mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			779 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			779 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
 | 
						|
 | 
						|
// Copyright (C) 2010-2016 Free Software Foundation, Inc.
 | 
						|
//
 | 
						|
// This file is part of the GNU ISO C++ Library.  This library is free
 | 
						|
// software; you can redistribute it and/or modify it under the
 | 
						|
// terms of the GNU General Public License as published by the
 | 
						|
// Free Software Foundation; either version 3, or (at your option)
 | 
						|
// any later version.
 | 
						|
 | 
						|
// This library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
// GNU General Public License for more details.
 | 
						|
 | 
						|
// Under Section 7 of GPL version 3, you are granted additional
 | 
						|
// permissions described in the GCC Runtime Library Exception, version
 | 
						|
// 3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
// You should have received a copy of the GNU General Public License and
 | 
						|
// a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
// <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
/** @file tr1/hashtable_policy.h
 | 
						|
 *  This is an internal header file, included by other library headers.
 | 
						|
 *  Do not attempt to use it directly. 
 | 
						|
 *  @headername{tr1/unordered_map, tr1/unordered_set}
 | 
						|
 */
 | 
						|
 | 
						|
namespace std _GLIBCXX_VISIBILITY(default)
 | 
						|
{ 
 | 
						|
namespace tr1
 | 
						|
{
 | 
						|
namespace __detail
 | 
						|
{
 | 
						|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 | 
						|
 | 
						|
  // Helper function: return distance(first, last) for forward
 | 
						|
  // iterators, or 0 for input iterators.
 | 
						|
  template<class _Iterator>
 | 
						|
    inline typename std::iterator_traits<_Iterator>::difference_type
 | 
						|
    __distance_fw(_Iterator __first, _Iterator __last,
 | 
						|
		  std::input_iterator_tag)
 | 
						|
    { return 0; }
 | 
						|
 | 
						|
  template<class _Iterator>
 | 
						|
    inline typename std::iterator_traits<_Iterator>::difference_type
 | 
						|
    __distance_fw(_Iterator __first, _Iterator __last,
 | 
						|
		  std::forward_iterator_tag)
 | 
						|
    { return std::distance(__first, __last); }
 | 
						|
 | 
						|
  template<class _Iterator>
 | 
						|
    inline typename std::iterator_traits<_Iterator>::difference_type
 | 
						|
    __distance_fw(_Iterator __first, _Iterator __last)
 | 
						|
    {
 | 
						|
      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
 | 
						|
      return __distance_fw(__first, __last, _Tag());
 | 
						|
    }
 | 
						|
 | 
						|
  // Auxiliary types used for all instantiations of _Hashtable: nodes
 | 
						|
  // and iterators.
 | 
						|
  
 | 
						|
  // Nodes, used to wrap elements stored in the hash table.  A policy
 | 
						|
  // template parameter of class template _Hashtable controls whether
 | 
						|
  // nodes also store a hash code. In some cases (e.g. strings) this
 | 
						|
  // may be a performance win.
 | 
						|
  template<typename _Value, bool __cache_hash_code>
 | 
						|
    struct _Hash_node;
 | 
						|
 | 
						|
  template<typename _Value>
 | 
						|
    struct _Hash_node<_Value, true>
 | 
						|
    {
 | 
						|
      _Value       _M_v;
 | 
						|
      std::size_t  _M_hash_code;
 | 
						|
      _Hash_node*  _M_next;
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Value>
 | 
						|
    struct _Hash_node<_Value, false>
 | 
						|
    {
 | 
						|
      _Value       _M_v;
 | 
						|
      _Hash_node*  _M_next;
 | 
						|
    };
 | 
						|
 | 
						|
  // Local iterators, used to iterate within a bucket but not between
 | 
						|
  // buckets.
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    struct _Node_iterator_base
 | 
						|
    {
 | 
						|
      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
 | 
						|
      : _M_cur(__p) { }
 | 
						|
      
