the value x uniquely using
 | 
						|
// x.Prec() mantissa bits.
 | 
						|
// The prec value is ignored for the 'b' or 'p' format.
 | 
						|
func (x *Float) Text(format byte, prec int) string {
 | 
						|
	cap := 10 // TODO(gri) determine a good/better value here
 | 
						|
	if prec > 0 {
 | 
						|
		cap += prec
 | 
						|
	}
 | 
						|
	return string(x.Append(make([]byte, 0, cap), format, prec))
 | 
						|
}
 | 
						|
 | 
						|
// String formats x like x.Text('g', 10).
 | 
						|
// (String must be called explicitly, Float.Format does not support %s verb.)
 | 
						|
func (x *Float) String() string {
 | 
						|
	return x.Text('g', 10)
 | 
						|
}
 | 
						|
 | 
						|
// Append appends to buf the string form of the floating-point number x,
 | 
						|
// as generated by x.Text, and returns the extended buffer.
 | 
						|
func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
 | 
						|
	// sign
 | 
						|
	if x.neg {
 | 
						|
		buf = append(buf, '-')
 | 
						|
	}
 | 
						|
 | 
						|
	// Inf
 | 
						|
	if x.form == inf {
 | 
						|
		if !x.neg {
 | 
						|
			buf = append(buf, '+')
 | 
						|
		}
 | 
						|
		return append(buf, "Inf"...)
 | 
						|
	}
 | 
						|
 | 
						|
	// pick off easy formats
 | 
						|
	switch fmt {
 | 
						|
	case 'b':
 | 
						|
		return x.fmtB(buf)
 | 
						|
	case 'p':
 | 
						|
		return x.fmtP(buf)
 | 
						|
	}
 | 
						|
 | 
						|
	// Algorithm:
 | 
						|
	//   1) convert Float to multiprecision decimal
 | 
						|
	//   2) round to desired precision
 | 
						|
	//   3) read digits out and format
 | 
						|
 | 
						|
	// 1) convert Float to multiprecision decimal
 | 
						|
	var d decimal // == 0.0
 | 
						|
	if x.form == finite {
 | 
						|
		// x != 0
 | 
						|
		d.init(x.mant, int(x.exp)-x.mant.bitLen())
 | 
						|
	}
 | 
						|
 | 
						|
	// 2) round to desired precision
 | 
						|
	shortest := false
 | 
						|
	if prec < 0 {
 | 
						|
		shortest = true
 | 
						|
		roundShortest(&d, x)
 | 
						|
		// Precision for shortest representation mode.
 | 
						|
		switch fmt {
 | 
						|
		case 'e', 'E':
 | 
						|
			prec = len(d.mant) - 1
 | 
						|
		case 'f':
 | 
						|
			prec = max(len(d.mant)-d.exp, 0)
 | 
						|
		case 'g', 'G':
 | 
						|
			prec = len(d.mant)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// round appropriately
 | 
						|
		switch fmt {
 | 
						|
		case 'e', 'E':
 | 
						|
			// one digit before and number of digits after decimal point
 | 
						|
			d.round(1 + prec)
 | 
						|
		case 'f':
 | 
						|
			// number of digits before and after decimal point
 | 
						|
			d.round(d.exp + prec)
 | 
						|
		case 'g', 'G':
 | 
						|
			if prec == 0 {
 | 
						|
				prec = 1
 | 
						|
			}
 | 
						|
			d.round(prec)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// 3) read digits out and format
 | 
						|
	switch fmt {
 | 
						|
	case 'e', 'E':
 | 
						|
		return fmtE(buf, fmt, prec, d)
 | 
						|
	case 'f':
 | 
						|
		return fmtF(buf, prec, d)
 | 
						|
	case 'g', 'G':
 | 
						|
		// trim trailing fractional zeros in %e format
 | 
						|
		eprec := prec
 | 
						|
		if eprec > len(d.mant) && len(d.mant) >= d.exp {
 | 
						|
			eprec = len(d.mant)
 | 
						|
		}
 | 
						|
		// %e is used if the exponent from the conversion
 | 
						|
		// is less than -4 or greater than or equal to the precision.
 | 
						|
		// If precision was the shortest possible, use eprec = 6 for
 | 
						|
		// this decision.
