mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2910 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2910 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
| // defineclass.cc - defining a class from .class format.
 | |
| 
 | |
| /* Copyright (C) 2001  Free Software Foundation
 | |
| 
 | |
|    This file is part of libgcj.
 | |
| 
 | |
| This software is copyrighted work licensed under the terms of the
 | |
| Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
 | |
| details.  */
 | |
| 
 | |
| // Written by Tom Tromey <tromey@redhat.com>
 | |
| 
 | |
| // Define VERIFY_DEBUG to enable debugging output.
 | |
| 
 | |
| #include <config.h>
 | |
| 
 | |
| #include <jvm.h>
 | |
| #include <gcj/cni.h>
 | |
| #include <java-insns.h>
 | |
| #include <java-interp.h>
 | |
| 
 | |
| #ifdef INTERPRETER
 | |
| 
 | |
| #include <java/lang/Class.h>
 | |
| #include <java/lang/VerifyError.h>
 | |
| #include <java/lang/Throwable.h>
 | |
| #include <java/lang/reflect/Modifier.h>
 | |
| #include <java/lang/StringBuffer.h>
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
| #include <stdio.h>
 | |
| #endif /* VERIFY_DEBUG */
 | |
| 
 | |
| // TO DO
 | |
| // * read more about when classes must be loaded
 | |
| // * class loader madness
 | |
| // * Lots and lots of debugging and testing
 | |
| // * type representation is still ugly.  look for the big switches
 | |
| // * at least one GC problem :-(
 | |
| 
 | |
| 
 | |
| // This is global because __attribute__ doesn't seem to work on static
 | |
| // methods.
 | |
| static void verify_fail (char *msg, jint pc = -1)
 | |
|   __attribute__ ((__noreturn__));
 | |
| 
 | |
| static void debug_print (const char *fmt, ...)
 | |
|   __attribute__ ((format (printf, 1, 2)));
 | |
| 
 | |
| static inline void
 | |
| debug_print (const char *fmt, ...)
 | |
| {
 | |
| #ifdef VERIFY_DEBUG
 | |
|   va_list ap;
 | |
|   va_start (ap, fmt);
 | |
|   vfprintf (stderr, fmt, ap);
 | |
|   va_end (ap);
 | |
| #endif /* VERIFY_DEBUG */
 | |
| }
 | |
| 
 | |
| class _Jv_BytecodeVerifier
 | |
| {
 | |
| private:
 | |
| 
 | |
|   static const int FLAG_INSN_START = 1;
 | |
|   static const int FLAG_BRANCH_TARGET = 2;
 | |
| 
 | |
|   struct state;
 | |
|   struct type;
 | |
|   struct subr_info;
 | |
|   struct linked_utf8;
 | |
| 
 | |
|   // The current PC.
 | |
|   int PC;
 | |
|   // The PC corresponding to the start of the current instruction.
 | |
|   int start_PC;
 | |
| 
 | |
|   // The current state of the stack, locals, etc.
 | |
|   state *current_state;
 | |
| 
 | |
|   // We store the state at branch targets, for merging.  This holds
 | |
|   // such states.
 | |
|   state **states;
 | |
| 
 | |
|   // We keep a linked list of all the PCs which we must reverify.
 | |
|   // The link is done using the PC values.  This is the head of the
 | |
|   // list.
 | |
|   int next_verify_pc;
 | |
| 
 | |
|   // We keep some flags for each instruction.  The values are the
 | |
|   // FLAG_* constants defined above.
 | |
|   char *flags;
 | |
| 
 | |
|   // We need to keep track of which instructions can call a given
 | |
|   // subroutine.  FIXME: this is inefficient.  We keep a linked list
 | |
|   // of all calling `jsr's at at each jsr target.
 | |
|   subr_info **jsr_ptrs;
 | |
| 
 | |
|   // The current top of the stack, in terms of slots.
 | |
|   int stacktop;
 | |
|   // The current depth of the stack.  This will be larger than
 | |
|   // STACKTOP when wide types are on the stack.
 | |
|   int stackdepth;
 | |
| 
 | |
|   // The bytecode itself.
 | |
|   unsigned char *bytecode;
 | |
|   // The exceptions.
 | |
|   _Jv_InterpException *exception;
 | |
| 
 | |
|   // Defining class.
 | |
|   jclass current_class;
 | |
|   // This method.
 | |
|   _Jv_InterpMethod *current_method;
 | |
| 
 | |
|   // A linked list of utf8 objects we allocate.  This is really ugly,
 | |
|   // but without this our utf8 objects would be collected.
 | |
|   linked_utf8 *utf8_list;
 | |
| 
 | |
|   struct linked_utf8
 | |
|   {
 | |
|     _Jv_Utf8Const *val;
 | |
|     linked_utf8 *next;
 | |
|   };
 | |
| 
 | |
|   _Jv_Utf8Const *make_utf8_const (char *s, int len)
 | |
|   {
 | |
|     _Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len);
 | |
|     _Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const)
 | |
| 						     + val->length
 | |
| 						     + 1);
 | |
|     r->length = val->length;
 | |
|     r->hash = val->hash;
 | |
|     memcpy (r->data, val->data, val->length + 1);
 | |
| 
 | |
|     linked_utf8 *lu = (linked_utf8 *) _Jv_Malloc (sizeof (linked_utf8));
 | |
|     lu->val = r;
 | |
|     lu->next = utf8_list;
 | |
|     utf8_list = lu;
 | |
| 
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   // This enum holds a list of tags for all the different types we
 | |
|   // need to handle.  Reference types are treated specially by the
 | |
|   // type class.
