mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			734 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			734 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Target-dependent costs for expmed.c.
 | |
|    Copyright (C) 1987-2019 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GCC.
 | |
| 
 | |
| GCC is free software; you can redistribute it and/or modify it under
 | |
| the terms of the GNU General Public License as published by the Free
 | |
| Software Foundation; either version 3, or (at your option) any later
 | |
| version.
 | |
| 
 | |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
| for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GCC; see the file COPYING3.  If not see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #ifndef EXPMED_H
 | |
| #define EXPMED_H 1
 | |
| 
 | |
| #include "insn-codes.h"
 | |
| 
 | |
| enum alg_code {
 | |
|   alg_unknown,
 | |
|   alg_zero,
 | |
|   alg_m, alg_shift,
 | |
|   alg_add_t_m2,
 | |
|   alg_sub_t_m2,
 | |
|   alg_add_factor,
 | |
|   alg_sub_factor,
 | |
|   alg_add_t2_m,
 | |
|   alg_sub_t2_m,
 | |
|   alg_impossible
 | |
| };
 | |
| 
 | |
| /* Indicates the type of fixup needed after a constant multiplication.
 | |
|    BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
 | |
|    the result should be negated, and ADD_VARIANT means that the
 | |
|    multiplicand should be added to the result.  */
 | |
| enum mult_variant {basic_variant, negate_variant, add_variant};
 | |
| 
 | |
| bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
 | |
| 			  struct algorithm *, enum mult_variant *, int);
 | |
| 
 | |
| /* This structure holds the "cost" of a multiply sequence.  The
 | |
|    "cost" field holds the total rtx_cost of every operator in the
 | |
|    synthetic multiplication sequence, hence cost(a op b) is defined
 | |
|    as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
 | |
|    The "latency" field holds the minimum possible latency of the
 | |
|    synthetic multiply, on a hypothetical infinitely parallel CPU.
 | |
|    This is the critical path, or the maximum height, of the expression
 | |
|    tree which is the sum of rtx_costs on the most expensive path from
 | |
|    any leaf to the root.  Hence latency(a op b) is defined as zero for
 | |
|    leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
 | |
| 
 | |
| struct mult_cost {
 | |
|   short cost;     /* Total rtx_cost of the multiplication sequence.  */
 | |
|   short latency;  /* The latency of the multiplication sequence.  */
 | |
| };
 | |
| 
 | |
| /* This macro is used to compare a pointer to a mult_cost against an
 | |
|    single integer "rtx_cost" value.  This is equivalent to the macro
 | |
|    CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
 | |
| #define MULT_COST_LESS(X,Y) ((X)->cost < (Y)	\
 | |
| 			     || ((X)->cost == (Y) && (X)->latency < (Y)))
 | |
| 
 | |
| /* This macro is used to compare two pointers to mult_costs against
 | |
|    each other.  The macro returns true if X is cheaper than Y.
 | |
|    Currently, the cheaper of two mult_costs is the one with the
 | |
|    lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
 | |
| #define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost		\
 | |
| 				 || ((X)->cost == (Y)->cost	\
 | |
| 				     && (X)->latency < (Y)->latency))
 | |
| 
 | |
| /* This structure records a sequence of operations.
 | |
|    `ops' is the number of operations recorded.
 | |
|    `cost' is their total cost.
 | |
|    The operations are stored in `op' and the corresponding
 | |
|    logarithms of the integer coefficients in `log'.
 | |
| 
 | |
|    These are the operations:
 | |
|    alg_zero		total := 0;
 | |
|    alg_m		total := multiplicand;
 | |
|    alg_shift		total := total * coeff
 | |
|    alg_add_t_m2		total := total + multiplicand * coeff;
 | |
|    alg_sub_t_m2		total := total - multiplicand * coeff;
 | |
|    alg_add_factor	total := total * coeff + total;
 | |
|    alg_sub_factor	total := total * coeff - total;
 | |
|    alg_add_t2_m		total := total * coeff + multiplicand;
 | |
|    alg_sub_t2_m		total := total * coeff - multiplicand;
 | |
| 
 | |
|    The first operand must be either alg_zero or alg_m.  */
 | |
| 
 | |
| struct algorithm
 | |
| {
 | |
|   struct mult_cost cost;
 | |
|   short ops;
 | |
|   /* The size of the OP and LOG fields are not directly related to the
 | |
|      word size, but the worst-case algorithms will be if we have few
 | |
|      consecutive ones or zeros, i.e., a multiplicand like 10101010101...
