mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			364 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2015 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// backtrack is a regular expression search with submatch
 | 
						|
// tracking for small regular expressions and texts. It allocates
 | 
						|
// a bit vector with (length of input) * (length of prog) bits,
 | 
						|
// to make sure it never explores the same (character position, instruction)
 | 
						|
// state multiple times. This limits the search to run in time linear in
 | 
						|
// the length of the test.
 | 
						|
//
 | 
						|
// backtrack is a fast replacement for the NFA code on small
 | 
						|
// regexps when onepass cannot be used.
 | 
						|
 | 
						|
package regexp
 | 
						|
 | 
						|
import "regexp/syntax"
 | 
						|
 | 
						|
// A job is an entry on the backtracker's job stack. It holds
 | 
						|
// the instruction pc and the position in the input.
 | 
						|
type job struct {
 | 
						|
	pc  uint32
 | 
						|
	arg int
 | 
						|
	pos int
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	visitedBits        = 32
 | 
						|
	maxBacktrackProg   = 500        // len(prog.Inst) <= max
 | 
						|
	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
 | 
						|
)
 | 
						|
 | 
						|
// bitState holds state for the backtracker.
 | 
						|
type bitState struct {
 | 
						|
	prog *syntax.Prog
 | 
						|
 | 
						|
	end     int
 | 
						|
	cap     []int
 | 
						|
	jobs    []job
 | 
						|
	visited []uint32
 | 
						|
}
 | 
						|
 | 
						|
var notBacktrack *bitState = nil
 | 
						|
 | 
						|
// maxBitStateLen returns the maximum length of a string to search with
 | 
						|
// the backtracker using prog.
 | 
						|
func maxBitStateLen(prog *syntax.Prog) int {
 | 
						|
	if !shouldBacktrack(prog) {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	return maxBacktrackVector / len(prog.Inst)
 | 
						|
}
 | 
						|
 | 
						|
// newBitState returns a new bitState for the given prog,
 | 
						|
// or notBacktrack if the size of the prog exceeds the maximum size that
 | 
						|
// the backtracker will be run for.
 | 
						|
func newBitState(prog *syntax.Prog) *bitState {
 | 
						|
	if !shouldBacktrack(prog) {
 | 
						|
		return notBacktrack
 | 
						|
	}
 | 
						|
	return &bitState{
 | 
						|
		prog: prog,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// shouldBacktrack reports whether the program is too
 | 
						|
// long for the backtracker to run.
 | 
						|
func shouldBacktrack(prog *syntax.Prog) bool {
 | 
						|
	return len(prog.Inst) <= maxBacktrackProg
 | 
						|
}
 | 
						|
 | 
						|
// reset resets the state of the backtracker.
 | 
						|
// end is the end position in the input.
 | 
						|
// ncap is the number of captures.
 | 
						|
func (b *bitState) reset(end int, ncap int) {
 | 
						|
	b.end = end
 | 
						|
 | 
						|
	if cap(b.jobs) == 0 {
 | 
						|
		b.jobs = make([]job, 0, 256)
 | 
						|
	} else {
 | 
						|
		b.jobs = b.jobs[:0]
 | 
						|
	}
 | 
						|
 | 
						|
	visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
 | 
						|
	if cap(b.visited) < visitedSize {
 | 
						|
		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
 | 
						|
	} else {
 | 
						|
		b.visited = b.visited[:visitedSize]
 | 
						|
		for i := range b.visited {
 | 
						|
			b.visited[i] = 0
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if cap(b.cap) < ncap {
 | 
						|
		b.cap = make([]int, ncap)
 | 
						|
	} else {
 | 
						|
		b.cap = b.cap[:ncap]
 | 
						|
	}
 | 
						|
	for i := range b.cap {
 | 
						|
		b.cap[i] = -1
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// shouldVisit reports whether the combination of (pc, pos) has not
 | 
						|
// been visited yet.
 | 
						|
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
 | 
						|
	n := uint(int(pc)*(b.end+1) + pos)
 | 
						|
	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// push pushes (pc, pos, arg) onto the job stack if it should be
 | 
						|
// visited.
 | 
						|
func (b *bitState) push(pc uint32, pos int, arg int) {
 | 
						|
	if b.prog.Inst[pc].Op == syntax.InstFail {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Only check shouldVisit when arg == 0.
