mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			999 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			999 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| /* An expandable hash tables datatype.  
 | |
|    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
 | |
|    Free Software Foundation, Inc.
 | |
|    Contributed by Vladimir Makarov (vmakarov@cygnus.com).
 | |
| 
 | |
| This file is part of the libiberty library.
 | |
| Libiberty is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU Library General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 2 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libiberty is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| Library General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Library General Public
 | |
| License along with libiberty; see the file COPYING.LIB.  If
 | |
| not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 | |
| Boston, MA 02110-1301, USA.  */
 | |
| 
 | |
| /* This package implements basic hash table functionality.  It is possible
 | |
|    to search for an entry, create an entry and destroy an entry.
 | |
| 
 | |
|    Elements in the table are generic pointers.
 | |
| 
 | |
|    The size of the table is not fixed; if the occupancy of the table
 | |
|    grows too high the hash table will be expanded.
 | |
| 
 | |
|    The abstract data implementation is based on generalized Algorithm D
 | |
|    from Knuth's book "The art of computer programming".  Hash table is
 | |
|    expanded by creation of new hash table and transferring elements from
 | |
|    the old table to the new table. */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #ifdef HAVE_STDLIB_H
 | |
| #include <stdlib.h>
 | |
| #endif
 | |
| #ifdef HAVE_STRING_H
 | |
| #include <string.h>
 | |
| #endif
 | |
| #ifdef HAVE_MALLOC_H
 | |
| #include <malloc.h>
 | |
| #endif
 | |
| #ifdef HAVE_LIMITS_H
 | |
| #include <limits.h>
 | |
| #endif
 | |
| #ifdef HAVE_INTTYPES_H
 | |
| #include <inttypes.h>
 | |
| #endif
 | |
| #ifdef HAVE_STDINT_H
 | |
| #include <stdint.h>
 | |
| #endif
 | |
| 
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "libiberty.h"
 | |
| #include "ansidecl.h"
 | |
| #include "hashtab.h"
 | |
| 
 | |
| #ifndef CHAR_BIT
 | |
| #define CHAR_BIT 8
 | |
| #endif
 | |
| 
 | |
| static unsigned int higher_prime_index (unsigned long);
 | |
| static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
 | |
| static hashval_t htab_mod (hashval_t, htab_t);
 | |
| static hashval_t htab_mod_m2 (hashval_t, htab_t);
 | |
| static hashval_t hash_pointer (const void *);
 | |
| static int eq_pointer (const void *, const void *);
 | |
| static int htab_expand (htab_t);
 | |
| static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
 | |
| 
 | |
| /* At some point, we could make these be NULL, and modify the
 | |
|    hash-table routines to handle NULL specially; that would avoid
 | |
|    function-call overhead for the common case of hashing pointers.  */
 | |
| htab_hash htab_hash_pointer = hash_pointer;
 | |
| htab_eq htab_eq_pointer = eq_pointer;
 | |
| 
 | |
| /* Table of primes and multiplicative inverses.
 | |
| 
 | |
|    Note that these are not minimally reduced inverses.  Unlike when generating
 | |
|    code to divide by a constant, we want to be able to use the same algorithm
 | |
|    all the time.  All of these inverses (are implied to) have bit 32 set.
 | |
| 
 | |
|    For the record, here's the function that computed the table; it's a 
 | |
|    vastly simplified version of the function of the same name from gcc.  */
 | |
| 
 | |
| #if 0
 | |
| unsigned int
 | |
| ceil_log2 (unsigned int x)
 | |
| {
 | |
|   int i;
 | |
|   for (i = 31; i >= 0 ; --i)