 | |
|      In that case we will generate shift-by-2, add, shift-by-2, add,...,
 | |
|      in total wordsize operations.  */
 | |
|   enum alg_code op[MAX_BITS_PER_WORD];
 | |
|   char log[MAX_BITS_PER_WORD];
 | |
| };
 | |
| 
 | |
| /* The entry for our multiplication cache/hash table.  */
 | |
| struct alg_hash_entry {
 | |
|   /* The number we are multiplying by.  */
 | |
|   unsigned HOST_WIDE_INT t;
 | |
| 
 | |
|   /* The mode in which we are multiplying something by T.  */
 | |
|   machine_mode mode;
 | |
| 
 | |
|   /* The best multiplication algorithm for t.  */
 | |
|   enum alg_code alg;
 | |
| 
 | |
|   /* The cost of multiplication if ALG_CODE is not alg_impossible.
 | |
|      Otherwise, the cost within which multiplication by T is
 | |
|      impossible.  */
 | |
|   struct mult_cost cost;
 | |
| 
 | |
|   /* Optimized for speed? */
 | |
|   bool speed;
 | |
| };
 | |
| 
 | |
| /* The number of cache/hash entries.  */
 | |
| #if HOST_BITS_PER_WIDE_INT == 64
 | |
| #define NUM_ALG_HASH_ENTRIES 1031
 | |
| #else
 | |
| #define NUM_ALG_HASH_ENTRIES 307
 | |
| #endif
 | |
| 
 | |
| #define NUM_MODE_INT \
 | |
|   (MAX_MODE_INT - MIN_MODE_INT + 1)
 | |
| #define NUM_MODE_PARTIAL_INT \
 | |
|   (MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
 | |
|    : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
 | |
| #define NUM_MODE_VECTOR_INT \
 | |
|   (MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
 | |
|    : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
 | |
| 
 | |
| #define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
 | |
| #define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
 | |
| 
 | |
| struct expmed_op_cheap {
 | |
|   bool cheap[2][NUM_MODE_IPV_INT];
 | |
| };
 | |
| 
 | |
| struct expmed_op_costs {
 | |
|   int cost[2][NUM_MODE_IPV_INT];
 | |
| };
 | |
| 
 | |
| /* Target-dependent globals.  */
 | |
| struct target_expmed {
 | |
|   /* Each entry of ALG_HASH caches alg_code for some integer.  This is
 | |
|      actually a hash table.  If we have a collision, that the older
 | |
|      entry is kicked out.  */
 | |
|   struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
 | |
| 
 | |
|   /* True if x_alg_hash might already have been used.  */
 | |
|   bool x_alg_hash_used_p;
 | |
| 
 | |
|   /* Nonzero means divides or modulus operations are relatively cheap for
 | |
|      powers of two, so don't use branches; emit the operation instead.