 | 
						|
      void
 | 
						|
      _M_incr()
 | 
						|
      { _M_cur = _M_cur->_M_next; }
 | 
						|
 | 
						|
      _Hash_node<_Value, __cache>*  _M_cur;
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    inline bool
 | 
						|
    operator==(const _Node_iterator_base<_Value, __cache>& __x,
 | 
						|
	       const _Node_iterator_base<_Value, __cache>& __y)
 | 
						|
    { return __x._M_cur == __y._M_cur; }
 | 
						|
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    inline bool
 | 
						|
    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
 | 
						|
	       const _Node_iterator_base<_Value, __cache>& __y)
 | 
						|
    { return __x._M_cur != __y._M_cur; }
 | 
						|
 | 
						|
  template<typename _Value, bool __constant_iterators, bool __cache>
 | 
						|
    struct _Node_iterator
 | 
						|
    : public _Node_iterator_base<_Value, __cache>
 | 
						|
    {
 | 
						|
      typedef _Value                                   value_type;
 | 
						|
      typedef typename
 | 
						|
      __gnu_cxx::__conditional_type<__constant_iterators,
 | 
						|
				    const _Value*, _Value*>::__type
 | 
						|
                                                       pointer;
 | 
						|
      typedef typename
 | 
						|
      __gnu_cxx::__conditional_type<__constant_iterators,
 | 
						|
				    const _Value&, _Value&>::__type
 | 
						|
                                                       reference;
 | 
						|
      typedef std::ptrdiff_t                           difference_type;
 | 
						|
      typedef std::forward_iterator_tag                iterator_category;
 | 
						|
 | 
						|
      _Node_iterator()
 | 
						|
      : _Node_iterator_base<_Value, __cache>(0) { }
 | 
						|
 | 
						|
      explicit
 | 
						|
      _Node_iterator(_Hash_node<_Value, __cache>* __p)
 | 
						|
      : _Node_iterator_base<_Value, __cache>(__p) { }
 | 
						|
 | 
						|
      reference
 | 
						|
      operator*() const
 | 
						|
      { return this->_M_cur->_M_v; }
 | 
						|
  
 | 
						|
      pointer
 | 
						|
      operator->() const
 | 
						|
      { return std::__addressof(this->_M_cur->_M_v); }
 | 
						|
 | 
						|
      _Node_iterator&
 | 
						|
      operator++()
 | 
						|
      { 
 | 
						|
	this->_M_incr();
 | 
						|
	return *this; 
 | 
						|
      }
 | 
						|
  
 | 
						|
      _Node_iterator
 | 
						|
      operator++(int)
 | 
						|
      { 
 | 
						|
	_Node_iterator __tmp(*this);
 | 
						|
	this->_M_incr();
 | 
						|
	return __tmp;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Value, bool __constant_iterators, bool __cache>
 | 
						|
    struct _Node_const_iterator
 | 
						|
    : public _Node_iterator_base<_Value, __cache>
 | 
						|
    {
 | 
						|
      typedef _Value                                   value_type;
 | 
						|
      typedef const _Value*                            pointer;
 | 
						|
      typedef const _Value&                            reference;
 | 
						|
      typedef std::ptrdiff_t                           difference_type;
 | 
						|
      typedef std::forward_iterator_tag                iterator_category;
 | 
						|
 | 
						|
      _Node_const_iterator()
 | 
						|
      : _Node_iterator_base<_Value, __cache>(0) { }
 | 
						|
 | 
						|
      explicit
 | 
						|
      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
 | 
						|
      : _Node_iterator_base<_Value, __cache>(__p) { }
 | 
						|
 | 
						|
      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
 | 
						|
			   __cache>& __x)
 | 
						|
      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
 | 
						|
 | 
						|
      reference
 | 
						|
      operator*() const
 | 
						|
      { return this->_M_cur->_M_v; }
 | 
						|
  
 | 
						|
      pointer
 | 
						|
      operator->() const
 | 
						|
      { return std::__addressof(this->_M_cur->_M_v); }
 | 
						|
 | 
						|
      _Node_const_iterator&
 | 
						|
      operator++()
 | 
						|
      { 
 | 
						|
	this->_M_incr();
 | 
						|
	return *this; 
 | 
						|
      }
 | 
						|
  