 | |
|     if (x > (1u << i))
 | |
|       return i+1;
 | |
|   abort ();
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
 | |
| {
 | |
|   unsigned long long mhigh;
 | |
|   double nx;
 | |
|   int lgup, post_shift;
 | |
|   int pow, pow2;
 | |
|   int n = 32, precision = 32;
 | |
| 
 | |
|   lgup = ceil_log2 (d);
 | |
|   pow = n + lgup;
 | |
|   pow2 = n + lgup - precision;
 | |
| 
 | |
|   nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
 | |
|   mhigh = nx / d;
 | |
| 
 | |
|   *shiftp = lgup - 1;
 | |
|   *mlp = mhigh;
 | |
|   return mhigh >> 32;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct prime_ent
 | |
| {
 | |
|   hashval_t prime;
 | |
|   hashval_t inv;
 | |
|   hashval_t inv_m2;	/* inverse of prime-2 */
 | |
|   hashval_t shift;
 | |
| };
 | |
| 
 | |
| static struct prime_ent const prime_tab[] = {
 | |
|   {          7, 0x24924925, 0x9999999b, 2 },
 | |
|   {         13, 0x3b13b13c, 0x745d1747, 3 },
 | |
|   {         31, 0x08421085, 0x1a7b9612, 4 },
 | |
|   {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
 | |
|   {        127, 0x02040811, 0x0624dd30, 6 },
 | |
|   {        251, 0x05197f7e, 0x073260a5, 7 },
 | |
|   {        509, 0x01824366, 0x02864fc8, 8 },
 | |
|   {       1021, 0x00c0906d, 0x014191f7, 9 },
 | |
|   {       2039, 0x0121456f, 0x0161e69e, 10 },
 | |
|   {       4093, 0x00300902, 0x00501908, 11 },
 | |
|   {       8191, 0x00080041, 0x00180241, 12 },
 | |
|   {      16381, 0x000c0091, 0x00140191, 13 },
 | |
|   {      32749, 0x002605a5, 0x002a06e6, 14 },
 | |
|   {      65521, 0x000f00e2, 0x00110122, 15 },
 | |
|   {     131071, 0x00008001, 0x00018003, 16 },
 | |
|   {     262139, 0x00014002, 0x0001c004, 17 },
 | |
|   {     524287, 0x00002001, 0x00006001, 18 },
 | |
|   {    1048573, 0x00003001, 0x00005001, 19 },
 | |
|   {    2097143, 0x00004801, 0x00005801, 20 },
 | |
|   {    4194301, 0x00000c01, 0x00001401, 21 },
 | |
|   {    8388593, 0x00001e01, 0x00002201, 22 },
 | |
|   {   16777213, 0x00000301, 0x00000501, 23 },
 | |
|   {   33554393, 0x00001381, 0x00001481, 24 },
 | |
|   {   67108859, 0x00000141, 0x000001c1, 25 },
 | |
|   {  134217689, 0x000004e1, 0x00000521, 26 },
 | |
|   {  268435399, 0x00000391, 0x000003b1, 27 },
 | |
|   {  536870909, 0x00000019, 0x00000029, 28 },
 | |
|   { 1073741789, 0x0000008d, 0x00000095, 29 },
 | |
|   { 2147483647, 0x00000003, 0x00000007, 30 },
 | |
|   /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
 | |
|   { 0xfffffffb, 0x00000006, 0x00000008, 31 }
 | |
| };
 | |
| 
 | |
| /* The following function returns an index into the above table of the
 | |
|    nearest prime number which is greater than N, and near a power of two. */
 | |
| 
 | |
| static unsigned int
 | |
| higher_prime_index (unsigned long n)
 | |
| {
 | |
|   unsigned int low = 0;
 | |
|   unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
 | |
| 
 | |
|   while (low != high)
 | |
|     {
 | |
|       unsigned int mid = low + (high - low) / 2;
 | |
|       if (n > prime_tab[mid].prime)
 | |
| 	low = mid + 1;
 | |
|       else
 | |
| 	high = mid;
 | |
|     }
 | |
| 
 | |
|   /* If we've run out of primes, abort.  */
 | |
|   if (n > prime_tab[low].prime)
 | |
|     {
 | |
|       fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
 | |
|       abort ();
 | |
|     }
 | |
| 
 | |
|   return low;
 | |
| }
 | |
| 
 | |
| /* Returns non-zero if P1 and P2 are equal.  */
 | |
| 
 | |
| static int
 | |
| eq_pointer (const PTR p1, const PTR p2)
 | |
| {
 | |
|   return p1 == p2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The parens around the function names in the next two definitions
 | |
|    are essential in order to prevent macro expansions of the name.