 | |
|      Usually, this will mean that the MD file will emit non-branch
 | |
|      sequences.  */
 | |
|   struct expmed_op_cheap x_sdiv_pow2_cheap;
 | |
|   struct expmed_op_cheap x_smod_pow2_cheap;
 | |
| 
 | |
|   /* Cost of various pieces of RTL.  Note that some of these are indexed by
 | |
|      shift count and some by mode.  */
 | |
|   int x_zero_cost[2];
 | |
|   struct expmed_op_costs x_add_cost;
 | |
|   struct expmed_op_costs x_neg_cost;
 | |
|   struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
 | |
|   struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
 | |
|   struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
 | |
|   struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
 | |
|   struct expmed_op_costs x_mul_cost;
 | |
|   struct expmed_op_costs x_sdiv_cost;
 | |
|   struct expmed_op_costs x_udiv_cost;
 | |
|   int x_mul_widen_cost[2][NUM_MODE_INT];
 | |
|   int x_mul_highpart_cost[2][NUM_MODE_INT];
 | |
| 
 | |
|   /* Conversion costs are only defined between two scalar integer modes
 | |
|      of different sizes.  The first machine mode is the destination mode,
 | |
|      and the second is the source mode.  */
 | |
|   int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
 | |
| };
 | |
| 
 | |
| extern struct target_expmed default_target_expmed;
 | |
| #if SWITCHABLE_TARGET
 | |
| extern struct target_expmed *this_target_expmed;
 | |
| #else
 | |
| #define this_target_expmed (&default_target_expmed)
 | |
| #endif
 | |
| 
 | |
| /* Return a pointer to the alg_hash_entry at IDX.  */
 | |
| 
 | |
| static inline struct alg_hash_entry *
 | |
| alg_hash_entry_ptr (int idx)
 | |
| {
 | |
|   return &this_target_expmed->x_alg_hash[idx];
 | |
| }
 | |
| 
 | |
| /* Return true if the x_alg_hash field might have been used.  */
 | |
| 
 | |
| static inline bool
 | |
| alg_hash_used_p (void)
 | |
| {
 | |
|   return this_target_expmed->x_alg_hash_used_p;
 | |
| }
 | |
| 
 | |
| /* Set whether the x_alg_hash field might have been used.  */
 | |
| 
 | |
| static inline void
 | |
| set_alg_hash_used_p (bool usedp)
 | |
| {
 | |
|   this_target_expmed->x_alg_hash_used_p = usedp;
 | |
| }
 | |
| 
 | |
| /* Compute an index into the cost arrays by mode class.  */
 | |
| 
 | |
| static inline int
 | |
| expmed_mode_index (machine_mode mode)
 | |
| {
 | |
|   switch (GET_MODE_CLASS (mode))
 | |
|     {
 | |
|     case MODE_INT:
 | |
|       return mode - MIN_MODE_INT;
 | |
|     case MODE_PARTIAL_INT:
 | |
|       /* If there are no partial integer modes, help the compiler
 | |
| 	 to figure out this will never happen.  See PR59934.  */
 | |
|       if (MIN_MODE_PARTIAL_INT != VOIDmode)
 | |
| 	return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
 | |
|       break;
 | |
|     case MODE_VECTOR_INT:
 | |
|       /* If there are no vector integer modes, help the compiler
 | |
| 	 to figure out this will never happen.  See PR59934.  */
 | |
|       if (MIN_MODE_VECTOR_INT != VOIDmode)
 | |
| 	return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   gcc_unreachable ();
 | |
| }
 | |
| 
 | |
| /* Return a pointer to a boolean contained in EOC indicating whether
 | |
|    a particular operation performed in MODE is cheap when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline bool *
 | |
| expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
 | |
| 		     machine_mode mode)
 | |
| {
 | |
|   int idx = expmed_mode_index (mode);
 | |
|   return &eoc->cheap[speed][idx];
 | |
| }
 | |
| 
 | |
| /* Return a pointer to a cost contained in COSTS when a particular
 | |
|    operation is performed in MODE when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int *
 | |
| expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
 | |
| 		    machine_mode mode)
 | |
| {
 | |
|   int idx = expmed_mode_index (mode);
 | |
|   return &costs->cost[speed][idx];
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}sdiv_pow2_cheap.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline bool *
 | |
| sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
 | |
| 			      speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set whether a signed division by a power of 2 is cheap in MODE
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
 | |
| {
 | |
|   *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
 | |
| }
 | |
| 
 | |
| /* Return whether a signed division by a power of 2 is cheap in MODE
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline bool
 | |
| sdiv_pow2_cheap (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *sdiv_pow2_cheap_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}smod_pow2_cheap.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline bool *
 | |
| smod_pow2_cheap_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
 | |
| 			      speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
 | |
| {
 | |
|   *smod_pow2_cheap_ptr (speed, mode) = cheap;
 | |
| }
 | |
| 
 | |
| /* Return whether a signed modulo by a power of 2 is cheap in MODE
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline bool
 | |
| smod_pow2_cheap (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *smod_pow2_cheap_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}zero_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| zero_cost_ptr (bool speed)
 | |
| {
 | |
|   return &this_target_expmed->x_zero_cost[speed];
