mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			511 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			511 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2010 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// This file implements multi-precision rational numbers.
 | 
						|
 | 
						|
package big
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
)
 | 
						|
 | 
						|
// A Rat represents a quotient a/b of arbitrary precision.
 | 
						|
// The zero value for a Rat represents the value 0.
 | 
						|
type Rat struct {
 | 
						|
	// To make zero values for Rat work w/o initialization,
 | 
						|
	// a zero value of b (len(b) == 0) acts like b == 1.
 | 
						|
	// a.neg determines the sign of the Rat, b.neg is ignored.
 | 
						|
	a, b Int
 | 
						|
}
 | 
						|
 | 
						|
// NewRat creates a new Rat with numerator a and denominator b.
 | 
						|
func NewRat(a, b int64) *Rat {
 | 
						|
	return new(Rat).SetFrac64(a, b)
 | 
						|
}
 | 
						|
 | 
						|
// SetFloat64 sets z to exactly f and returns z.
 | 
						|
// If f is not finite, SetFloat returns nil.
 | 
						|
func (z *Rat) SetFloat64(f float64) *Rat {
 | 
						|
	const expMask = 1<<11 - 1
 | 
						|
	bits := math.Float64bits(f)
 | 
						|
	mantissa := bits & (1<<52 - 1)
 | 
						|
	exp := int((bits >> 52) & expMask)
 | 
						|
	switch exp {
 | 
						|
	case expMask: // non-finite
 | 
						|
		return nil
 | 
						|
	case 0: // denormal
 | 
						|
		exp -= 1022
 | 
						|
	default: // normal
 | 
						|
		mantissa |= 1 << 52
 | 
						|
		exp -= 1023
 | 
						|
	}
 | 
						|
 | 
						|
	shift := 52 - exp
 | 
						|
 | 
						|
	// Optimization (?): partially pre-normalise.
 | 
						|
	for mantissa&1 == 0 && shift > 0 {
 | 
						|
		mantissa >>= 1
 | 
						|
		shift--
 | 
						|
	}
 | 
						|
 | 
						|
	z.a.SetUint64(mantissa)
 | 
						|
	z.a.neg = f < 0
 | 
						|
	z.b.Set(intOne)
 | 
						|
	if shift > 0 {
 | 
						|
		z.b.Lsh(&z.b, uint(shift))
 | 
						|
	} else {
 | 
						|
		z.a.Lsh(&z.a, uint(-shift))
 | 
						|
	}
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// quotToFloat32 returns the non-negative float32 value
 | 
						|
// nearest to the quotient a/b, using round-to-even in
 | 
						|
// halfway cases. It does not mutate its arguments.
 | 
						|
// Preconditions: b is non-zero; a and b have no common factors.
 | 
						|
func quotToFloat32(a, b nat) (f float32, exact bool) {
 | 
						|
	const (
 | 
						|
		// float size in bits
 | 
						|
		Fsize = 32
 | 
						|
 | 
						|
		// mantissa
 | 
						|
		Msize  = 23
 | 
						|
		Msize1 = Msize + 1 // incl. implicit 1
 | 
						|
		Msize2 = Msize1 + 1
 | 
						|
 | 
						|
		// exponent
 | 
						|
		Esize = Fsize - Msize1
 | 
						|
		Ebias = 1<<(Esize-1) - 1
 | 
						|
		Emin  = 1 - Ebias
 | 
						|
		Emax  = Ebias
 | 
						|
	)
 | 
						|
 | 
						|
	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
 | 
						|
	alen := a.bitLen()
 | 
						|
	if alen == 0 {
 | 
						|
		return 0, true
 | 
						|
	}
 | 
						|
	blen := b.bitLen()
 | 
						|
	if blen == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
 | 
						|
	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
 | 
						|
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
 | 
						|
	// This is 2 or 3 more than the float32 mantissa field width of Msize:
 | 
						|
	// - the optional extra bit is shifted away in step 3 below.
 | 
						|
	// - the high-order 1 is omitted in "normal" representation;
 | 
						|
	// - the low-order 1 will be used during rounding then discarded.