 | |
|    The bodies, however, are expanded as expected, so they are not
 | |
|    recursive definitions.  */
 | |
| 
 | |
| /* Return the current size of given hash table.  */
 | |
| 
 | |
| #define htab_size(htab)  ((htab)->size)
 | |
| 
 | |
| size_t
 | |
| (htab_size) (htab_t htab)
 | |
| {
 | |
|   return htab_size (htab);
 | |
| }
 | |
| 
 | |
| /* Return the current number of elements in given hash table. */
 | |
| 
 | |
| #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
 | |
| 
 | |
| size_t
 | |
| (htab_elements) (htab_t htab)
 | |
| {
 | |
|   return htab_elements (htab);
 | |
| }
 | |
| 
 | |
| /* Return X % Y.  */
 | |
| 
 | |
| static inline hashval_t
 | |
| htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
 | |
| {
 | |
|   /* The multiplicative inverses computed above are for 32-bit types, and
 | |
|      requires that we be able to compute a highpart multiply.  */
 | |
| #ifdef UNSIGNED_64BIT_TYPE
 | |
|   __extension__ typedef UNSIGNED_64BIT_TYPE ull;
 | |
|   if (sizeof (hashval_t) * CHAR_BIT <= 32)
 | |
|     {
 | |
|       hashval_t t1, t2, t3, t4, q, r;
 | |
| 
 | |
|       t1 = ((ull)x * inv) >> 32;
 | |
|       t2 = x - t1;
 | |
|       t3 = t2 >> 1;
 | |
|       t4 = t1 + t3;
 | |
|       q  = t4 >> shift;
 | |
|       r  = x - (q * y);
 | |
| 
 | |
|       return r;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* Otherwise just use the native division routines.  */
 | |
|   return x % y;
 | |
| }
 | |
| 
 | |
| /* Compute the primary hash for HASH given HTAB's current size.  */
 | |
| 
 | |
| static inline hashval_t
 | |
| htab_mod (hashval_t hash, htab_t htab)
 | |
| {
 | |
|   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
 | |
|   return htab_mod_1 (hash, p->prime, p->inv, p->shift);
 | |
| }
 | |
| 
 | |
| /* Compute the secondary hash for HASH given HTAB's current size.  */
 | |
| 
 | |
| static inline hashval_t
 | |
| htab_mod_m2 (hashval_t hash, htab_t htab)
 | |
| {
 | |
|   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
 | |
|   return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
 | |
| }
 | |
| 
 | |
| /* This function creates table with length slightly longer than given
 | |
|    source length.  Created hash table is initiated as empty (all the
 | |
|    hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
 | |
|    created hash table, or NULL if memory allocation fails.  */
 | |
| 
 | |
| htab_t
 | |
| htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
 | |
|                    htab_del del_f, htab_alloc alloc_f, htab_free free_f)
 | |
| {
 | |
|   return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
 | |
| 				  free_f);
 | |
| }
 | |
| 
 | |
| /* As above, but uses the variants of ALLOC_F and FREE_F which accept
 | |
|    an extra argument.  */
 | |
| 
 | |
| htab_t
 | |
| htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
 | |
| 		      htab_del del_f, void *alloc_arg,
 | |
| 		      htab_alloc_with_arg alloc_f,
 | |
| 		      htab_free_with_arg free_f)
 | |
| {
 | |
|   htab_t result;
 | |
|   unsigned int size_prime_index;
 | |
| 
 | |
|   size_prime_index = higher_prime_index (size);
 | |
|   size = prime_tab[size_prime_index].prime;
 | |
| 
 | |
|   result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
 | |
|   if (result == NULL)
 | |
|     return NULL;
 | |
|   result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
 | |
|   if (result->entries == NULL)
 | |
|     {
 | |
|       if (free_f != NULL)
 | |
| 	(*free_f) (alloc_arg, result);
 | |
|       return NULL;
 | |
|     }
 | |
|   result->size = size;
 | |
|   result->size_prime_index = size_prime_index;
 | |
|   result->hash_f = hash_f;
 | |
|   result->eq_f = eq_f;
 | |
|   result->del_f = del_f;
 | |
|   result->alloc_arg = alloc_arg;
 | |
|   result->alloc_with_arg_f = alloc_f;
 | |
|   result->free_with_arg_f = free_f;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
| 
 | |
| @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
 | |
| htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
 | |
| htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
 | |
| htab_free @var{free_f})
 | |
| 
 | |
| This function creates a hash table that uses two different allocators
 | |
| @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
 | |
| and its entries respectively.  This is useful when variables of different
 | |
| types need to be allocated with different allocators.
 | |
| 
 | |
| The created hash table is slightly larger than @var{size} and it is
 | |
| initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
 | |
| The function returns the created hash table, or @code{NULL} if memory
 | |
| allocation fails.
 | |
| 
 | |
| @end deftypefn
 | |
| 
 | |
| */
 | |
| 
 | |
| htab_t
 | |
| htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
 | |
| 			 htab_del del_f, htab_alloc alloc_tab_f,
 | |
| 			 htab_alloc alloc_f, htab_free free_f)
 | |
| {
 | |
|   htab_t result;
 | |
|   unsigned int size_prime_index;
 | |
| 
 | |
|   size_prime_index = higher_prime_index (size);
 | |
|   size = prime_tab[size_prime_index].prime;
 | |
| 
 | |
|   result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
 | |
|   if (result == NULL)
 | |
|     return NULL;
 | |
|   result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
 | |
|   if (result->entries == NULL)
 | |
|     {
 | |
|       if (free_f != NULL)
 | |
| 	(*free_f) (result);
 | |
|       return NULL;
 | |
|     }
 | |
|   result->size = size;
 | |
|   result->size_prime_index = size_prime_index;
 | |
|   result->hash_f = hash_f;
 | |
|   result->eq_f = eq_f;
 | |
|   result->del_f = del_f;
 | |
|   result->alloc_f = alloc_f;
 | |
|   result->free_f = free_f;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Update the function pointers and allocation parameter in the htab_t.  */
 | |
| 
 | |
| void
 | |
| htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
 | |
|                        htab_del del_f, PTR alloc_arg,
 | |
|                        htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
 | |
| {
 | |
|   htab->hash_f = hash_f;
 | |
|   htab->eq_f = eq_f;
 | |
|   htab->del_f = del_f;
 | |
|   htab->alloc_arg = alloc_arg;
 | |
|   htab->alloc_with_arg_f = alloc_f;
 | |
|   htab->free_with_arg_f = free_f;
 | |
| }
 | |
| 
 | |
| /* These functions exist solely for backward compatibility.  */
 | |
| 
 | |
| #undef htab_create
 | |
| htab_t
 | |
| htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
 | |
| {
 | |
|   return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
 | |
| }
 | |
| 
 | |
| htab_t
 | |
| htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
 | |
| {
 | |
|   return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
 | |
| }
 | |
| 
 | |
| /* This function frees all memory allocated for given hash table.