 | 
						|
		if shortest {
 | 
						|
			eprec = 6
 | 
						|
		}
 | 
						|
		exp := d.exp - 1
 | 
						|
		if exp < -4 || exp >= eprec {
 | 
						|
			if prec > len(d.mant) {
 | 
						|
				prec = len(d.mant)
 | 
						|
			}
 | 
						|
			return fmtE(buf, fmt+'e'-'g', prec-1, d)
 | 
						|
		}
 | 
						|
		if prec > d.exp {
 | 
						|
			prec = len(d.mant)
 | 
						|
		}
 | 
						|
		return fmtF(buf, max(prec-d.exp, 0), d)
 | 
						|
	}
 | 
						|
 | 
						|
	// unknown format
 | 
						|
	if x.neg {
 | 
						|
		buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
 | 
						|
	}
 | 
						|
	return append(buf, '%', fmt)
 | 
						|
}
 | 
						|
 | 
						|
func roundShortest(d *decimal, x *Float) {
 | 
						|
	// if the mantissa is zero, the number is zero - stop now
 | 
						|
	if len(d.mant) == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
 | 
						|
	// (possibly exclusive) round to x for the given precision of x.
 | 
						|
	// Compute the lower and upper bound in decimal form and find the
 | 
						|
	// shortest decimal number d such that lower <= d <= upper.
 | 
						|
 | 
						|
	// TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
 | 
						|
	// See if we can use it (in adjusted form) here as well.
 | 
						|
 | 
						|
	// 1) Compute normalized mantissa mant and exponent exp for x such
 | 
						|
	// that the lsb of mant corresponds to 1/2 ulp for the precision of
 | 
						|
	// x (i.e., for mant we want x.prec + 1 bits).
 | 
						|
	mant := nat(nil).set(x.mant)
 | 
						|
	exp := int(x.exp) - mant.bitLen()
 | 
						|
	s := mant.bitLen() - int(x.prec+1)
 | 
						|
	switch {
 | 
						|
	case s < 0:
 | 
						|
		mant = mant.shl(mant, uint(-s))
 | 
						|
	case s > 0:
 | 
						|
		mant = mant.shr(mant, uint(+s))
 | 
						|
	}
 | 
						|
	exp += s
 | 
						|
	// x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
 | 
						|
 | 
						|
	// 2) Compute lower bound by subtracting 1/2 ulp.
 | 
						|
	var lower decimal
 | 
						|
	var tmp nat
 | 
						|
	lower.init(tmp.sub(mant, natOne), exp)
 | 
						|
 | 
						|
	// 3) Compute upper bound by adding 1/2 ulp.
 | 
						|
	var upper decimal
 | 
						|
	upper.init(tmp.add(mant, natOne), exp)
 | 
						|
 | 
						|
	// The upper and lower bounds are possible outputs only if
 | 
						|
	// the original mantissa is even, so that ToNearestEven rounding
 | 
						|
	// would round to the original mantissa and not the neighbors.
 | 
						|
	inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
 | 
						|
 | 
						|
	// Now we can figure out the minimum number of digits required.
 | 
						|
	// Walk along until d has distinguished itself from upper and lower.
 | 
						|
	for i, m := range d.mant {
 | 
						|
		l := lower.at(i)
 | 
						|
		u := upper.at(i)
 | 
						|
 | 
						|
		// Okay to round down (truncate) if lower has a different digit
 | 
						|
		// or if lower is inclusive and is exactly the result of rounding
 | 
						|
		// down (i.e., and we have reached the final digit of lower).
 | 
						|
		okdown := l != m || inclusive && i+1 == len(lower.mant)
 | 
						|
 | 
						|
		// Okay to round up if upper has a different digit and either upper
 | 
						|
		// is inclusive or upper is bigger than the result of rounding up.
 | 
						|
		okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
 | 
						|
 | 
						|
		// If it's okay to do either, then round to the nearest one.
 | 
						|
		// If it's okay to do only one, do it.
 | 
						|
		switch {
 | 
						|
		case okdown && okup:
 | 
						|
			d.round(i + 1)
 | 
						|
			return
 | 
						|
		case okdown:
 | 
						|
			d.roundDown(i + 1)
 | 
						|
			return
 | 
						|
		case okup:
 | 
						|
			d.roundUp(i + 1)
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// %e: d.ddddde±dd
 | 
						|
func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
 | 
						|
	// first digit
 | 
						|
	ch := byte('0')
 | 
						|
	if len(d.mant) > 0 {
 | 
						|
		ch = d.mant[0]
 | 
						|
	}
 | 
						|
	buf = append(buf, ch)
 | 
						|
 | 
						|
	// .moredigits
 | 
						|
	if prec > 0 {
 | 
						|
		buf = append(buf, '.')