 | |
| }
 | |
| 
 | |
| /* Set the COST of loading zero when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_zero_cost (bool speed, int cost)
 | |
| {
 | |
|   *zero_cost_ptr (speed) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the COST of loading zero when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| zero_cost (bool speed)
 | |
| {
 | |
|   return *zero_cost_ptr (speed);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}add_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| add_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of computing an add in MODE when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_add_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *add_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of computing an add in MODE when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| add_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *add_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}neg_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| neg_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of computing a negation in MODE when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_neg_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *neg_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of computing a negation in MODE when optimizing for
 | |
|    SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| neg_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *neg_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}shift_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| shift_cost_ptr (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
 | |
| 			     speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
 | |
| {
 | |
|   *shift_cost_ptr (speed, mode, bits) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing a shift in MODE by BITS when optimizing for
 | |
|    SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| shift_cost (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return *shift_cost_ptr (speed, mode, bits);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}shiftadd_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
 | |
| 			     speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing a shift in MODE by BITS followed by an add when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
 | |
| {
 | |
|   *shiftadd_cost_ptr (speed, mode, bits) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing a shift in MODE by BITS followed by an add
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| shiftadd_cost (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return *shiftadd_cost_ptr (speed, mode, bits);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}shiftsub0_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
 | |
| 			     speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing a shift in MODE by BITS and then subtracting a
 | |
|    value when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
 | |
| {
 | |
|   *shiftsub0_cost_ptr (speed, mode, bits) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing a shift in MODE by BITS and then subtracting
 | |
|    a value when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| shiftsub0_cost (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return *shiftsub0_cost_ptr (speed, mode, bits);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}shiftsub1_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
 | |
| 			     speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of subtracting a shift in MODE by BITS from a value when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
 | |
| {
 | |
|   *shiftsub1_cost_ptr (speed, mode, bits) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of subtracting a shift in MODE by BITS from a value
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| shiftsub1_cost (bool speed, machine_mode mode, int bits)
 | |
| {
 | |
|   return *shiftsub1_cost_ptr (speed, mode, bits);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}mul_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| mul_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing a multiplication in MODE when optimizing for
 | |
|    SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_mul_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *mul_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing a multiplication in MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| mul_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *mul_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}sdiv_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| sdiv_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing a signed division in MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_sdiv_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *sdiv_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing a signed division in MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| sdiv_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *sdiv_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}udiv_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| udiv_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
 | |
| }
 | |
| 
 | |