 | |
|    Naturally the hash table must already exist. */
 | |
| 
 | |
| void
 | |
| htab_delete (htab_t htab)
 | |
| {
 | |
|   size_t size = htab_size (htab);
 | |
|   PTR *entries = htab->entries;
 | |
|   int i;
 | |
| 
 | |
|   if (htab->del_f)
 | |
|     for (i = size - 1; i >= 0; i--)
 | |
|       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
 | |
| 	(*htab->del_f) (entries[i]);
 | |
| 
 | |
|   if (htab->free_f != NULL)
 | |
|     {
 | |
|       (*htab->free_f) (entries);
 | |
|       (*htab->free_f) (htab);
 | |
|     }
 | |
|   else if (htab->free_with_arg_f != NULL)
 | |
|     {
 | |
|       (*htab->free_with_arg_f) (htab->alloc_arg, entries);
 | |
|       (*htab->free_with_arg_f) (htab->alloc_arg, htab);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* This function clears all entries in the given hash table.  */
 | |
| 
 | |
| void
 | |
| htab_empty (htab_t htab)
 | |
| {
 | |
|   size_t size = htab_size (htab);
 | |
|   PTR *entries = htab->entries;
 | |
|   int i;
 | |
| 
 | |
|   if (htab->del_f)
 | |
|     for (i = size - 1; i >= 0; i--)
 | |
|       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
 | |
| 	(*htab->del_f) (entries[i]);
 | |
| 
 | |
|   /* Instead of clearing megabyte, downsize the table.  */
 | |
|   if (size > 1024*1024 / sizeof (PTR))
 | |
|     {
 | |
|       int nindex = higher_prime_index (1024 / sizeof (PTR));
 | |
|       int nsize = prime_tab[nindex].prime;
 | |
| 
 | |
|       if (htab->free_f != NULL)
 | |
| 	(*htab->free_f) (htab->entries);
 | |
|       else if (htab->free_with_arg_f != NULL)
 | |
| 	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
 | |
|       if (htab->alloc_with_arg_f != NULL)
 | |
| 	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
 | |
| 						           sizeof (PTR *));
 | |
|       else
 | |
| 	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
 | |
|      htab->size = nsize;
 | |
|      htab->size_prime_index = nindex;
 | |
|     }
 | |
|   else
 | |
|     memset (entries, 0, size * sizeof (PTR));
 | |
|   htab->n_deleted = 0;
 | |
|   htab->n_elements = 0;
 | |
| }
 | |
| 
 | |
| /* Similar to htab_find_slot, but without several unwanted side effects:
 | |
|     - Does not call htab->eq_f when it finds an existing entry.
 | |
|     - Does not change the count of elements/searches/collisions in the
 | |
|       hash table.
 | |
|    This function also assumes there are no deleted entries in the table.