 | 
						|
		i := 1
 | 
						|
		m := min(len(d.mant), prec+1)
 | 
						|
		if i < m {
 | 
						|
			buf = append(buf, d.mant[i:m]...)
 | 
						|
			i = m
 | 
						|
		}
 | 
						|
		for ; i <= prec; i++ {
 | 
						|
			buf = append(buf, '0')
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// e±
 | 
						|
	buf = append(buf, fmt)
 | 
						|
	var exp int64
 | 
						|
	if len(d.mant) > 0 {
 | 
						|
		exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
 | 
						|
	}
 | 
						|
	if exp < 0 {
 | 
						|
		ch = '-'
 | 
						|
		exp = -exp
 | 
						|
	} else {
 | 
						|
		ch = '+'
 | 
						|
	}
 | 
						|
	buf = append(buf, ch)
 | 
						|
 | 
						|
	// dd...d
 | 
						|
	if exp < 10 {
 | 
						|
		buf = append(buf, '0') // at least 2 exponent digits
 | 
						|
	}
 | 
						|
	return strconv.AppendInt(buf, exp, 10)
 | 
						|
}
 | 
						|
 | 
						|
// %f: ddddddd.ddddd
 | 
						|
func fmtF(buf []byte, prec int, d decimal) []byte {
 | 
						|
	// integer, padded with zeros as needed
 | 
						|
	if d.exp > 0 {
 | 
						|
		m := min(len(d.mant), d.exp)
 | 
						|
		buf = append(buf, d.mant[:m]...)
 | 
						|
		for ; m < d.exp; m++ {
 | 
						|
			buf = append(buf, '0')
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		buf = append(buf, '0')
 | 
						|
	}
 | 
						|
 | 
						|
	// fraction
 | 
						|
	if prec > 0 {
 | 
						|
		buf = append(buf, '.')
 | 
						|
		for i := 0; i < prec; i++ {
 | 
						|
			buf = append(buf, d.at(d.exp+i))
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return buf
 | 
						|
}
 | 
						|
 | 
						|
// fmtB appends the string of x in the format mantissa "p" exponent
 | 
						|
// with a decimal mantissa and a binary exponent, or 0" if x is zero,
 | 
						|
// and returns the extended buffer.
 | 
						|
// The mantissa is normalized such that is uses x.Prec() bits in binary
 | 
						|
// representation.
 | 
						|
// The sign of x is ignored, and x must not be an Inf.
 | 
						|
func (x *Float) fmtB(buf []byte) []byte {
 | 
						|
	if x.form == zero {
 | 
						|
		return append(buf, '0')
 | 
						|
	}
 | 
						|
 | 
						|
	if debugFloat && x.form != finite {
 | 
						|
		panic("non-finite float")
 | 
						|
	}
 | 
						|
	// x != 0
 | 
						|
 | 
						|
	// adjust mantissa to use exactly x.prec bits
 | 
						|
	m := x.mant
 | 
						|
	switch w := uint32(len(x.mant)) * _W; {
 | 
						|
	case w < x.prec:
 | 
						|
		m = nat(nil).shl(m, uint(x.prec-w))
 | 
						|
	case w > x.prec:
 | 
						|
		m = nat(nil).shr(m, uint(w-x.prec))
 | 
						|
	}
 | 
						|
 | 
						|
	buf = append(buf, m.utoa(10)...)
 | 
						|
	buf = append(buf, 'p')
 | 
						|
	e := int64(x.exp) - int64(x.prec)
 | 
						|
	if e >= 0 {
 | 
						|
		buf = append(buf, '+')
 | 
						|
	}
 | 
						|
	return strconv.AppendInt(buf, e, 10)
 | 
						|
}
 | 
						|
 | 
						|
// fmtP appends the string of x in the format "0x." mantissa "p" exponent
 | 
						|
// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
 | 
						|
// and returns the extended buffer.
 | 
						|
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
 | 
						|
// The sign of x is ignored, and x must not be an Inf.
 | 
						|
func (x *Float) fmtP(buf []byte) []byte {
 | 
						|
	if x.form == zero {
 | 
						|
		return append(buf, '0')
 | 
						|
	}
 | 
						|
 | 
						|
	if debugFloat && x.form != finite {
 | 
						|
		panic("non-finite float")
 | 
						|
	}
 | 
						|
	// x != 0
 | 
						|
 | 
						|
	// remove trailing 0 words early
 | 
						|
	// (no need to convert to hex 0's and trim later)
 | 
						|
	m := x.mant
 | 
						|
	i := 0
 | 
						|
	for i < len(m) && m[i] == 0 {
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	m = m[i:]
 | 
						|
 | 
						|
	buf = append(buf, "0x."...)