 | |
|   enum type_val
 | |
|   {
 | |
|     void_type,
 | |
| 
 | |
|     // The values for primitive types are chosen to correspond to values
 | |
|     // specified to newarray.
 | |
|     boolean_type = 4,
 | |
|     char_type = 5,
 | |
|     float_type = 6,
 | |
|     double_type = 7,
 | |
|     byte_type = 8,
 | |
|     short_type = 9,
 | |
|     int_type = 10,
 | |
|     long_type = 11,
 | |
| 
 | |
|     // Used when overwriting second word of a double or long in the
 | |
|     // local variables.  Also used after merging local variable states
 | |
|     // to indicate an unusable value.
 | |
|     unsuitable_type,
 | |
|     return_address_type,
 | |
|     continuation_type,
 | |
| 
 | |
|     // There is an obscure special case which requires us to note when
 | |
|     // a local variable has not been used by a subroutine.  See
 | |
|     // push_jump_merge for more information.
 | |
|     unused_by_subroutine_type,
 | |
| 
 | |
|     // Everything after `reference_type' must be a reference type.
 | |
|     reference_type,
 | |
|     null_type,
 | |
|     unresolved_reference_type,
 | |
|     uninitialized_reference_type,
 | |
|     uninitialized_unresolved_reference_type
 | |
|   };
 | |
| 
 | |
|   // Return the type_val corresponding to a primitive signature
 | |
|   // character.  For instance `I' returns `int.class'.
 | |
|   static type_val get_type_val_for_signature (jchar sig)
 | |
|   {
 | |
|     type_val rt;
 | |
|     switch (sig)
 | |
|       {
 | |
|       case 'Z':
 | |
| 	rt = boolean_type;
 | |
| 	break;
 | |
|       case 'B':
 | |
| 	rt = byte_type;
 | |
| 	break;
 | |
|       case 'C':
 | |
| 	rt = char_type;
 | |
| 	break;
 | |
|       case 'S':
 | |
| 	rt = short_type;
 | |
| 	break;
 | |
|       case 'I':
 | |
| 	rt = int_type;
 | |
| 	break;
 | |
|       case 'J':
 | |
| 	rt = long_type;
 | |
| 	break;
 | |
|       case 'F':
 | |
| 	rt = float_type;
 | |
| 	break;
 | |
|       case 'D':
 | |
| 	rt = double_type;
 | |
| 	break;
 | |
|       case 'V':
 | |
| 	rt = void_type;
 | |
| 	break;
 | |
|       default:
 | |
| 	verify_fail ("invalid signature");
 | |
|       }
 | |
|     return rt;
 | |
|   }
 | |
| 
 | |
|   // Return the type_val corresponding to a primitive class.
 | |
|   static type_val get_type_val_for_signature (jclass k)
 | |
|   {
 | |
|     return get_type_val_for_signature ((jchar) k->method_count);
 | |
|   }
 | |
| 
 | |
|   // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
 | |
|   // TARGET haven't been prepared.
 | |
|   static bool is_assignable_from_slow (jclass target, jclass source)
 | |
|   {
 | |
|     // This will terminate when SOURCE==Object.
 | |
|     while (true)
 | |
|       {
 | |
| 	if (source == target)
 | |
| 	  return true;
 | |
| 
 | |
| 	if (target->isPrimitive () || source->isPrimitive ())
 | |
| 	  return false;
 | |
| 
 | |
| 	// Check array case first because we can have an array whose
 | |
| 	// component type is not prepared; _Jv_IsAssignableFrom
 | |
| 	// doesn't handle this correctly.
 | |
| 	if (target->isArray ())
 | |
| 	  {
 | |
| 	    if (! source->isArray ())
 | |
| 	      return false;
 | |
| 	    target = target->getComponentType ();
 | |
| 	    source = source->getComponentType ();
 | |
| 	  }
 | |
| 	// _Jv_IsAssignableFrom can handle a target which is an
 | |
| 	// interface even if it hasn't been prepared.
 | |
| 	else if ((target->state > JV_STATE_LINKED || target->isInterface ())
 | |
| 		 && source->state > JV_STATE_LINKED)
 | |
| 	  return _Jv_IsAssignableFrom (target, source);
 | |
| 	else if (target->isInterface ())
 | |
| 	  {
 | |
| 	    for (int i = 0; i < source->interface_count; ++i)
 | |
| 	      {
 | |
| 		// We use a recursive call because we also need to
 | |
| 		// check superinterfaces.
 | |
| 		if (is_assignable_from_slow (target, source->interfaces[i]))
 | |
| 		    return true;
 | |
| 	      }
 | |
| 	    return false;
 | |
| 	  }
 | |
| 	else if (target == &java::lang::Object::class$)
 | |
| 	  return true;
 | |
| 	else if (source->isInterface ()
 | |
| 		 || source == &java::lang::Object::class$)
 | |
| 	  return false;
 | |
| 	else
 | |
| 	  source = source->getSuperclass ();
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // This is used to keep track of which `jsr's correspond to a given
 | |
|   // jsr target.
 | |
|   struct subr_info
 | |
|   {
 | |
|     // PC of the instruction just after the jsr.
 | |
|     int pc;
 | |
|     // Link.
 | |
|     subr_info *next;
 | |
|   };
 | |
| 
 | |
|   // The `type' class is used to represent a single type in the
 | |
|   // verifier.
 | |
|   struct type
 | |
|   {
 | |
|     // The type.
 | |
|     type_val key;
 | |
|     // Some associated data.