 | 
						|
	// When arg > 0, we are continuing a previous visit.
 | 
						|
	if arg == 0 && !b.shouldVisit(pc, pos) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
 | 
						|
}
 | 
						|
 | 
						|
// tryBacktrack runs a backtracking search starting at pos.
 | 
						|
func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
 | 
						|
	longest := m.re.longest
 | 
						|
	m.matched = false
 | 
						|
 | 
						|
	b.push(pc, pos, 0)
 | 
						|
	for len(b.jobs) > 0 {
 | 
						|
		l := len(b.jobs) - 1
 | 
						|
		// Pop job off the stack.
 | 
						|
		pc := b.jobs[l].pc
 | 
						|
		pos := b.jobs[l].pos
 | 
						|
		arg := b.jobs[l].arg
 | 
						|
		b.jobs = b.jobs[:l]
 | 
						|
 | 
						|
		// Optimization: rather than push and pop,
 | 
						|
		// code that is going to Push and continue
 | 
						|
		// the loop simply updates ip, p, and arg
 | 
						|
		// and jumps to CheckAndLoop. We have to
 | 
						|
		// do the ShouldVisit check that Push
 | 
						|
		// would have, but we avoid the stack
 | 
						|
		// manipulation.
 | 
						|
		goto Skip
 | 
						|
	CheckAndLoop:
 | 
						|
		if !b.shouldVisit(pc, pos) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
	Skip:
 | 
						|
 | 
						|
		inst := b.prog.Inst[pc]
 | 
						|
 | 
						|
		switch inst.Op {
 | 
						|
		default:
 | 
						|
			panic("bad inst")
 | 
						|
		case syntax.InstFail:
 | 
						|
			panic("unexpected InstFail")
 | 
						|
		case syntax.InstAlt:
 | 
						|
			// Cannot just
 | 
						|
			//   b.push(inst.Out, pos, 0)
 | 
						|
			//   b.push(inst.Arg, pos, 0)
 | 
						|
			// If during the processing of inst.Out, we encounter
 | 
						|
			// inst.Arg via another path, we want to process it then.
 | 
						|
			// Pushing it here will inhibit that. Instead, re-push
 | 
						|
			// inst with arg==1 as a reminder to push inst.Arg out
 | 
						|
			// later.
 | 
						|
			switch arg {
 | 
						|
			case 0:
 | 
						|
				b.push(pc, pos, 1)
 | 
						|
				pc = inst.Out
 | 
						|
				goto CheckAndLoop
 | 
						|
			case 1:
 | 
						|
				// Finished inst.Out; try inst.Arg.
 | 
						|
				arg = 0
 | 
						|
				pc = inst.Arg
 | 
						|
				goto CheckAndLoop
 | 
						|
			}
 | 
						|
			panic("bad arg in InstAlt")
 | 
						|
 | 
						|
		case syntax.InstAltMatch:
 | 
						|
			// One opcode consumes runes; the other leads to match.
 | 
						|
			switch b.prog.Inst[inst.Out].Op {
 | 
						|
			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
 | 
						|
				// inst.Arg is the match.
 | 
						|
				b.push(inst.Arg, pos, 0)
 | 
						|
				pc = inst.Arg
 | 
						|
				pos = b.end
 | 
						|
				goto CheckAndLoop
 | 
						|
			}
 | 
						|
			// inst.Out is the match - non-greedy
 | 
						|
			b.push(inst.Out, b.end, 0)
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstRune:
 | 
						|
			r, width := i.step(pos)
 | 
						|
			if !inst.MatchRune(r) {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			pos += width
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstRune1:
 | 
						|
			r, width := i.step(pos)
 | 
						|
			if r != inst.Rune[0] {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			pos += width
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstRuneAnyNotNL:
 | 
						|
			r, width := i.step(pos)
 | 
						|
			if r == '\n' || r == endOfText {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			pos += width
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstRuneAny:
 | 
						|
			r, width := i.step(pos)
 | 
						|
			if r == endOfText {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			pos += width
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstCapture:
 | 
						|
			switch arg {
 | 
						|
			case 0:
 | 
						|
				if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
 | 
						|
					// Capture pos to register, but save old value.