 | 
						|
	exp := alen - blen
 | 
						|
	var a2, b2 nat
 | 
						|
	a2 = a2.set(a)
 | 
						|
	b2 = b2.set(b)
 | 
						|
	if shift := Msize2 - exp; shift > 0 {
 | 
						|
		a2 = a2.shl(a2, uint(shift))
 | 
						|
	} else if shift < 0 {
 | 
						|
		b2 = b2.shl(b2, uint(-shift))
 | 
						|
	}
 | 
						|
 | 
						|
	// 2. Compute quotient and remainder (q, r).  NB: due to the
 | 
						|
	// extra shift, the low-order bit of q is logically the
 | 
						|
	// high-order bit of r.
 | 
						|
	var q nat
 | 
						|
	q, r := q.div(a2, a2, b2) // (recycle a2)
 | 
						|
	mantissa := low32(q)
 | 
						|
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
 | 
						|
 | 
						|
	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
 | 
						|
	// (in effect---we accomplish this incrementally).
 | 
						|
	if mantissa>>Msize2 == 1 {
 | 
						|
		if mantissa&1 == 1 {
 | 
						|
			haveRem = true
 | 
						|
		}
 | 
						|
		mantissa >>= 1
 | 
						|
		exp++
 | 
						|
	}
 | 
						|
	if mantissa>>Msize1 != 1 {
 | 
						|
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
 | 
						|
	}
 | 
						|
 | 
						|
	// 4. Rounding.
 | 
						|
	if Emin-Msize <= exp && exp <= Emin {
 | 
						|
		// Denormal case; lose 'shift' bits of precision.
 | 
						|
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
 | 
						|
		lostbits := mantissa & (1<<shift - 1)
 | 
						|
		haveRem = haveRem || lostbits != 0
 | 
						|
		mantissa >>= shift
 | 
						|
		exp = 2 - Ebias // == exp + shift
 | 
						|
	}
 | 
						|
	// Round q using round-half-to-even.
 | 
						|
	exact = !haveRem
 | 
						|
	if mantissa&1 != 0 {
 | 
						|
		exact = false
 | 
						|
		if haveRem || mantissa&2 != 0 {
 | 
						|
			if mantissa++; mantissa >= 1<<Msize2 {
 | 
						|
				// Complete rollover 11...1 => 100...0, so shift is safe
 | 
						|
				mantissa >>= 1
 | 
						|
				exp++
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
 | 
						|
 | 
						|
	f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
 | 
						|
	if math.IsInf(float64(f), 0) {
 | 
						|
		exact = false
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// quotToFloat64 returns the non-negative float64 value
 | 
						|
// nearest to the quotient a/b, using round-to-even in
 | 
						|
// halfway cases. It does not mutate its arguments.
 | 
						|
// Preconditions: b is non-zero; a and b have no common factors.
 | 
						|
func quotToFloat64(a, b nat) (f float64, exact bool) {
 | 
						|
	const (
 | 
						|
		// float size in bits
 | 
						|
		Fsize = 64
 | 
						|
 | 
						|
		// mantissa
 | 
						|
		Msize  = 52
 | 
						|
		Msize1 = Msize + 1 // incl. implicit 1
 | 
						|
		Msize2 = Msize1 + 1
 | 
						|
 | 
						|
		// exponent
 | 
						|
		Esize = Fsize - Msize1
 | 
						|
		Ebias = 1<<(Esize-1) - 1
 | 
						|
		Emin  = 1 - Ebias
 | 
						|
		Emax  = Ebias
 | 
						|
	)
 | 
						|
 | 
						|
	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
 | 
						|
	alen := a.bitLen()
 | 
						|
	if alen == 0 {
 | 
						|
		return 0, true
 | 
						|
	}
 | 
						|
	blen := b.bitLen()
 | 
						|
	if blen == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
 | 
						|
	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
 | 
						|
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
 | 
						|
	// This is 2 or 3 more than the float64 mantissa field width of Msize:
 | 
						|
	// - the optional extra bit is shifted away in step 3 below.
 | 
						|
	// - the high-order 1 is omitted in "normal" representation;
 | 
						|
	// - the low-order 1 will be used during rounding then discarded.