 | |
|     union
 | |
|     {
 | |
|       // For a resolved reference type, this is a pointer to the class.
 | |
|       jclass klass;
 | |
|       // For other reference types, this it the name of the class.
 | |
|       _Jv_Utf8Const *name;
 | |
|     } data;
 | |
|     // This is used when constructing a new object.  It is the PC of the
 | |
|     // `new' instruction which created the object.  We use the special
 | |
|     // value -2 to mean that this is uninitialized, and the special
 | |
|     // value -1 for the case where the current method is itself the
 | |
|     // <init> method.
 | |
|     int pc;
 | |
| 
 | |
|     static const int UNINIT = -2;
 | |
|     static const int SELF = -1;
 | |
| 
 | |
|     // Basic constructor.
 | |
|     type ()
 | |
|     {
 | |
|       key = unsuitable_type;
 | |
|       data.klass = NULL;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given the type tag.  We assume a generic
 | |
|     // `reference_type' means Object.
 | |
|     type (type_val k)
 | |
|     {
 | |
|       key = k;
 | |
|       data.klass = NULL;
 | |
|       if (key == reference_type)
 | |
| 	data.klass = &java::lang::Object::class$;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given a class.
 | |
|     type (jclass klass)
 | |
|     {
 | |
|       key = reference_type;
 | |
|       data.klass = klass;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given the name of a class.
 | |
|     type (_Jv_Utf8Const *n)
 | |
|     {
 | |
|       key = unresolved_reference_type;
 | |
|       data.name = n;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Copy constructor.
 | |
|     type (const type &t)
 | |
|     {
 | |
|       key = t.key;
 | |
|       data = t.data;
 | |
|       pc = t.pc;
 | |
|     }
 | |
| 
 | |
|     // These operators are required because libgcj can't link in
 | |
|     // -lstdc++.
 | |
|     void *operator new[] (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete[] (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     type& operator= (type_val k)
 | |
|     {
 | |
|       key = k;
 | |
|       data.klass = NULL;
 | |
|       pc = UNINIT;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     type& operator= (const type& t)
 | |
|     {
 | |
|       key = t.key;
 | |
|       data = t.data;
 | |
|       pc = t.pc;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Promote a numeric type.
 | |
|     type &promote ()
 | |
|     {
 | |
|       if (key == boolean_type || key == char_type
 | |
| 	  || key == byte_type || key == short_type)
 | |
| 	key = int_type;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // If *THIS is an unresolved reference type, resolve it.
 | |
|     void resolve ()
 | |
|     {
 | |
|       if (key != unresolved_reference_type
 | |
| 	  && key != uninitialized_unresolved_reference_type)
 | |
| 	return;
 | |
| 
 | |
|       // FIXME: class loader
 | |
|       using namespace java::lang;
 | |
|       // We might see either kind of name.  Sigh.
 | |
|       if (data.name->data[0] == 'L'
 | |
| 	  && data.name->data[data.name->length - 1] == ';')
 | |
| 	data.klass = _Jv_FindClassFromSignature (data.name->data, NULL);
 | |
|       else
 | |
| 	data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
 | |
| 				     false, NULL);
 | |
|       key = (key == unresolved_reference_type
 | |
| 	     ? reference_type
 | |
| 	     : uninitialized_reference_type);
 | |
|     }
 | |
| 
 | |
|     // Mark this type as the uninitialized result of `new'.
 | |
|     void set_uninitialized (int npc)
 | |
|     {
 | |
|       if (key == reference_type)
 | |
| 	key = uninitialized_reference_type;
 | |
|       else if (key == unresolved_reference_type)
 | |
| 	key = uninitialized_unresolved_reference_type;
 | |
|       else
 | |
| 	verify_fail ("internal error in type::uninitialized");
 | |
|       pc = npc;
 | |
|     }
 | |
| 
 | |
|     // Mark this type as now initialized.
 | |
|     void set_initialized (int npc)
 | |
|     {
 | |
|       if (npc != UNINIT && pc == npc
 | |
| 	  && (key == uninitialized_reference_type
 | |
| 	      || key == uninitialized_unresolved_reference_type))
 | |
| 	{
 | |
| 	  key = (key == uninitialized_reference_type
 | |
| 		 ? reference_type
 | |
| 		 : unresolved_reference_type);
 | |
| 	  pc = UNINIT;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Return true if an object of type K can be assigned to a variable
 | |
|     // of type *THIS.  Handle various special cases too.  Might modify
 | |
|     // *THIS or K.  Note however that this does not perform numeric
 | |
|     // promotion.
 | |
|     bool compatible (type &k)
 | |
|     {
 | |
|       // Any type is compatible with the unsuitable type.
 | |
|       if (key == unsuitable_type)
 | |
| 	return true;
 | |
| 
 | |
|       if (key < reference_type || k.key < reference_type)
 | |
| 	return key == k.key;
 | |
| 
 | |
|       // The `null' type is convertible to any reference type.
 | |
|       // FIXME: is this correct for THIS?
 | |
|       if (key == null_type || k.key == null_type)
 | |
| 	return true;
 | |
| 
 | |
|       // Any reference type is convertible to Object.  This is a special
 | |
|       // case so we don't need to unnecessarily resolve a class.
 | |
|       if (key == reference_type
 | |
| 	  && data.klass == &java::lang::Object::class$)
 | |
| 	return true;
 | |
| 
 | |
|       // An initialized type and an uninitialized type are not
 | |
|       // compatible.