 | |
|    HASH is the hash value for the element to be inserted.  */
 | |
| 
 | |
| static PTR *
 | |
| find_empty_slot_for_expand (htab_t htab, hashval_t hash)
 | |
| {
 | |
|   hashval_t index = htab_mod (hash, htab);
 | |
|   size_t size = htab_size (htab);
 | |
|   PTR *slot = htab->entries + index;
 | |
|   hashval_t hash2;
 | |
| 
 | |
|   if (*slot == HTAB_EMPTY_ENTRY)
 | |
|     return slot;
 | |
|   else if (*slot == HTAB_DELETED_ENTRY)
 | |
|     abort ();
 | |
| 
 | |
|   hash2 = htab_mod_m2 (hash, htab);
 | |
|   for (;;)
 | |
|     {
 | |
|       index += hash2;
 | |
|       if (index >= size)
 | |
| 	index -= size;
 | |
| 
 | |
|       slot = htab->entries + index;
 | |
|       if (*slot == HTAB_EMPTY_ENTRY)
 | |
| 	return slot;
 | |
|       else if (*slot == HTAB_DELETED_ENTRY)
 | |
| 	abort ();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* The following function changes size of memory allocated for the
 | |
|    entries and repeatedly inserts the table elements.  The occupancy
 | |
|    of the table after the call will be about 50%.  Naturally the hash
 | |
|    table must already exist.  Remember also that the place of the
 | |
|    table entries is changed.  If memory allocation failures are allowed,
 | |
|    this function will return zero, indicating that the table could not be
 | |
|    expanded.  If all goes well, it will return a non-zero value.  */
 | |
| 
 | |
| static int
 | |
| htab_expand (htab_t htab)
 | |
| {
 | |
|   PTR *oentries;
 | |
|   PTR *olimit;
 | |
|   PTR *p;
 | |
|   PTR *nentries;
 | |
|   size_t nsize, osize, elts;
 | |
|   unsigned int oindex, nindex;
 | |
| 
 | |
|   oentries = htab->entries;
 | |
|   oindex = htab->size_prime_index;
 | |
|   osize = htab->size;
 | |
|   olimit = oentries + osize;
 | |
|   elts = htab_elements (htab);
 | |
| 
 | |
|   /* Resize only when table after removal of unused elements is either
 | |
|      too full or too empty.  */
 | |
|   if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
 | |
|     {
 | |
|       nindex = higher_prime_index (elts * 2);
 | |
|       nsize = prime_tab[nindex].prime;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       nindex = oindex;
 | |
|       nsize = osize;
 | |
|     }
 | |
| 
 | |
|   if (htab->alloc_with_arg_f != NULL)
 | |
|     nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
 | |
| 						  sizeof (PTR *));
 | |
|   else
 | |
|     nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
 | |
|   if (nentries == NULL)
 | |
|     return 0;
 | |
|   htab->entries = nentries;
 | |
|   htab->size = nsize;
 | |
|   htab->size_prime_index = nindex;
 | |
|   htab->n_elements -= htab->n_deleted;
 | |
|   htab->n_deleted = 0;
 | |
| 
 | |
|   p = oentries;
 | |
|   do
 | |
|     {
 | |
|       PTR x = *p;
 | |
| 
 | |
|       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
 | |
| 	{
 | |
| 	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
 | |
| 
 | |
| 	  *q = x;
 | |
| 	}
 | |
| 
 | |
|       p++;
 | |
|     }
 | |
|   while (p < olimit);
 | |
| 
 | |
|   if (htab->free_f != NULL)
 | |
|     (*htab->free_f) (oentries);
 | |
|   else if (htab->free_with_arg_f != NULL)
 | |
|     (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* This function searches for a hash table entry equal to the given
 | |
|    element.  It cannot be used to insert or delete an element.  */
 | |
| 
 | |
| PTR
 | |
| htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
 | |
| {
 | |
|   hashval_t index, hash2;
 | |
|   size_t size;
 | |
|   PTR entry;
 | |
| 
 | |
|   htab->searches++;
 | |
|   size = htab_size (htab);
 | |
|   index = htab_mod (hash, htab);
 | |
| 
 | |
|   entry = htab->entries[index];
 | |
|   if (entry == HTAB_EMPTY_ENTRY
 | |
|       || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
 | |
|     return entry;
 | |
| 
 | |
|   hash2 = htab_mod_m2 (hash, htab);
 | |
|   for (;;)
 | |
|     {
 | |
|       htab->collisions++;
 | |
|       index += hash2;
 | |
|       if (index >= size)
 | |
| 	index -= size;
 | |
| 
 | |
|       entry = htab->entries[index];
 | |
|       if (entry == HTAB_EMPTY_ENTRY
 | |
| 	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
 | |
| 	return entry;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Like htab_find_slot_with_hash, but compute the hash value from the
 | |
|    element.  */
 | |
| 
 | |
| PTR
 | |
| htab_find (htab_t htab, const PTR element)
 | |
| {
 | |
|   return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
 | |
| }
 | |
| 
 | |
| /* This function searches for a hash table slot containing an entry
 | |
|    equal to the given element.  To delete an entry, call this with
 | |
|    insert=NO_INSERT, then call htab_clear_slot on the slot returned
 | |
|    (possibly after doing some checks).  To insert an entry, call this
 | |
|    with insert=INSERT, then write the value you want into the returned
 | |
|    slot.  When inserting an entry, NULL may be returned if memory
 | |
|    allocation fails.  */
 | |
| 
 | |
| PTR *
 | |
| htab_find_slot_with_hash (htab_t htab, const PTR element,
 | |