 | 
						|
					b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
 | 
						|
					b.cap[inst.Arg] = pos
 | 
						|
				}
 | 
						|
				pc = inst.Out
 | 
						|
				goto CheckAndLoop
 | 
						|
			case 1:
 | 
						|
				// Finished inst.Out; restore the old value.
 | 
						|
				b.cap[inst.Arg] = pos
 | 
						|
				continue
 | 
						|
 | 
						|
			}
 | 
						|
			panic("bad arg in InstCapture")
 | 
						|
 | 
						|
		case syntax.InstEmptyWidth:
 | 
						|
			if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstNop:
 | 
						|
			pc = inst.Out
 | 
						|
			goto CheckAndLoop
 | 
						|
 | 
						|
		case syntax.InstMatch:
 | 
						|
			// We found a match. If the caller doesn't care
 | 
						|
			// where the match is, no point going further.
 | 
						|
			if len(b.cap) == 0 {
 | 
						|
				m.matched = true
 | 
						|
				return m.matched
 | 
						|
			}
 | 
						|
 | 
						|
			// Record best match so far.
 | 
						|
			// Only need to check end point, because this entire
 | 
						|
			// call is only considering one start position.
 | 
						|
			if len(b.cap) > 1 {
 | 
						|
				b.cap[1] = pos
 | 
						|
			}
 | 
						|
			if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
 | 
						|
				copy(m.matchcap, b.cap)
 | 
						|
			}
 | 
						|
			m.matched = true
 | 
						|
 | 
						|
			// If going for first match, we're done.
 | 
						|
			if !longest {
 | 
						|
				return m.matched
 | 
						|
			}
 | 
						|
 | 
						|
			// If we used the entire text, no longer match is possible.
 | 
						|
			if pos == b.end {
 | 
						|
				return m.matched
 | 
						|
			}
 | 
						|
 | 
						|
			// Otherwise, continue on in hope of a longer match.
 | 
						|
			continue
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return m.matched
 | 
						|
}
 | 
						|
 | 
						|
// backtrack runs a backtracking search of prog on the input starting at pos.
 | 
						|
func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
 | 
						|
	if !i.canCheckPrefix() {
 | 
						|
		panic("backtrack called for a RuneReader")
 | 
						|
	}
 | 
						|
 | 
						|
	startCond := m.re.cond
 | 
						|
	if startCond == ^syntax.EmptyOp(0) { // impossible
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
 | 
						|
		// Anchored match, past beginning of text.
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	b := m.b
 | 
						|
	b.reset(end, ncap)
 | 
						|
 | 
						|
	m.matchcap = m.matchcap[:ncap]
 | 
						|
	for i := range m.matchcap {
 | 
						|
		m.matchcap[i] = -1
 | 
						|
	}
 | 
						|
 | 
						|
	// Anchored search must start at the beginning of the input
 | 
						|
	if startCond&syntax.EmptyBeginText != 0 {
 | 
						|
		if len(b.cap) > 0 {
 | 
						|
			b.cap[0] = pos
 | 
						|
		}
 | 
						|
		return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
 | 
						|
	}
 | 
						|
 | 
						|
	// Unanchored search, starting from each possible text position.
 | 
						|
	// Notice that we have to try the empty string at the end of
 | 
						|
	// the text, so the loop condition is pos <= end, not pos < end.
 | 
						|
	// This looks like it's quadratic in the size of the text,
 | 
						|
	// but we are not clearing visited between calls to TrySearch,
 | 
						|
	// so no work is duplicated and it ends up still being linear.
 | 
						|
	width := -1
 | 
						|
	for ; pos <= end && width != 0; pos += width {
 | 
						|
		if len(m.re.prefix) > 0 {
 | 
						|
			// Match requires literal prefix; fast search for it.
 | 
						|
			advance := i.index(m.re, pos)
 | 
						|
			if advance < 0 {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
			pos += advance
 | 
						|
		}
 | 
						|
 | 
						|
		if len(b.cap) > 0 {
 | 
						|
			b.cap[0] = pos
 | 
						|
		}
 | 
						|
		if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
 | 
						|
			// Match must be leftmost; done.
 | 
						|
			return true
 | 
						|
		}
 | 
						|
		_, width = i.step(pos)
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 |