 | 
						|
      _Node_const_iterator
 | 
						|
      operator++(int)
 | 
						|
      { 
 | 
						|
	_Node_const_iterator __tmp(*this);
 | 
						|
	this->_M_incr();
 | 
						|
	return __tmp;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    struct _Hashtable_iterator_base
 | 
						|
    {
 | 
						|
      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
 | 
						|
			       _Hash_node<_Value, __cache>** __bucket)
 | 
						|
      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_incr()
 | 
						|
      {
 | 
						|
	_M_cur_node = _M_cur_node->_M_next;
 | 
						|
	if (!_M_cur_node)
 | 
						|
	  _M_incr_bucket();
 | 
						|
      }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_incr_bucket();
 | 
						|
 | 
						|
      _Hash_node<_Value, __cache>*   _M_cur_node;
 | 
						|
      _Hash_node<_Value, __cache>**  _M_cur_bucket;
 | 
						|
    };
 | 
						|
 | 
						|
  // Global iterators, used for arbitrary iteration within a hash
 | 
						|
  // table.  Larger and more expensive than local iterators.
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    void
 | 
						|
    _Hashtable_iterator_base<_Value, __cache>::
 | 
						|
    _M_incr_bucket()
 | 
						|
    {
 | 
						|
      ++_M_cur_bucket;
 | 
						|
 | 
						|
      // This loop requires the bucket array to have a non-null sentinel.
 | 
						|
      while (!*_M_cur_bucket)
 | 
						|
	++_M_cur_bucket;
 | 
						|
      _M_cur_node = *_M_cur_bucket;
 | 
						|
    }
 | 
						|
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    inline bool
 | 
						|
    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
 | 
						|
	       const _Hashtable_iterator_base<_Value, __cache>& __y)
 | 
						|
    { return __x._M_cur_node == __y._M_cur_node; }
 | 
						|
 | 
						|
  template<typename _Value, bool __cache>
 | 
						|
    inline bool
 | 
						|
    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
 | 
						|
	       const _Hashtable_iterator_base<_Value, __cache>& __y)
 | 
						|
    { return __x._M_cur_node != __y._M_cur_node; }
 | 
						|
 | 
						|
  template<typename _Value, bool __constant_iterators, bool __cache>
 | 
						|
    struct _Hashtable_iterator
 | 
						|
    : public _Hashtable_iterator_base<_Value, __cache>
 | 
						|
    {
 | 
						|
      typedef _Value                                   value_type;
 | 
						|
      typedef typename
 | 
						|
      __gnu_cxx::__conditional_type<__constant_iterators,
 | 
						|
				    const _Value*, _Value*>::__type
 | 
						|
                                                       pointer;
 | 
						|
      typedef typename
 | 
						|
      __gnu_cxx::__conditional_type<__constant_iterators,
 | 
						|
				    const _Value&, _Value&>::__type
 | 
						|
                                                       reference;
 | 
						|
      typedef std::ptrdiff_t                           difference_type;
 | 
						|
      typedef std::forward_iterator_tag                iterator_category;
 | 
						|
 | 
						|
      _Hashtable_iterator()
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
 | 
						|
 | 
						|
      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
 | 
						|
			  _Hash_node<_Value, __cache>** __b)
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
 | 
						|
 | 
						|
      explicit
 | 
						|
      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
 | 
						|
 | 
						|
      reference
 | 
						|
      operator*() const
 | 
						|
      { return this->_M_cur_node->_M_v; }
 | 
						|
  
 | 
						|
      pointer
 | 
						|
      operator->() const
 | 
						|
      { return std::__addressof(this->_M_cur_node->_M_v); }
 | 
						|
 | 
						|
      _Hashtable_iterator&
 | 
						|
      operator++()
 | 
						|
      { 
 | 
						|
	this->_M_incr();
 | 
						|
	return *this;
 | 
						|
      }
 | 
						|
  