|                           hashval_t hash, enum insert_option insert)
 | |
| {
 | |
|   PTR *first_deleted_slot;
 | |
|   hashval_t index, hash2;
 | |
|   size_t size;
 | |
|   PTR entry;
 | |
| 
 | |
|   size = htab_size (htab);
 | |
|   if (insert == INSERT && size * 3 <= htab->n_elements * 4)
 | |
|     {
 | |
|       if (htab_expand (htab) == 0)
 | |
| 	return NULL;
 | |
|       size = htab_size (htab);
 | |
|     }
 | |
| 
 | |
|   index = htab_mod (hash, htab);
 | |
| 
 | |
|   htab->searches++;
 | |
|   first_deleted_slot = NULL;
 | |
| 
 | |
|   entry = htab->entries[index];
 | |
|   if (entry == HTAB_EMPTY_ENTRY)
 | |
|     goto empty_entry;
 | |
|   else if (entry == HTAB_DELETED_ENTRY)
 | |
|     first_deleted_slot = &htab->entries[index];
 | |
|   else if ((*htab->eq_f) (entry, element))
 | |
|     return &htab->entries[index];
 | |
|       
 | |
|   hash2 = htab_mod_m2 (hash, htab);
 | |
|   for (;;)
 | |
|     {
 | |
|       htab->collisions++;
 | |
|       index += hash2;
 | |
|       if (index >= size)
 | |
| 	index -= size;
 | |
|       
 | |
|       entry = htab->entries[index];
 | |
|       if (entry == HTAB_EMPTY_ENTRY)
 | |
| 	goto empty_entry;
 | |
|       else if (entry == HTAB_DELETED_ENTRY)
 | |
| 	{
 | |
| 	  if (!first_deleted_slot)
 | |
| 	    first_deleted_slot = &htab->entries[index];
 | |
| 	}
 | |
|       else if ((*htab->eq_f) (entry, element))
 | |
| 	return &htab->entries[index];
 | |
|     }
 | |
| 
 | |
|  empty_entry:
 | |
|   if (insert == NO_INSERT)
 | |
|     return NULL;
 | |
| 
 | |
|   if (first_deleted_slot)
 | |
|     {
 | |
|       htab->n_deleted--;
 | |
|       *first_deleted_slot = HTAB_EMPTY_ENTRY;
 | |
|       return first_deleted_slot;
 | |
|     }
 | |
| 
 | |
|   htab->n_elements++;
 | |
|   return &htab->entries[index];
 | |
| }
 | |
| 
 | |
| /* Like htab_find_slot_with_hash, but compute the hash value from the
 | |
|    element.  */
 | |
| 
 | |
| PTR *
 | |
| htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
 | |
| {
 | |
|   return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
 | |
| 				   insert);
 | |
| }
 | |
| 
 | |
| /* This function deletes an element with the given value from hash
 | |
|    table (the hash is computed from the element).  If there is no matching
 | |
|    element in the hash table, this function does nothing.  */
 | |
| 
 | |
| void
 | |
| htab_remove_elt (htab_t htab, PTR element)
 | |
| {
 | |
|   htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function deletes an element with the given value from hash
 | |
|    table.  If there is no matching element in the hash table, this
 | |
|    function does nothing.  */
 | |
| 
 | |
| void
 | |
| htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
 | |
| {
 | |
|   PTR *slot;
 | |
| 
 | |
|   slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
 | |
|   if (*slot == HTAB_EMPTY_ENTRY)
 | |
|     return;
 | |
| 
 | |
|   if (htab->del_f)
 | |
|     (*htab->del_f) (*slot);
 | |
| 
 | |
|   *slot = HTAB_DELETED_ENTRY;
 | |
|   htab->n_deleted++;
 | |
| }
 | |
| 
 | |
| /* This function clears a specified slot in a hash table.  It is
 | |
|    useful when you've already done the lookup and don't want to do it
 | |
|    again.  */
 | |
| 
 | |
| void
 | |
| htab_clear_slot (htab_t htab, PTR *slot)
 | |
| {
 | |
|   if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
 | |
|       || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
 | |
|     abort ();
 | |
| 
 | |
|   if (htab->del_f)
 | |
|     (*htab->del_f) (*slot);
 | |
| 
 | |
|   *slot = HTAB_DELETED_ENTRY;
 | |
|   htab->n_deleted++;
 | |
| }
 | |
| 
 | |
| /* This function scans over the entire hash table calling
 | |
|    CALLBACK for each live entry.  If CALLBACK returns false,
 | |
|    the iteration stops.  INFO is passed as CALLBACK's second
 | |
|    argument.  */
 | |
| 
 | |
| void
 | |
| htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
 | |
| {
 | |
|   PTR *slot;
 | |
|   PTR *limit;
 | |
|   
 | |
|   slot = htab->entries;
 | |
|   limit = slot + htab_size (htab);
 | |
| 
 | |
|   do
 | |
|     {
 | |
|       PTR x = *slot;
 | |
| 
 | |
|       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
 | |
| 	if (!(*callback) (slot, info))
 | |
| 	  break;
 | |
|     }
 | |
|   while (++slot < limit);
 | |
| }
 | |
| 
 | |
| /* Like htab_traverse_noresize, but does resize the table when it is
 | |
|    too empty to improve effectivity of subsequent calls.  */
 | |
| 
 | |
| void
 | |
| htab_traverse (htab_t htab, htab_trav callback, PTR info)
 | |
| {
 | |
|   size_t size = htab_size (htab);
 | |
|   if (htab_elements (htab) * 8 < size && size > 32)
 | |
|     htab_expand (htab);
 | |
| 
 | |
|   htab_traverse_noresize (htab, callback, info);
 | |
| }
 | |
| 
 | |
| /* Return the fraction of fixed collisions during all work with given
 | |
|    hash table. */
 | |
| 
 | |
| double
 | |
| htab_collisions (htab_t htab)
 | |
| {
 | |
|   if (htab->searches == 0)
 | |
|     return 0.0;
 | |
| 
 | |
|   return (double) htab->collisions / (double) htab->searches;
 | |
| }
 | |
| 
 | |
| /* Hash P as a null-terminated string.