 | 
						|
	buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
 | 
						|
	buf = append(buf, 'p')
 | 
						|
	if x.exp >= 0 {
 | 
						|
		buf = append(buf, '+')
 | 
						|
	}
 | 
						|
	return strconv.AppendInt(buf, int64(x.exp), 10)
 | 
						|
}
 | 
						|
 | 
						|
func min(x, y int) int {
 | 
						|
	if x < y {
 | 
						|
		return x
 | 
						|
	}
 | 
						|
	return y
 | 
						|
}
 | 
						|
 | 
						|
// Format implements fmt.Formatter. It accepts all the regular
 | 
						|
// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
 | 
						|
// 'g', 'G') as well as 'p' and 'v'. See (*Float).Text for the
 | 
						|
// interpretation of 'p'. The 'v' format is handled like 'g'.
 | 
						|
// Format also supports specification of the minimum precision
 | 
						|
// in digits, the output field width, as well as the format flags
 | 
						|
// '+' and ' ' for sign control, '0' for space or zero padding,
 | 
						|
// and '-' for left or right justification. See the fmt package
 | 
						|
// for details.
 | 
						|
func (x *Float) Format(s fmt.State, format rune) {
 | 
						|
	prec, hasPrec := s.Precision()
 | 
						|
	if !hasPrec {
 | 
						|
		prec = 6 // default precision for 'e', 'f'
 | 
						|
	}
 | 
						|
 | 
						|
	switch format {
 | 
						|
	case 'e', 'E', 'f', 'b', 'p':
 | 
						|
		// nothing to do
 | 
						|
	case 'F':
 | 
						|
		// (*Float).Text doesn't support 'F'; handle like 'f'
 | 
						|
		format = 'f'
 | 
						|
	case 'v':
 | 
						|
		// handle like 'g'
 | 
						|
		format = 'g'
 | 
						|
		fallthrough
 | 
						|
	case 'g', 'G':
 | 
						|
		if !hasPrec {
 | 
						|
			prec = -1 // default precision for 'g', 'G'
 | 
						|
		}
 | 
						|
	default:
 | 
						|
		fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
 | 
						|
		return
 | 
						|
	}
 | 
						|
	var buf []byte
 | 
						|
	buf = x.Append(buf, byte(format), prec)
 | 
						|
	if len(buf) == 0 {
 | 
						|
		buf = []byte("?") // should never happen, but don't crash
 | 
						|
	}
 | 
						|
	// len(buf) > 0
 | 
						|
 | 
						|
	var sign string
 | 
						|
	switch {
 | 
						|
	case buf[0] == '-':
 | 
						|
		sign = "-"
 | 
						|
		buf = buf[1:]
 | 
						|
	case buf[0] == '+':
 | 
						|
		// +Inf
 | 
						|
		sign = "+"
 | 
						|
		if s.Flag(' ') {
 | 
						|
			sign = " "
 | 
						|
		}
 | 
						|
		buf = buf[1:]
 | 
						|
	case s.Flag('+'):
 | 
						|
		sign = "+"
 | 
						|
	case s.Flag(' '):
 | 
						|
		sign = " "
 | 
						|
	}
 | 
						|
 | 
						|
	var padding int
 | 
						|
	if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
 | 
						|
		padding = width - len(sign) - len(buf)
 | 
						|
	}
 | 
						|
 | 
						|
	switch {
 | 
						|
	case s.Flag('0') && !x.IsInf():
 | 
						|
		// 0-padding on left
 | 
						|
		writeMultiple(s, sign, 1)
 | 
						|
		writeMultiple(s, "0", padding)
 | 
						|
		s.Write(buf)
 | 
						|
	case s.Flag('-'):
 | 
						|
		// padding on right
 | 
						|
		writeMultiple(s, sign, 1)
 | 
						|
		s.Write(buf)
 | 
						|
		writeMultiple(s, " ", padding)
 | 
						|
	default:
 | 
						|
		// padding on left
 | 
						|
		writeMultiple(s, " ", padding)
 | 
						|
		writeMultiple(s, sign, 1)
 | 
						|
		s.Write(buf)
 | 
						|
	}
 | 
						|
}
 |