 | 
						|
      _Hashtable_iterator
 | 
						|
      operator++(int)
 | 
						|
      { 
 | 
						|
	_Hashtable_iterator __tmp(*this);
 | 
						|
	this->_M_incr();
 | 
						|
	return __tmp;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Value, bool __constant_iterators, bool __cache>
 | 
						|
    struct _Hashtable_const_iterator
 | 
						|
    : public _Hashtable_iterator_base<_Value, __cache>
 | 
						|
    {
 | 
						|
      typedef _Value                                   value_type;
 | 
						|
      typedef const _Value*                            pointer;
 | 
						|
      typedef const _Value&                            reference;
 | 
						|
      typedef std::ptrdiff_t                           difference_type;
 | 
						|
      typedef std::forward_iterator_tag                iterator_category;
 | 
						|
 | 
						|
      _Hashtable_const_iterator()
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
 | 
						|
 | 
						|
      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
 | 
						|
				_Hash_node<_Value, __cache>** __b)
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
 | 
						|
 | 
						|
      explicit
 | 
						|
      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
 | 
						|
 | 
						|
      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
 | 
						|
				__constant_iterators, __cache>& __x)
 | 
						|
      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
 | 
						|
						  __x._M_cur_bucket) { }
 | 
						|
 | 
						|
      reference
 | 
						|
      operator*() const
 | 
						|
      { return this->_M_cur_node->_M_v; }
 | 
						|
  
 | 
						|
      pointer
 | 
						|
      operator->() const
 | 
						|
      { return std::__addressof(this->_M_cur_node->_M_v); }
 | 
						|
 | 
						|
      _Hashtable_const_iterator&
 | 
						|
      operator++()
 | 
						|
      { 
 | 
						|
	this->_M_incr();
 | 
						|
	return *this;
 | 
						|
      }
 | 
						|
  
 | 
						|
      _Hashtable_const_iterator
 | 
						|
      operator++(int)
 | 
						|
      { 
 | 
						|
	_Hashtable_const_iterator __tmp(*this);
 | 
						|
	this->_M_incr();
 | 
						|
	return __tmp;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
  // Many of class template _Hashtable's template parameters are policy
 | 
						|
  // classes.  These are defaults for the policies.
 | 
						|
 | 
						|
  // Default range hashing function: use division to fold a large number
 | 
						|
  // into the range [0, N).
 | 
						|
  struct _Mod_range_hashing
 | 
						|
  {
 | 
						|
    typedef std::size_t first_argument_type;
 | 
						|
    typedef std::size_t second_argument_type;
 | 
						|
    typedef std::size_t result_type;
 | 
						|
 | 
						|
    result_type
 | 
						|
    operator()(first_argument_type __num, second_argument_type __den) const
 | 
						|
    { return __num % __den; }
 | 
						|
  };
 | 
						|
 | 
						|
  // Default ranged hash function H.  In principle it should be a
 | 
						|
  // function object composed from objects of type H1 and H2 such that
 | 
						|
  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
 | 
						|
  // h1 and h2.  So instead we'll just use a tag to tell class template
 | 
						|
  // hashtable to do that composition.
 | 
						|
  struct _Default_ranged_hash { };
 | 
						|
 | 
						|
  // Default value for rehash policy.  Bucket size is (usually) the
 | 
						|
  // smallest prime that keeps the load factor small enough.
 | 
						|
  struct _Prime_rehash_policy
 | 
						|
  {
 | 
						|
    _Prime_rehash_policy(float __z = 1.0)
 | 
						|
    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
 | 
						|
 | 
						|
    float
 | 
						|
    max_load_factor() const
 | 
						|
    { return _M_max_load_factor; }      
 | 
						|
 | 
						|
    // Return a bucket size no smaller than n.
 | 
						|
    std::size_t
 | 
						|
    _M_next_bkt(std::size_t __n) const;
 | 
						|
    
 | 
						|
    // Return a bucket count appropriate for n elements
 | 
						|
    std::size_t
 | 
						|
    _M_bkt_for_elements(std::size_t __n) const;
 | 
						|
    