 | |
|       if (isinitialized () != k.isinitialized ())
 | |
| 	return false;
 | |
| 
 | |
|       // Two uninitialized objects are compatible if either:
 | |
|       // * The PCs are identical, or
 | |
|       // * One PC is UNINIT.
 | |
|       if (! isinitialized ())
 | |
| 	{
 | |
| 	  if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
 | |
| 	    return false;
 | |
| 	}
 | |
| 
 | |
|       // Two unresolved types are equal if their names are the same.
 | |
|       if (! isresolved ()
 | |
| 	  && ! k.isresolved ()
 | |
| 	  && _Jv_equalUtf8Consts (data.name, k.data.name))
 | |
| 	return true;
 | |
| 
 | |
|       // We must resolve both types and check assignability.
 | |
|       resolve ();
 | |
|       k.resolve ();
 | |
|       return is_assignable_from_slow (data.klass, k.data.klass);
 | |
|     }
 | |
| 
 | |
|     bool isvoid () const
 | |
|     {
 | |
|       return key == void_type;
 | |
|     }
 | |
| 
 | |
|     bool iswide () const
 | |
|     {
 | |
|       return key == long_type || key == double_type;
 | |
|     }
 | |
| 
 | |
|     // Return number of stack or local variable slots taken by this
 | |
|     // type.
 | |
|     int depth () const
 | |
|     {
 | |
|       return iswide () ? 2 : 1;
 | |
|     }
 | |
| 
 | |
|     bool isarray () const
 | |
|     {
 | |
|       // We treat null_type as not an array.  This is ok based on the
 | |
|       // current uses of this method.
 | |
|       if (key == reference_type)
 | |
| 	return data.klass->isArray ();
 | |
|       else if (key == unresolved_reference_type)
 | |
| 	return data.name->data[0] == '[';
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool isinterface ()
 | |
|     {
 | |
|       resolve ();
 | |
|       if (key != reference_type)
 | |
| 	return false;
 | |
|       return data.klass->isInterface ();
 | |
|     }
 | |
| 
 | |
|     bool isabstract ()
 | |
|     {
 | |
|       resolve ();
 | |
|       if (key != reference_type)
 | |
| 	return false;
 | |
|       using namespace java::lang::reflect;
 | |
|       return Modifier::isAbstract (data.klass->getModifiers ());
 | |
|     }
 | |
| 
 | |
|     // Return the element type of an array.
 | |
|     type element_type ()
 | |
|     {
 | |
|       // FIXME: maybe should do string manipulation here.
 | |
|       resolve ();
 | |
|       if (key != reference_type)
 | |
| 	verify_fail ("programmer error in type::element_type()");
 | |
| 
 | |
|       jclass k = data.klass->getComponentType ();
 | |
|       if (k->isPrimitive ())
 | |
| 	return type (get_type_val_for_signature (k));
 | |
|       return type (k);
 | |
|     }
 | |
| 
 | |
|     // Return the array type corresponding to an initialized
 | |
|     // reference.  We could expand this to work for other kinds of
 | |
|     // types, but currently we don't need to.
 | |
|     type to_array ()
 | |
|     {
 | |
|       // Resolving isn't ideal, because it might force us to load
 | |
|       // another class, but it's easy.  FIXME?
 | |
|       if (key == unresolved_reference_type)
 | |
| 	resolve ();
 | |
| 
 | |
|       if (key == reference_type)
 | |
| 	return type (_Jv_GetArrayClass (data.klass,
 | |
| 					data.klass->getClassLoader ()));
 | |
|       else
 | |
| 	verify_fail ("internal error in type::to_array()");
 | |
|     }
 | |
| 
 | |
|     bool isreference () const
 | |
|     {
 | |
|       return key >= reference_type;
 | |
|     }
 | |
| 
 | |
|     int get_pc () const
 | |
|     {
 | |
|       return pc;
 | |
|     }
 | |
| 
 | |
|     bool isinitialized () const
 | |
|     {
 | |
|       return (key == reference_type
 | |
| 	      || key == null_type
 | |
| 	      || key == unresolved_reference_type);
 | |
|     }
 | |
| 
 | |
|     bool isresolved () const
 | |
|     {
 | |
|       return (key == reference_type
 | |
| 	      || key == null_type
 | |
| 	      || key == uninitialized_reference_type);
 | |
|     }
 | |
| 
 | |
|     void verify_dimensions (int ndims)
 | |
|     {
 | |
|       // The way this is written, we don't need to check isarray().
 | |
|       if (key == reference_type)
 | |
| 	{
 | |
| 	  jclass k = data.klass;
 | |
| 	  while (k->isArray () && ndims > 0)
 | |
| 	    {
 | |
| 	      k = k->getComponentType ();
 | |
| 	      --ndims;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  // We know KEY == unresolved_reference_type.
 | |
| 	  char *p = data.name->data;
 | |
| 	  while (*p++ == '[' && ndims-- > 0)
 | |
| 	    ;
 | |
| 	}
 | |
| 
 | |
|       if (ndims > 0)
 | |
| 	verify_fail ("array type has fewer dimensions than required");
 | |
|     }
 | |
| 
 | |
|     // Merge OLD_TYPE into this.  On error throw exception.