 | 
						|
	exp := alen - blen
 | 
						|
	var a2, b2 nat
 | 
						|
	a2 = a2.set(a)
 | 
						|
	b2 = b2.set(b)
 | 
						|
	if shift := Msize2 - exp; shift > 0 {
 | 
						|
		a2 = a2.shl(a2, uint(shift))
 | 
						|
	} else if shift < 0 {
 | 
						|
		b2 = b2.shl(b2, uint(-shift))
 | 
						|
	}
 | 
						|
 | 
						|
	// 2. Compute quotient and remainder (q, r).  NB: due to the
 | 
						|
	// extra shift, the low-order bit of q is logically the
 | 
						|
	// high-order bit of r.
 | 
						|
	var q nat
 | 
						|
	q, r := q.div(a2, a2, b2) // (recycle a2)
 | 
						|
	mantissa := low64(q)
 | 
						|
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
 | 
						|
 | 
						|
	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
 | 
						|
	// (in effect---we accomplish this incrementally).
 | 
						|
	if mantissa>>Msize2 == 1 {
 | 
						|
		if mantissa&1 == 1 {
 | 
						|
			haveRem = true
 | 
						|
		}
 | 
						|
		mantissa >>= 1
 | 
						|
		exp++
 | 
						|
	}
 | 
						|
	if mantissa>>Msize1 != 1 {
 | 
						|
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
 | 
						|
	}
 | 
						|
 | 
						|
	// 4. Rounding.
 | 
						|
	if Emin-Msize <= exp && exp <= Emin {
 | 
						|
		// Denormal case; lose 'shift' bits of precision.
 | 
						|
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
 | 
						|
		lostbits := mantissa & (1<<shift - 1)
 | 
						|
		haveRem = haveRem || lostbits != 0
 | 
						|
		mantissa >>= shift
 | 
						|
		exp = 2 - Ebias // == exp + shift
 | 
						|
	}
 | 
						|
	// Round q using round-half-to-even.
 | 
						|
	exact = !haveRem
 | 
						|
	if mantissa&1 != 0 {
 | 
						|
		exact = false
 | 
						|
		if haveRem || mantissa&2 != 0 {
 | 
						|
			if mantissa++; mantissa >= 1<<Msize2 {
 | 
						|
				// Complete rollover 11...1 => 100...0, so shift is safe
 | 
						|
				mantissa >>= 1
 | 
						|
				exp++
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
 | 
						|
 | 
						|
	f = math.Ldexp(float64(mantissa), exp-Msize1)
 | 
						|
	if math.IsInf(f, 0) {
 | 
						|
		exact = false
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Float32 returns the nearest float32 value for x and a bool indicating
 | 
						|
// whether f represents x exactly. If the magnitude of x is too large to
 | 
						|
// be represented by a float32, f is an infinity and exact is false.
 | 
						|
// The sign of f always matches the sign of x, even if f == 0.
 | 
						|
func (x *Rat) Float32() (f float32, exact bool) {
 | 
						|
	b := x.b.abs
 | 
						|
	if len(b) == 0 {
 | 
						|
		b = b.set(natOne) // materialize denominator
 | 
						|
	}
 | 
						|
	f, exact = quotToFloat32(x.a.abs, b)
 | 
						|
	if x.a.neg {
 | 
						|
		f = -f
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Float64 returns the nearest float64 value for x and a bool indicating
 | 
						|
// whether f represents x exactly. If the magnitude of x is too large to
 | 
						|
// be represented by a float64, f is an infinity and exact is false.
 | 
						|
// The sign of f always matches the sign of x, even if f == 0.
 | 
						|
func (x *Rat) Float64() (f float64, exact bool) {
 | 
						|
	b := x.b.abs
 | 
						|
	if len(b) == 0 {
 | 
						|
		b = b.set(natOne) // materialize denominator
 | 
						|
	}
 | 
						|
	f, exact = quotToFloat64(x.a.abs, b)
 | 
						|
	if x.a.neg {
 | 
						|
		f = -f
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// SetFrac sets z to a/b and returns z.
 | 
						|
func (z *Rat) SetFrac(a, b *Int) *Rat {
 | 
						|
	z.a.neg = a.neg != b.neg
 | 
						|
	babs := b.abs
 | 
						|
	if len(babs) == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
	if &z.a == b || alias(z.a.abs, babs) {
 | 
						|
		babs = nat(nil).set(babs) // make a copy
 | 
						|
	}
 | 
						|
	z.a.abs = z.a.abs.set(a.abs)
 | 
						|
	z.b.abs = z.b.abs.set(babs)
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// SetFrac64 sets z to a/b and returns z.