 | 
						|
    // __n_bkt is current bucket count, __n_elt is current element count,
 | 
						|
    // and __n_ins is number of elements to be inserted.  Do we need to
 | 
						|
    // increase bucket count?  If so, return make_pair(true, n), where n
 | 
						|
    // is the new bucket count.  If not, return make_pair(false, 0).
 | 
						|
    std::pair<bool, std::size_t>
 | 
						|
    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
 | 
						|
		   std::size_t __n_ins) const;
 | 
						|
 | 
						|
    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
 | 
						|
 | 
						|
    float                _M_max_load_factor;
 | 
						|
    float                _M_growth_factor;
 | 
						|
    mutable std::size_t  _M_next_resize;
 | 
						|
  };
 | 
						|
 | 
						|
  extern const unsigned long __prime_list[];
 | 
						|
 | 
						|
  // XXX This is a hack.  There's no good reason for any of
 | 
						|
  // _Prime_rehash_policy's member functions to be inline.  
 | 
						|
 | 
						|
  // Return a prime no smaller than n.
 | 
						|
  inline std::size_t
 | 
						|
  _Prime_rehash_policy::
 | 
						|
  _M_next_bkt(std::size_t __n) const
 | 
						|
  {
 | 
						|
    // Don't include the last prime in the search, so that anything
 | 
						|
    // higher than the second-to-last prime returns a past-the-end
 | 
						|
    // iterator that can be dereferenced to get the last prime.
 | 
						|
    const unsigned long* __p
 | 
						|
      = std::lower_bound(__prime_list, __prime_list + _S_n_primes - 1, __n);
 | 
						|
    _M_next_resize = 
 | 
						|
      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
 | 
						|
    return *__p;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the smallest prime p such that alpha p >= n, where alpha
 | 
						|
  // is the load factor.
 | 
						|
  inline std::size_t
 | 
						|
  _Prime_rehash_policy::
 | 
						|
  _M_bkt_for_elements(std::size_t __n) const
 | 
						|
  {
 | 
						|
    const float __min_bkts = __n / _M_max_load_factor;
 | 
						|
    return _M_next_bkt(__builtin_ceil(__min_bkts));
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
 | 
						|
  // If p > __n_bkt, return make_pair(true, p); otherwise return
 | 
						|
  // make_pair(false, 0).  In principle this isn't very different from 
 | 
						|
  // _M_bkt_for_elements.
 | 
						|
 | 
						|
  // The only tricky part is that we're caching the element count at
 | 
						|
  // which we need to rehash, so we don't have to do a floating-point
 | 
						|
  // multiply for every insertion.
 | 
						|
 | 
						|
  inline std::pair<bool, std::size_t>
 | 
						|
  _Prime_rehash_policy::
 | 
						|
  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
 | 
						|
		 std::size_t __n_ins) const
 | 
						|
  {
 | 
						|
    if (__n_elt + __n_ins > _M_next_resize)
 | 
						|
      {
 | 
						|
	float __min_bkts = ((float(__n_ins) + float(__n_elt))
 | 
						|
			    / _M_max_load_factor);
 | 
						|
	if (__min_bkts > __n_bkt)
 | 
						|
	  {
 | 
						|
	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
 | 
						|
	    return std::make_pair(true,
 | 
						|
				  _M_next_bkt(__builtin_ceil(__min_bkts)));
 | 
						|
	  }
 | 
						|
	else 
 | 
						|
	  {
 | 
						|
	    _M_next_resize = static_cast<std::size_t>
 | 
						|
	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
 | 
						|
	    return std::make_pair(false, 0);
 | 
						|
	  }
 | 
						|
      }
 | 
						|
    else
 | 
						|
      return std::make_pair(false, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Base classes for std::tr1::_Hashtable.  We define these base
 | 
						|
  // classes because in some cases we want to do different things
 | 
						|
  // depending on the value of a policy class.  In some cases the
 | 
						|
  // policy class affects which member functions and nested typedefs
 | 
						|
  // are defined; we handle that by specializing base class templates.
 | 
						|
  // Several of the base class templates need to access other members
 | 
						|
  // of class template _Hashtable, so we use the "curiously recurring
 | 
						|
  // template pattern" for them.
 | 
						|
 | 
						|
  // class template _Map_base.  If the hashtable has a value type of the
 | 
						|
  // form pair<T1, T2> and a key extraction policy that returns the
 | 
						|
  // first part of the pair, the hashtable gets a mapped_type typedef.
 | 
						|
  // If it satisfies those criteria and also has unique keys, then it
 | 
						|
  // also gets an operator[].  
 | 
						|
  template<typename _Key, typename _Value, typename _Ex, bool __unique,
 | 
						|
	   typename _Hashtable>
 | 
						|
    struct _Map_base { };
 | 
						|
	  