 | |
|     bool merge (type& old_type, bool local_semantics = false)
 | |
|     {
 | |
|       bool changed = false;
 | |
|       bool refo = old_type.isreference ();
 | |
|       bool refn = isreference ();
 | |
|       if (refo && refn)
 | |
| 	{
 | |
| 	  if (old_type.key == null_type)
 | |
| 	    ;
 | |
| 	  else if (key == null_type)
 | |
| 	    {
 | |
| 	      *this = old_type;
 | |
| 	      changed = true;
 | |
| 	    }
 | |
| 	  else if (isinitialized () != old_type.isinitialized ())
 | |
| 	    verify_fail ("merging initialized and uninitialized types");
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if (! isinitialized ())
 | |
| 		{
 | |
| 		  if (pc == UNINIT)
 | |
| 		    pc = old_type.pc;
 | |
| 		  else if (old_type.pc == UNINIT)
 | |
| 		    ;
 | |
| 		  else if (pc != old_type.pc)
 | |
| 		    verify_fail ("merging different uninitialized types");
 | |
| 		}
 | |
| 
 | |
| 	      if (! isresolved ()
 | |
| 		  && ! old_type.isresolved ()
 | |
| 		  && _Jv_equalUtf8Consts (data.name, old_type.data.name))
 | |
| 		{
 | |
| 		  // Types are identical.
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  resolve ();
 | |
| 		  old_type.resolve ();
 | |
| 
 | |
| 		  jclass k = data.klass;
 | |
| 		  jclass oldk = old_type.data.klass;
 | |
| 
 | |
| 		  int arraycount = 0;
 | |
| 		  while (k->isArray () && oldk->isArray ())
 | |
| 		    {
 | |
| 		      ++arraycount;
 | |
| 		      k = k->getComponentType ();
 | |
| 		      oldk = oldk->getComponentType ();
 | |
| 		    }
 | |
| 
 | |
| 		  // This loop will end when we hit Object.
 | |
| 		  while (true)
 | |
| 		    {
 | |
| 		      if (is_assignable_from_slow (k, oldk))
 | |
| 			break;
 | |
| 		      k = k->getSuperclass ();
 | |
| 		      changed = true;
 | |
| 		    }
 | |
| 
 | |
| 		  if (changed)
 | |
| 		    {
 | |
| 		      while (arraycount > 0)
 | |
| 			{
 | |
| 			  // FIXME: Class loader.
 | |
| 			  k = _Jv_GetArrayClass (k, NULL);
 | |
| 			  --arraycount;
 | |
| 			}
 | |
| 		      data.klass = k;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else if (refo || refn || key != old_type.key)
 | |
| 	{
 | |
| 	  if (local_semantics)
 | |
| 	    {
 | |
| 	      // If we're merging into an "unused" slot, then we
 | |
| 	      // simply accept whatever we're merging from.
 | |
| 	      if (key == unused_by_subroutine_type)
 | |
| 		{
 | |
| 		  *this = old_type;
 | |
| 		  changed = true;
 | |
| 		}
 | |
| 	      else if (old_type.key == unused_by_subroutine_type)
 | |
| 		{
 | |
| 		  // Do nothing.
 | |
| 		}
 | |
| 	      // If we already have an `unsuitable' type, then we
 | |
| 	      // don't need to change again.
 | |
| 	      else if (key != unsuitable_type)
 | |
| 		{
 | |
| 		  key = unsuitable_type;
 | |
| 		  changed = true;
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    verify_fail ("unmergeable type");
 | |
| 	}
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|     void print (void) const
 | |
|     {
 | |
|       char c = '?';
 | |
|       switch (key)
 | |
| 	{
 | |
| 	case boolean_type: c = 'Z'; break;
 | |
| 	case byte_type: c = 'B'; break;
 | |
| 	case char_type: c = 'C'; break;
 | |
| 	case short_type: c = 'S'; break;
 | |
| 	case int_type: c = 'I'; break;
 | |
| 	case long_type: c = 'J'; break;
 | |
| 	case float_type: c = 'F'; break;
 | |
| 	case double_type: c = 'D'; break;
 | |
| 	case void_type: c = 'V'; break;
 | |
| 	case unsuitable_type: c = '-'; break;
 | |
| 	case return_address_type: c = 'r'; break;
 | |
| 	case continuation_type: c = '+'; break;
 | |
| 	case unused_by_subroutine_type: c = '_'; break;
 | |
| 	case reference_type: c = 'L'; break;
 | |
| 	case null_type: c = '@'; break;
 | |
| 	case unresolved_reference_type: c = 'l'; break;
 | |
| 	case uninitialized_reference_type: c = 'U'; break;
 | |
| 	case uninitialized_unresolved_reference_type: c = 'u'; break;
 | |
| 	}
 | |
|       debug_print ("%c", c);
 | |
|     }
 | |
| #endif /* VERIFY_DEBUG */
 | |
|   };
 | |
| 
 | |
|   // This class holds all the state information we need for a given
 | |
|   // location.
 | |
|   struct state
 | |
|   {
 | |
|     // Current top of stack.
 | |
|     int stacktop;
 | |
|     // Current stack depth.  This is like the top of stack but it
 | |
|     // includes wide variable information.
 | |
|     int stackdepth;
 | |
|     // The stack.
 | |
|     type *stack;
 | |
|     // The local variables.
 | |
|     type *locals;
 | |
|     // This is used in subroutines to keep track of which local
 | |
|     // variables have been accessed.
 | |
|     bool *local_changed;
 | |
|     // If not 0, then we are in a subroutine.  The value is the PC of
 | |
|     // the subroutine's entry point.  We can use 0 as an exceptional
 | |
|     // value because PC=0 can never be a subroutine.
 | |
|     int subroutine;
 | |
|     // This is used to keep a linked list of all the states which
 | |
|     // require re-verification.  We use the PC to keep track.