 | 
						|
func (z *Rat) SetFrac64(a, b int64) *Rat {
 | 
						|
	z.a.SetInt64(a)
 | 
						|
	if b == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
	if b < 0 {
 | 
						|
		b = -b
 | 
						|
		z.a.neg = !z.a.neg
 | 
						|
	}
 | 
						|
	z.b.abs = z.b.abs.setUint64(uint64(b))
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// SetInt sets z to x (by making a copy of x) and returns z.
 | 
						|
func (z *Rat) SetInt(x *Int) *Rat {
 | 
						|
	z.a.Set(x)
 | 
						|
	z.b.abs = z.b.abs[:0]
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// SetInt64 sets z to x and returns z.
 | 
						|
func (z *Rat) SetInt64(x int64) *Rat {
 | 
						|
	z.a.SetInt64(x)
 | 
						|
	z.b.abs = z.b.abs[:0]
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// Set sets z to x (by making a copy of x) and returns z.
 | 
						|
func (z *Rat) Set(x *Rat) *Rat {
 | 
						|
	if z != x {
 | 
						|
		z.a.Set(&x.a)
 | 
						|
		z.b.Set(&x.b)
 | 
						|
	}
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// Abs sets z to |x| (the absolute value of x) and returns z.
 | 
						|
func (z *Rat) Abs(x *Rat) *Rat {
 | 
						|
	z.Set(x)
 | 
						|
	z.a.neg = false
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// Neg sets z to -x and returns z.
 | 
						|
func (z *Rat) Neg(x *Rat) *Rat {
 | 
						|
	z.Set(x)
 | 
						|
	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// Inv sets z to 1/x and returns z.
 | 
						|
func (z *Rat) Inv(x *Rat) *Rat {
 | 
						|
	if len(x.a.abs) == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
	z.Set(x)
 | 
						|
	a := z.b.abs
 | 
						|
	if len(a) == 0 {
 | 
						|
		a = a.set(natOne) // materialize numerator
 | 
						|
	}
 | 
						|
	b := z.a.abs
 | 
						|
	if b.cmp(natOne) == 0 {
 | 
						|
		b = b[:0] // normalize denominator
 | 
						|
	}
 | 
						|
	z.a.abs, z.b.abs = a, b // sign doesn't change
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// Sign returns:
 | 
						|
//
 | 
						|
//	-1 if x <  0
 | 
						|
//	 0 if x == 0
 | 
						|
//	+1 if x >  0
 | 
						|
//
 | 
						|
func (x *Rat) Sign() int {
 | 
						|
	return x.a.Sign()
 | 
						|
}
 | 
						|
 | 
						|
// IsInt reports whether the denominator of x is 1.
 | 
						|
func (x *Rat) IsInt() bool {
 | 
						|
	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
 | 
						|
}
 | 
						|
 | 
						|
// Num returns the numerator of x; it may be <= 0.
 | 
						|
// The result is a reference to x's numerator; it
 | 
						|
// may change if a new value is assigned to x, and vice versa.
 | 
						|
// The sign of the numerator corresponds to the sign of x.
 | 
						|
func (x *Rat) Num() *Int {
 | 
						|
	return &x.a
 | 
						|
}
 | 
						|
 | 
						|
// Denom returns the denominator of x; it is always > 0.
 | 
						|
// The result is a reference to x's denominator; it
 | 
						|
// may change if a new value is assigned to x, and vice versa.