 | 
						|
  template<typename _Key, typename _Pair, typename _Hashtable>
 | 
						|
    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
 | 
						|
    {
 | 
						|
      typedef typename _Pair::second_type mapped_type;
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Key, typename _Pair, typename _Hashtable>
 | 
						|
    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
 | 
						|
    {
 | 
						|
      typedef typename _Pair::second_type mapped_type;
 | 
						|
      
 | 
						|
      mapped_type&
 | 
						|
      operator[](const _Key& __k);
 | 
						|
    };
 | 
						|
 | 
						|
  template<typename _Key, typename _Pair, typename _Hashtable>
 | 
						|
    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
 | 
						|
		       true, _Hashtable>::mapped_type&
 | 
						|
    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
 | 
						|
    operator[](const _Key& __k)
 | 
						|
    {
 | 
						|
      _Hashtable* __h = static_cast<_Hashtable*>(this);
 | 
						|
      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
 | 
						|
      std::size_t __n = __h->_M_bucket_index(__k, __code,
 | 
						|
					     __h->_M_bucket_count);
 | 
						|
 | 
						|
      typename _Hashtable::_Node* __p =
 | 
						|
	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
 | 
						|
      if (!__p)
 | 
						|
	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
 | 
						|
				     __n, __code)->second;
 | 
						|
      return (__p->_M_v).second;
 | 
						|
    }
 | 
						|
 | 
						|
  // class template _Rehash_base.  Give hashtable the max_load_factor
 | 
						|
  // functions iff the rehash policy is _Prime_rehash_policy.
 | 
						|
  template<typename _RehashPolicy, typename _Hashtable>
 | 
						|
    struct _Rehash_base { };
 | 
						|
 | 
						|
  template<typename _Hashtable>
 | 
						|
    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
 | 
						|
    {
 | 
						|
      float
 | 
						|
      max_load_factor() const
 | 
						|
      {
 | 
						|
	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
 | 
						|
	return __this->__rehash_policy().max_load_factor();
 | 
						|
      }
 | 
						|
 | 
						|
      void
 | 
						|
      max_load_factor(float __z)
 | 
						|
      {
 | 
						|
	_Hashtable* __this = static_cast<_Hashtable*>(this);
 | 
						|
	__this->__rehash_policy(_Prime_rehash_policy(__z));
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
  // Class template _Hash_code_base.  Encapsulates two policy issues that
 | 
						|
  // aren't quite orthogonal.
 | 
						|
  //   (1) the difference between using a ranged hash function and using
 | 
						|
  //       the combination of a hash function and a range-hashing function.
 | 
						|
  //       In the former case we don't have such things as hash codes, so
 | 
						|
  //       we have a dummy type as placeholder.
 | 
						|
  //   (2) Whether or not we cache hash codes.  Caching hash codes is
 | 
						|
  //       meaningless if we have a ranged hash function.
 | 
						|
  // We also put the key extraction and equality comparison function 
 | 
						|
  // objects here, for convenience.
 | 
						|
  