 | |
|     int next;
 | |
|     // We keep track of the type of `this' specially.  This is used to
 | |
|     // ensure that an instance initializer invokes another initializer
 | |
|     // on `this' before returning.  We must keep track of this
 | |
|     // specially because otherwise we might be confused by code which
 | |
|     // assigns to locals[0] (overwriting `this') and then returns
 | |
|     // without really initializing.
 | |
|     type this_type;
 | |
| 
 | |
|     // INVALID marks a state which is not on the linked list of states
 | |
|     // requiring reverification.
 | |
|     static const int INVALID = -1;
 | |
|     // NO_NEXT marks the state at the end of the reverification list.
 | |
|     static const int NO_NEXT = -2;
 | |
| 
 | |
|     state ()
 | |
|       : this_type ()
 | |
|     {
 | |
|       stack = NULL;
 | |
|       locals = NULL;
 | |
|       local_changed = NULL;
 | |
|     }
 | |
| 
 | |
|     state (int max_stack, int max_locals)
 | |
|       : this_type ()
 | |
|     {
 | |
|       stacktop = 0;
 | |
|       stackdepth = 0;
 | |
|       stack = new type[max_stack];
 | |
|       for (int i = 0; i < max_stack; ++i)
 | |
| 	stack[i] = unsuitable_type;
 | |
|       locals = new type[max_locals];
 | |
|       local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	{
 | |
| 	  locals[i] = unsuitable_type;
 | |
| 	  local_changed[i] = false;
 | |
| 	}
 | |
|       next = INVALID;
 | |
|       subroutine = 0;
 | |
|     }
 | |
| 
 | |
|     state (const state *orig, int max_stack, int max_locals,
 | |
| 	   bool ret_semantics = false)
 | |
|     {
 | |
|       stack = new type[max_stack];
 | |
|       locals = new type[max_locals];
 | |
|       local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
 | |
|       copy (orig, max_stack, max_locals, ret_semantics);
 | |
|       next = INVALID;
 | |
|     }
 | |
| 
 | |
|     ~state ()
 | |
|     {
 | |
|       if (stack)
 | |
| 	delete[] stack;
 | |
|       if (locals)
 | |
| 	delete[] locals;
 | |
|       if (local_changed)
 | |
| 	_Jv_Free (local_changed);
 | |
|     }
 | |
| 
 | |
|     void *operator new[] (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete[] (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     void *operator new (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     void copy (const state *copy, int max_stack, int max_locals,
 | |
| 	       bool ret_semantics = false)
 | |
|     {
 | |
|       stacktop = copy->stacktop;
 | |
|       stackdepth = copy->stackdepth;
 | |
|       subroutine = copy->subroutine;
 | |
|       for (int i = 0; i < max_stack; ++i)
 | |
| 	stack[i] = copy->stack[i];
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	{
 | |
| 	  // See push_jump_merge to understand this case.
 | |
| 	  if (ret_semantics)
 | |
| 	    locals[i] = type (copy->local_changed[i]
 | |
| 			      ? unsuitable_type
 | |
| 			      : unused_by_subroutine_type);
 | |
| 	  else
 | |
| 	    locals[i] = copy->locals[i];
 | |
| 	  local_changed[i] = copy->local_changed[i];
 | |
| 	}
 | |
|       this_type = copy->this_type;
 | |
|       // Don't modify `next'.
 | |
|     }
 | |
| 
 | |
|     // Modify this state to reflect entry to an exception handler.
 | |
|     void set_exception (type t, int max_stack)
 | |
|     {
 | |
|       stackdepth = 1;
 | |
|       stacktop = 1;
 | |
|       stack[0] = t;
 | |
|       for (int i = stacktop; i < max_stack; ++i)
 | |
| 	stack[i] = unsuitable_type;
 | |
| 
 | |
|       // FIXME: subroutine handling?
 | |
|     }
 | |
| 
 | |
|     // Merge STATE_OLD into this state.  Destructively modifies this
 | |
|     // state.  Returns true if the new state was in fact changed.
 | |
|     // Will throw an exception if the states are not mergeable.
 | |
|     bool merge (state *state_old, bool ret_semantics,
 | |
| 		int max_locals)
 | |
|     {
 | |
|       bool changed = false;
 | |
| 
 | |
|       // Special handling for `this'.  If one or the other is
 | |
|       // uninitialized, then the merge is uninitialized.
 | |
|       if (this_type.isinitialized ())
 | |
| 	this_type = state_old->this_type;
 | |
| 
 | |
|       // Merge subroutine states.  *THIS and *STATE_OLD must be in the
 | |
|       // same subroutine.  Also, recursive subroutine calls must be
 | |
|       // avoided.
 | |
|       if (subroutine == state_old->subroutine)
 | |
| 	{
 | |
| 	  // Nothing.
 | |
| 	}
 | |
|       else if (subroutine == 0)
 | |
| 	{
 | |
| 	  subroutine = state_old->subroutine;
 | |
| 	  changed = true;
 | |
| 	}
 | |
|       else
 | |
| 	verify_fail ("subroutines merged");
 | |
| 
 | |
|       // Merge stacks.
 | |
|       if (state_old->stacktop != stacktop)
 | |
| 	verify_fail ("stack sizes differ");
 | |
|       for (int i = 0; i < state_old->stacktop; ++i)
 | |
| 	{
 | |
| 	  if (stack[i].merge (state_old->stack[i]))
 | |
| 	    changed = true;
 | |
| 	}
 | |
| 
 | |
|       // Merge local variables.