 | |
| 
 | |
|    Copied from gcc/hashtable.c.  Zack had the following to say with respect
 | |
|    to applicability, though note that unlike hashtable.c, this hash table
 | |
|    implementation re-hashes rather than chain buckets.
 | |
| 
 | |
|    http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
 | |
|    From: Zack Weinberg <zackw@panix.com>
 | |
|    Date: Fri, 17 Aug 2001 02:15:56 -0400
 | |
| 
 | |
|    I got it by extracting all the identifiers from all the source code
 | |
|    I had lying around in mid-1999, and testing many recurrences of
 | |
|    the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
 | |
|    prime numbers or the appropriate identity.  This was the best one.
 | |
|    I don't remember exactly what constituted "best", except I was
 | |
|    looking at bucket-length distributions mostly.
 | |
|    
 | |
|    So it should be very good at hashing identifiers, but might not be
 | |
|    as good at arbitrary strings.
 | |
|    
 | |
|    I'll add that it thoroughly trounces the hash functions recommended
 | |
|    for this use at http://burtleburtle.net/bob/hash/index.html, both
 | |
|    on speed and bucket distribution.  I haven't tried it against the
 | |
|    function they just started using for Perl's hashes.  */
 | |
| 
 | |
| hashval_t
 | |
| htab_hash_string (const PTR p)
 | |
| {
 | |
|   const unsigned char *str = (const unsigned char *) p;
 | |
|   hashval_t r = 0;
 | |
|   unsigned char c;
 | |
| 
 | |
|   while ((c = *str++) != 0)
 | |
|     r = r * 67 + c - 113;
 | |
| 
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /* DERIVED FROM:
 | |
| --------------------------------------------------------------------
 | |
| lookup2.c, by Bob Jenkins, December 1996, Public Domain.
 | |
| hash(), hash2(), hash3, and mix() are externally useful functions.
 | |
| Routines to test the hash are included if SELF_TEST is defined.
 | |
| You can use this free for any purpose.  It has no warranty.
 | |
| --------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| /*
 | |
| --------------------------------------------------------------------
 | |
| mix -- mix 3 32-bit values reversibly.
 | |
| For every delta with one or two bit set, and the deltas of all three
 | |
|   high bits or all three low bits, whether the original value of a,b,c
 | |
|   is almost all zero or is uniformly distributed,
 | |
| * If mix() is run forward or backward, at least 32 bits in a,b,c
 | |
|   have at least 1/4 probability of changing.
 | |
| * If mix() is run forward, every bit of c will change between 1/3 and
 | |
|   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
 | |
| mix() was built out of 36 single-cycle latency instructions in a 
 | |
|   structure that could supported 2x parallelism, like so:
 | |
|       a -= b; 
 | |
|       a -= c; x = (c>>13);
 | |
|       b -= c; a ^= x;
 | |
|       b -= a; x = (a<<8);
 | |
|       c -= a; b ^= x;
 | |
|       c -= b; x = (b>>13);
 | |
|       ...
 | |
|   Unfortunately, superscalar Pentiums and Sparcs can't take advantage 
 | |
|   of that parallelism.  They've also turned some of those single-cycle
 | |
|   latency instructions into multi-cycle latency instructions.  Still,
 | |
|   this is the fastest good hash I could find.  There were about 2^^68
 | |
|   to choose from.  I only looked at a billion or so.