 | 
						|
func (x *Rat) Denom() *Int {
 | 
						|
	x.b.neg = false // the result is always >= 0
 | 
						|
	if len(x.b.abs) == 0 {
 | 
						|
		x.b.abs = x.b.abs.set(natOne) // materialize denominator
 | 
						|
	}
 | 
						|
	return &x.b
 | 
						|
}
 | 
						|
 | 
						|
func (z *Rat) norm() *Rat {
 | 
						|
	switch {
 | 
						|
	case len(z.a.abs) == 0:
 | 
						|
		// z == 0 - normalize sign and denominator
 | 
						|
		z.a.neg = false
 | 
						|
		z.b.abs = z.b.abs[:0]
 | 
						|
	case len(z.b.abs) == 0:
 | 
						|
		// z is normalized int - nothing to do
 | 
						|
	case z.b.abs.cmp(natOne) == 0:
 | 
						|
		// z is int - normalize denominator
 | 
						|
		z.b.abs = z.b.abs[:0]
 | 
						|
	default:
 | 
						|
		neg := z.a.neg
 | 
						|
		z.a.neg = false
 | 
						|
		z.b.neg = false
 | 
						|
		if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
 | 
						|
			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
 | 
						|
			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
 | 
						|
			if z.b.abs.cmp(natOne) == 0 {
 | 
						|
				// z is int - normalize denominator
 | 
						|
				z.b.abs = z.b.abs[:0]
 | 
						|
			}
 | 
						|
		}
 | 
						|
		z.a.neg = neg
 | 
						|
	}
 | 
						|
	return z
 | 
						|
}
 | 
						|
 | 
						|
// mulDenom sets z to the denominator product x*y (by taking into
 | 
						|
// account that 0 values for x or y must be interpreted as 1) and
 | 
						|
// returns z.
 | 
						|
func mulDenom(z, x, y nat) nat {
 | 
						|
	switch {
 | 
						|
	case len(x) == 0:
 | 
						|
		return z.set(y)
 | 
						|
	case len(y) == 0:
 | 
						|
		return z.set(x)
 | 
						|
	}
 | 
						|
	return z.mul(x, y)
 | 
						|
}
 | 
						|
 | 
						|
// scaleDenom computes x*f.
 | 
						|
// If f == 0 (zero value of denominator), the result is (a copy of) x.
 | 
						|
func scaleDenom(x *Int, f nat) *Int {
 | 
						|
	var z Int
 | 
						|
	if len(f) == 0 {
 | 
						|
		return z.Set(x)
 | 
						|
	}
 | 
						|
	z.abs = z.abs.mul(x.abs, f)
 | 
						|
	z.neg = x.neg
 | 
						|
	return &z
 | 
						|
}
 | 
						|
 | 
						|
// Cmp compares x and y and returns:
 | 
						|
//
 | 
						|
//   -1 if x <  y
 | 
						|
//    0 if x == y
 | 
						|
//   +1 if x >  y
 | 
						|
//
 | 
						|
func (x *Rat) Cmp(y *Rat) int {
 | 
						|
	return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
 | 
						|
}
 | 
						|
 | 
						|
// Add sets z to the sum x+y and returns z.
 | 
						|
func (z *Rat) Add(x, y *Rat) *Rat {
 | 
						|
	a1 := scaleDenom(&x.a, y.b.abs)
 | 
						|
	a2 := scaleDenom(&y.a, x.b.abs)
 | 
						|
	z.a.Add(a1, a2)
 | 
						|
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// Sub sets z to the difference x-y and returns z.
 | 
						|
func (z *Rat) Sub(x, y *Rat) *Rat {
 | 
						|
	a1 := scaleDenom(&x.a, y.b.abs)
 | 
						|
	a2 := scaleDenom(&y.a, x.b.abs)
 | 
						|
	z.a.Sub(a1, a2)
 | 
						|
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// Mul sets z to the product x*y and returns z.
 | 
						|
func (z *Rat) Mul(x, y *Rat) *Rat {
 | 
						|
	z.a.Mul(&x.a, &y.a)
 | 
						|
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
 | 
						|
	return z.norm()
 | 
						|
}
 | 
						|
 | 
						|
// Quo sets z to the quotient x/y and returns z.
 | 
						|
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						|
func (z *Rat) Quo(x, y *Rat) *Rat {
 | 
						|
	if len(y.a.abs) == 0 {
 | 
						|
		panic("division by zero")
 | 
						|
	}
 | 
						|
	a := scaleDenom(&x.a, y.b.abs)
 | 
						|
	b := scaleDenom(&y.a, x.b.abs)
 | 
						|
	z.a.abs = a.abs
 | 
						|
	z.b.abs = b.abs
 | 
						|
	z.a.neg = a.neg != b.neg
 | 
						|
	return z.norm()
 | 
						|
}
 |