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	{
 | |
| 	  if (! ret_semantics || local_changed[i])
 | |
| 	    {
 | |
| 	      if (locals[i].merge (state_old->locals[i], true))
 | |
| 		{
 | |
| 		  changed = true;
 | |
| 		  note_variable (i);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  // If we're in a subroutine, we must compute the union of
 | |
| 	  // all the changed local variables.
 | |
| 	  if (state_old->local_changed[i])
 | |
| 	    note_variable (i);
 | |
| 	}
 | |
| 
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
|     // Throw an exception if there is an uninitialized object on the
 | |
|     // stack or in a local variable.  EXCEPTION_SEMANTICS controls
 | |
|     // whether we're using backwards-branch or exception-handing
 | |
|     // semantics.
 | |
|     void check_no_uninitialized_objects (int max_locals,
 | |
| 					 bool exception_semantics = false)
 | |
|     {
 | |
|       if (! exception_semantics)
 | |
| 	{
 | |
| 	  for (int i = 0; i < stacktop; ++i)
 | |
| 	    if (stack[i].isreference () && ! stack[i].isinitialized ())
 | |
| 	      verify_fail ("uninitialized object on stack");
 | |
| 	}
 | |
| 
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	if (locals[i].isreference () && ! locals[i].isinitialized ())
 | |
| 	  verify_fail ("uninitialized object in local variable");
 | |
| 
 | |
|       check_this_initialized ();
 | |
|     }
 | |
| 
 | |
|     // Ensure that `this' has been initialized.
 | |
|     void check_this_initialized ()
 | |
|     {
 | |
|       if (this_type.isreference () && ! this_type.isinitialized ())
 | |
| 	verify_fail ("`this' is uninitialized");
 | |
|     }
 | |
| 
 | |
|     // Set type of `this'.
 | |
|     void set_this_type (const type &k)
 | |
|     {
 | |
|       this_type = k;
 | |
|     }
 | |
| 
 | |
|     // Note that a local variable was modified.
 | |
|     void note_variable (int index)
 | |
|     {
 | |
|       if (subroutine > 0)
 | |
| 	local_changed[index] = true;
 | |
|     }
 | |
| 
 | |
|     // Mark each `new'd object we know of that was allocated at PC as
 | |
|     // initialized.
 | |
|     void set_initialized (int pc, int max_locals)
 | |
|     {
 | |
|       for (int i = 0; i < stacktop; ++i)
 | |
| 	stack[i].set_initialized (pc);
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	locals[i].set_initialized (pc);
 | |
|       this_type.set_initialized (pc);
 | |
|     }
 | |
| 
 | |
|     // Return true if this state is the unmerged result of a `ret'.
 | |
|     bool is_unmerged_ret_state (int max_locals) const
 | |
|     {
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	{
 | |
| 	  if (locals[i].key == unused_by_subroutine_type)
 | |
| 	    return true;
 | |
| 	}
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|     void print (const char *leader, int pc,
 | |
| 		int max_stack, int max_locals) const
 | |
|     {
 | |
|       debug_print ("%s [%4d]:   [stack] ", leader, pc);
 | |
|       int i;
 | |
|       for (i = 0; i < stacktop; ++i)
 | |
| 	stack[i].print ();
 | |
|       for (; i < max_stack; ++i)
 | |
| 	debug_print (".");
 | |
|       debug_print ("    [local] ");
 | |
|       for (i = 0; i < max_locals; ++i)
 | |
| 	locals[i].print ();
 | |
|       debug_print ("   | %p\n", this);
 | |
|     }
 | |
| #else
 | |
|     inline void print (const char *, int, int, int) const
 | |
|     {
 | |
|     }
 | |
| #endif /* VERIFY_DEBUG */
 | |
|   };
 | |
| 
 | |
|   type pop_raw ()
 | |
|   {
 | |
|     if (current_state->stacktop <= 0)
 | |
|       verify_fail ("stack empty", start_PC);
 | |
|     type r = current_state->stack[--current_state->stacktop];
 | |
|     current_state->stackdepth -= r.depth ();
 | |
|     if (current_state->stackdepth < 0)
 | |
|       verify_fail ("stack empty", start_PC);
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   type pop32 ()
 | |
|   {
 | |
|     type r = pop_raw ();
 | |
|     if (r.iswide ())
 | |
|       verify_fail ("narrow pop of wide type", start_PC);
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   type pop64 ()
 | |
|   {
 | |
|     type r = pop_raw ();
 | |
|     if (! r.iswide ())
 | |
|       verify_fail ("wide pop of narrow type", start_PC);
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   type pop_type (type match)
 | |
|   {
 | |
|     match.promote ();
 | |
|     type t = pop_raw ();
 | |
|     if (! match.compatible (t))
 | |
|       verify_fail ("incompatible type on stack", start_PC);
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // Pop a reference type or a return address.
 | |
|   type pop_ref_or_return ()
 | |
|   {
 | |
|     type t = pop_raw ();
 | |
|     if (! t.isreference () && t.key != return_address_type)
 | |
|       verify_fail ("expected reference or return address on stack", start_PC);
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   void push_type (type t)
 | |
|   {
 | |
|     // If T is a numeric type like short, promote it to int.
 | |
|     t.promote ();
 | |
| 
 | |
|     int depth = t.depth ();
 | |
|     if (current_state->stackdepth + depth > current_method->max_stack)
 | |
|       verify_fail ("stack overflow");
 | |
|     current_state->stack[current_state->stacktop++] = t;
 | |
|     current_state->stackdepth += depth;
 | |
|   }
 | |
| 
 | |
|   void set_variable (int index, type t)
 | |
|   {
 | |
|     // If T is a numeric type like short, promote it to int.
 | |
|     t.promote ();
 | |
| 
 | |
|     int depth = t.depth ();
 | |
|     if (index > current_method->max_locals - depth)
 | |
|       verify_fail ("invalid local variable");
 | |
|     current_state->locals[index] = t;
 | |
|     current_state->note_variable (index);
 | |
| 
 | |
|     if (depth == 2)
 | |
|       {
 | |
| 	current_state->locals[index + 1] = continuation_type;
 | |
| 	current_state->note_variable (index + 1);
 | |
|       }
 | |
|     if (index > 0 && current_state->locals[index - 1].iswide ())
 | |
|       {
 | |
| 	current_state->locals[index - 1] = unsuitable_type;
 | |
| 	// There's no need to call note_variable here.