| /* Set the COST of doing an unsigned division in MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_udiv_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *udiv_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost of doing an unsigned division in MODE when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| udiv_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *udiv_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}mul_widen_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| mul_widen_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
 | |
| 
 | |
|   return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
 | |
| }
 | |
| 
 | |
| /* Set the COST for computing a widening multiplication in MODE when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_mul_widen_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *mul_widen_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost for computing a widening multiplication in MODE when
 | |
|    optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| mul_widen_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *mul_widen_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}mul_highpart_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| mul_highpart_cost_ptr (bool speed, machine_mode mode)
 | |
| {
 | |
|   gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
 | |
|   int m = mode - MIN_MODE_INT;
 | |
|   gcc_assert (m < NUM_MODE_INT);
 | |
| 
 | |
|   return &this_target_expmed->x_mul_highpart_cost[speed][m];
 | |
| }
 | |
| 
 | |
| /* Set the COST for computing the high part of a multiplication in MODE
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
 | |
| {
 | |
|   *mul_highpart_cost_ptr (speed, mode) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost for computing the high part of a multiplication in MODE
 | |
|    when optimizing for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| mul_highpart_cost (bool speed, machine_mode mode)
 | |
| {
 | |
|   return *mul_highpart_cost_ptr (speed, mode);
 | |
| }
 | |
| 
 | |
| /* Subroutine of {set_,}convert_cost.  Not to be used otherwise.  */
 | |
| 
 | |
| static inline int *
 | |
| convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
 | |
| 		  bool speed)
 | |
| {
 | |
|   int to_idx = expmed_mode_index (to_mode);
 | |
|   int from_idx = expmed_mode_index (from_mode);
 | |
| 
 | |
|   gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
 | |
|   gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
 | |
| 
 | |
|   return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
 | |
| }
 | |
| 
 | |
| /* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline void
 | |
| set_convert_cost (machine_mode to_mode, machine_mode from_mode,
 | |
| 		  bool speed, int cost)
 | |
| {
 | |
|   *convert_cost_ptr (to_mode, from_mode, speed) = cost;
 | |
| }
 | |
| 
 | |
| /* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
 | |
|    for SPEED.  */
 | |
| 
 | |
| static inline int
 | |
| convert_cost (machine_mode to_mode, machine_mode from_mode,
 | |
| 	      bool speed)
 | |
| {
 | |
|   return *convert_cost_ptr (to_mode, from_mode, speed);
 | |
| }
 | |
| 
 | |
| extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
 | |
| extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
 | |
| 			machine_mode mode, machine_mode compare_mode,
 | |
| 			int unsignedp, rtx x, rtx y, int normalizep,
 | |
| 			machine_mode target_mode);
 | |
| 
 | |
| /* Arguments MODE, RTX: return an rtx for the negation of that value.
 | |
|    May emit insns.  */
 | |
| extern rtx negate_rtx (machine_mode, rtx);
 | |
| 
 | |
| /* Arguments MODE, RTX: return an rtx for the flipping of that value.
 | |
|    May emit insns.  */
 | |
| extern rtx flip_storage_order (machine_mode, rtx);
 | |
| 
 | |
| /* Expand a logical AND operation.  */
 | |
| extern rtx expand_and (machine_mode, rtx, rtx, rtx);
 | |
| 
 | |
| /* Emit a store-flag operation.  */
 | |
| extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
 | |
| 			    int, int);
 | |
| 
 | |
| /* Like emit_store_flag, but always succeeds.  */
 | |
| extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
 | |
| 				  machine_mode, int, int);
 | |
| 
 | |
| extern void canonicalize_comparison (machine_mode, enum rtx_code *, rtx *);
 | |
| 
 | |
| /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
 | |
|    replace division by D, and put the least significant N bits of the result
 | |
|    in *MULTIPLIER_PTR and return the most significant bit.  */
 | |
| extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
 | |
| 						 int, unsigned HOST_WIDE_INT *,
 | |
| 						 int *, int *);
 | |
| 
 | |
| #ifdef TREE_CODE
 | |
| extern rtx expand_variable_shift (enum tree_code, machine_mode,
 | |
| 				  rtx, tree, rtx, int);
 | |
| extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
 | |
| 			 int);
 | |
| extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
 | |
| 			  rtx, int);
 | |
| #endif
 | |
| 
 | |
| extern void store_bit_field (rtx, poly_uint64, poly_uint64,
 | |
| 			     poly_uint64, poly_uint64,
 | |
| 			     machine_mode, rtx, bool);
 | |
| extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
 | |
| 			      machine_mode, machine_mode, bool, rtx *);
 | |
| extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
 | |
| extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
 | |
| extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
 | |
| 					rtx, int);
 | |
| 
 | |
| #endif  // EXPMED_H
 |