 | 
						|
  // Primary template: unused except as a hook for specializations.  
 | 
						|
  template<typename _Key, typename _Value,
 | 
						|
	   typename _ExtractKey, typename _Equal,
 | 
						|
	   typename _H1, typename _H2, typename _Hash,
 | 
						|
	   bool __cache_hash_code>
 | 
						|
    struct _Hash_code_base;
 | 
						|
 | 
						|
  // Specialization: ranged hash function, no caching hash codes.  H1
 | 
						|
  // and H2 are provided but ignored.  We define a dummy hash code type.
 | 
						|
  template<typename _Key, typename _Value,
 | 
						|
	   typename _ExtractKey, typename _Equal,
 | 
						|
	   typename _H1, typename _H2, typename _Hash>
 | 
						|
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
 | 
						|
			   _Hash, false>
 | 
						|
    {
 | 
						|
    protected:
 | 
						|
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
 | 
						|
		      const _H1&, const _H2&, const _Hash& __h)
 | 
						|
      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
 | 
						|
 | 
						|
      typedef void* _Hash_code_type;
 | 
						|
  
 | 
						|
      _Hash_code_type
 | 
						|
      _M_hash_code(const _Key& __key) const
 | 
						|
      { return 0; }
 | 
						|
  
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Key& __k, _Hash_code_type,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_ranged_hash(__k, __n); }
 | 
						|
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Hash_node<_Value, false>* __p,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
 | 
						|
  
 | 
						|
      bool
 | 
						|
      _M_compare(const _Key& __k, _Hash_code_type,
 | 
						|
		 _Hash_node<_Value, false>* __n) const
 | 
						|
      { return _M_eq(__k, _M_extract(__n->_M_v)); }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
 | 
						|
      { }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_copy_code(_Hash_node<_Value, false>*,
 | 
						|
		   const _Hash_node<_Value, false>*) const
 | 
						|
      { }
 | 
						|
      
 | 
						|
      void
 | 
						|
      _M_swap(_Hash_code_base& __x)
 | 
						|
      {
 | 
						|
	std::swap(_M_extract, __x._M_extract);
 | 
						|
	std::swap(_M_eq, __x._M_eq);
 | 
						|
	std::swap(_M_ranged_hash, __x._M_ranged_hash);
 | 
						|
      }
 | 
						|
 | 
						|
    protected:
 | 
						|
      _ExtractKey  _M_extract;
 | 
						|
      _Equal       _M_eq;
 | 
						|
      _Hash        _M_ranged_hash;
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
  // No specialization for ranged hash function while caching hash codes.
 | 
						|
  // That combination is meaningless, and trying to do it is an error.
 | 
						|
  
 | 
						|
  
 | 
						|
  // Specialization: ranged hash function, cache hash codes.  This
 | 
						|
  // combination is meaningless, so we provide only a declaration
 | 
						|
  // and no definition.  
 | 
						|
  template<typename _Key, typename _Value,
 | 
						|
	   typename _ExtractKey, typename _Equal,
 | 
						|
	   typename _H1, typename _H2, typename _Hash>
 | 
						|
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
 | 
						|
			   _Hash, true>;
 | 
						|
 | 
						|
  // Specialization: hash function and range-hashing function, no
 | 
						|
  // caching of hash codes.  H is provided but ignored.  Provides
 | 
						|
  // typedef and accessor required by TR1.  
 | 
						|
  template<typename _Key, typename _Value,
 | 
						|
	   typename _ExtractKey, typename _Equal,
 | 
						|
	   typename _H1, typename _H2>
 | 
						|
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
 | 
						|
			   _Default_ranged_hash, false>
 | 
						|
    {
 | 
						|
      typedef _H1 hasher;
 | 
						|
 | 
						|
      hasher
 | 
						|
      hash_function() const
 | 
						|
      { return _M_h1; }
 | 
						|
 | 
						|
    protected:
 | 
						|
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
 | 
						|
		      const _H1& __h1, const _H2& __h2,
 | 
						|
		      const _Default_ranged_hash&)
 | 
						|
      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
 | 
						|
 | 
						|
      typedef std::size_t _Hash_code_type;
 | 
						|
 | 
						|
      _Hash_code_type
 | 
						|
      _M_hash_code(const _Key& __k) const
 | 
						|
      { return _M_h1(__k); }
 | 
						|
      