 | |
| --------------------------------------------------------------------
 | |
| */
 | |
| /* same, but slower, works on systems that might have 8 byte hashval_t's */
 | |
| #define mix(a,b,c) \
 | |
| { \
 | |
|   a -= b; a -= c; a ^= (c>>13); \
 | |
|   b -= c; b -= a; b ^= (a<< 8); \
 | |
|   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
 | |
|   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
 | |
|   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
 | |
|   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
 | |
|   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
 | |
|   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
 | |
|   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
 | |
| }
 | |
| 
 | |
| /*
 | |
| --------------------------------------------------------------------
 | |
| hash() -- hash a variable-length key into a 32-bit value
 | |
|   k     : the key (the unaligned variable-length array of bytes)
 | |
|   len   : the length of the key, counting by bytes
 | |
|   level : can be any 4-byte value
 | |
| Returns a 32-bit value.  Every bit of the key affects every bit of
 | |
| the return value.  Every 1-bit and 2-bit delta achieves avalanche.
 | |
| About 36+6len instructions.
 | |
| 
 | |
| The best hash table sizes are powers of 2.  There is no need to do
 | |
| mod a prime (mod is sooo slow!).  If you need less than 32 bits,
 | |
| use a bitmask.  For example, if you need only 10 bits, do
 | |
|   h = (h & hashmask(10));
 | |
| In which case, the hash table should have hashsize(10) elements.
 | |
| 
 | |
| If you are hashing n strings (ub1 **)k, do it like this:
 | |
|   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
 | |
| 
 | |
| By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
 | |
| code any way you wish, private, educational, or commercial.  It's free.
 | |
| 
 | |
| See http://burtleburtle.net/bob/hash/evahash.html
 | |
| Use for hash table lookup, or anything where one collision in 2^32 is
 | |
| acceptable.  Do NOT use for cryptographic purposes.
 | |
| --------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| hashval_t
 | |
| iterative_hash (const PTR k_in /* the key */,
 | |
|                 register size_t  length /* the length of the key */,
 | |
|                 register hashval_t initval /* the previous hash, or
 | |
|                                               an arbitrary value */)
 | |
| {
 | |
|   register const unsigned char *k = (const unsigned char *)k_in;
 | |
|   register hashval_t a,b,c,len;
 | |
| 
 | |
|   /* Set up the internal state */
 | |
|   len = length;
 | |
|   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
 | |
|   c = initval;           /* the previous hash value */
 | |
| 
 | |
|   /*---------------------------------------- handle most of the key */
 | |
| #ifndef WORDS_BIGENDIAN
 | |
|   /* On a little-endian machine, if the data is 4-byte aligned we can hash
 | |
|      by word for better speed.  This gives nondeterministic results on
 | |
|      big-endian machines.  */
 | |
|   if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
 | |
|     while (len >= 12)    /* aligned */
 | |
|       {
 | |
| 	a += *(hashval_t *)(k+0);
 | |
| 	b += *(hashval_t *)(k+4);
 | |
| 	c += *(hashval_t *)(k+8);
 | |
| 	mix(a,b,c);
 | |
| 	k += 12; len -= 12;
 | |
|       }
 | |
|   else /* unaligned */
 | |
| #endif
 | |
|     while (len >= 12)
 | |
|       {
 | |
| 	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
 | |
| 	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
 | |
| 	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
 | |
| 	mix(a,b,c);
 | |
| 	k += 12; len -= 12;
 | |
|       }
 | |
| 
 | |
|   /*------------------------------------- handle the last 11 bytes */
 | |
|   c += length;
 | |
|   switch(len)              /* all the case statements fall through */
 | |
|     {
 | |
|     case 11: c+=((hashval_t)k[10]<<24);
 | |
|     case 10: c+=((hashval_t)k[9]<<16);
 | |
|     case 9 : c+=((hashval_t)k[8]<<8);
 | |
|       /* the first byte of c is reserved for the length */
 | |
|     case 8 : b+=((hashval_t)k[7]<<24);
 | |
|     case 7 : b+=((hashval_t)k[6]<<16);
 | |
|     case 6 : b+=((hashval_t)k[5]<<8);
 | |
|     case 5 : b+=k[4];
 | |
|     case 4 : a+=((hashval_t)k[3]<<24);
 | |
|     case 3 : a+=((hashval_t)k[2]<<16);
 | |
|     case 2 : a+=((hashval_t)k[1]<<8);
 | |
|     case 1 : a+=k[0];
 | |
|       /* case 0: nothing left to add */
 | |
|     }
 | |
|   mix(a,b,c);
 | |
|   /*-------------------------------------------- report the result */
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /* Returns a hash code for pointer P. Simplified version of evahash */
 | |
| 
 | |
| static hashval_t
 | |
| hash_pointer (const PTR p)
 | |
| {
 | |
|   intptr_t v = (intptr_t) p;
 | |
|   unsigned a, b, c;
 | |
| 
 | |
|   a = b = 0x9e3779b9;
 | |
|   a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
 | |
|   b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
 | |
|   c = 0x42135234;
 | |
|   mix (a, b, c);
 | |
|   return c;
 | |
| }
 |