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Key&, _Hash_code_type __c,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_h2(__c, __n); }
 | 
						|
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Hash_node<_Value, false>* __p,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
 | 
						|
 | 
						|
      bool
 | 
						|
      _M_compare(const _Key& __k, _Hash_code_type,
 | 
						|
		 _Hash_node<_Value, false>* __n) const
 | 
						|
      { return _M_eq(__k, _M_extract(__n->_M_v)); }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
 | 
						|
      { }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_copy_code(_Hash_node<_Value, false>*,
 | 
						|
		   const _Hash_node<_Value, false>*) const
 | 
						|
      { }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_swap(_Hash_code_base& __x)
 | 
						|
      {
 | 
						|
	std::swap(_M_extract, __x._M_extract);
 | 
						|
	std::swap(_M_eq, __x._M_eq);
 | 
						|
	std::swap(_M_h1, __x._M_h1);
 | 
						|
	std::swap(_M_h2, __x._M_h2);
 | 
						|
      }
 | 
						|
 | 
						|
    protected:
 | 
						|
      _ExtractKey  _M_extract;
 | 
						|
      _Equal       _M_eq;
 | 
						|
      _H1          _M_h1;
 | 
						|
      _H2          _M_h2;
 | 
						|
    };
 | 
						|
 | 
						|
  // Specialization: hash function and range-hashing function, 
 | 
						|
  // caching hash codes.  H is provided but ignored.  Provides
 | 
						|
  // typedef and accessor required by TR1.
 | 
						|
  template<typename _Key, typename _Value,
 | 
						|
	   typename _ExtractKey, typename _Equal,
 | 
						|
	   typename _H1, typename _H2>
 | 
						|
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
 | 
						|
			   _Default_ranged_hash, true>
 | 
						|
    {
 | 
						|
      typedef _H1 hasher;
 | 
						|
      
 | 
						|
      hasher
 | 
						|
      hash_function() const
 | 
						|
      { return _M_h1; }
 | 
						|
 | 
						|
    protected:
 | 
						|
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
 | 
						|
		      const _H1& __h1, const _H2& __h2,
 | 
						|
		      const _Default_ranged_hash&)
 | 
						|
      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
 | 
						|
 | 
						|
      typedef std::size_t _Hash_code_type;
 | 
						|
  
 | 
						|
      _Hash_code_type
 | 
						|
      _M_hash_code(const _Key& __k) const
 | 
						|
      { return _M_h1(__k); }
 | 
						|
  
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Key&, _Hash_code_type __c,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_h2(__c, __n); }
 | 
						|
 | 
						|
      std::size_t
 | 
						|
      _M_bucket_index(const _Hash_node<_Value, true>* __p,
 | 
						|
		      std::size_t __n) const
 | 
						|
      { return _M_h2(__p->_M_hash_code, __n); }
 | 
						|
 | 
						|
      bool
 | 
						|
      _M_compare(const _Key& __k, _Hash_code_type __c,
 | 
						|
		 _Hash_node<_Value, true>* __n) const
 | 
						|
      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
 | 
						|
      { __n->_M_hash_code = __c; }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_copy_code(_Hash_node<_Value, true>* __to,
 | 
						|
		   const _Hash_node<_Value, true>* __from) const
 | 
						|
      { __to->_M_hash_code = __from->_M_hash_code; }
 | 
						|
 | 
						|
      void
 | 
						|
      _M_swap(_Hash_code_base& __x)
 | 
						|
      {
 | 
						|
	std::swap(_M_extract, __x._M_extract);
 | 
						|
	std::swap(_M_eq, __x._M_eq);
 | 
						|
	std::swap(_M_h1, __x._M_h1);
 | 
						|
	std::swap(_M_h2, __x._M_h2);
 | 
						|
      }
 | 
						|
      
 | 
						|
    protected:
 | 
						|
      _ExtractKey  _M_extract;
 | 
						|
      _Equal       _M_eq;
 | 
						|
      _H1          _M_h1;
 | 
						|
      _H2          _M_h2;
 | 
						|
    };
 | 
						|
_GLIBCXX_END_NAMESPACE_VERSION
 | 
						|
} // namespace __detail
 | 
						|
}
 | 
						|
}
 |