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   type get_variable (int index, type t)
 | |
|   {
 | |
|     int depth = t.depth ();
 | |
|     if (index > current_method->max_locals - depth)
 | |
|       verify_fail ("invalid local variable", start_PC);
 | |
|     if (! t.compatible (current_state->locals[index]))
 | |
|       verify_fail ("incompatible type in local variable", start_PC);
 | |
|     if (depth == 2)
 | |
|       {
 | |
| 	type t (continuation_type);
 | |
| 	if (! current_state->locals[index + 1].compatible (t))
 | |
| 	  verify_fail ("invalid local variable", start_PC);
 | |
|       }
 | |
|     return current_state->locals[index];
 | |
|   }
 | |
| 
 | |
|   // Make sure ARRAY is an array type and that its elements are
 | |
|   // compatible with type ELEMENT.  Returns the actual element type.
 | |
|   type require_array_type (type array, type element)
 | |
|   {
 | |
|     if (! array.isarray ())
 | |
|       verify_fail ("array required");
 | |
| 
 | |
|     type t = array.element_type ();
 | |
|     if (! element.compatible (t))
 | |
|       {
 | |
| 	// Special case for byte arrays, which must also be boolean
 | |
| 	// arrays.
 | |
| 	bool ok = true;
 | |
| 	if (element.key == byte_type)
 | |
| 	  {
 | |
| 	    type e2 (boolean_type);
 | |
| 	    ok = e2.compatible (t);
 | |
| 	  }
 | |
| 	if (! ok)
 | |
| 	  verify_fail ("incompatible array element type");
 | |
|       }
 | |
| 
 | |
|     // Return T and not ELEMENT, because T might be specialized.
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   jint get_byte ()
 | |
|   {
 | |
|     if (PC >= current_method->code_length)
 | |
|       verify_fail ("premature end of bytecode");
 | |
|     return (jint) bytecode[PC++] & 0xff;
 | |
|   }
 | |
| 
 | |
|   jint get_ushort ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     return (jint) ((b1 << 8) | b2) & 0xffff;
 | |
|   }
 | |
| 
 | |
|   jint get_short ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     jshort s = (b1 << 8) | b2;
 | |
|     return (jint) s;
 | |
|   }
 | |
| 
 | |
|   jint get_int ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     jint b3 = get_byte ();
 | |
|     jint b4 = get_byte ();
 | |
|     return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
 | |
|   }
 | |
| 
 | |
|   int compute_jump (int offset)
 | |
|   {
 | |
|     int npc = start_PC + offset;
 | |
|     if (npc < 0 || npc >= current_method->code_length)
 | |
|       verify_fail ("branch out of range", start_PC);
 | |
|     return npc;
 | |
|   }
 | |
| 
 | |
|   // Merge the indicated state into the state at the branch target and
 | |
|   // schedule a new PC if there is a change.  If RET_SEMANTICS is
 | |
|   // true, then we are merging from a `ret' instruction into the
 | |
|   // instruction after a `jsr'.  This is a special case with its own
 | |
|   // modified semantics.
 | |
|   void push_jump_merge (int npc, state *nstate, bool ret_semantics = false)
 | |
|   {
 | |
|     bool changed = true;
 | |
|     if (states[npc] == NULL)
 | |
|       {
 | |
| 	// There's a weird situation here.  If are examining the
 | |
| 	// branch that results from a `ret', and there is not yet a
 | |
| 	// state available at the branch target (the instruction just
 | |
| 	// after the `jsr'), then we have to construct a special kind
 | |
| 	// of state at that point for future merging.  This special
 | |
| 	// state has the type `unused_by_subroutine_type' in each slot
 | |
| 	// which was not modified by the subroutine.
 | |
| 	states[npc] = new state (nstate, current_method->max_stack,
 | |
| 				 current_method->max_locals, ret_semantics);
 | |
| 	debug_print ("== New state in push_jump_merge\n");
 | |
| 	states[npc]->print ("New", npc, current_method->max_stack,
 | |
| 			    current_method->max_locals);
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	debug_print ("== Merge states in push_jump_merge\n");
 | |
| 	nstate->print ("Frm", start_PC, current_method->max_stack,
 | |
| 		       current_method->max_locals);
 | |
| 	states[npc]->print (" To", npc, current_method->max_stack,
 | |
| 			    current_method->max_locals);
 | |
| 	changed = states[npc]->merge (nstate, ret_semantics,
 | |
| 				      current_method->max_locals);
 | |
| 	states[npc]->print ("New", npc, current_method->max_stack,
 | |
| 			    current_method->max_locals);
 | |
|       }
 | |
| 
 | |
|     if (changed && states[npc]->next == state::INVALID)
 | |
|       {
 | |
| 	// The merge changed the state, and the new PC isn't yet on our
 | |
| 	// list of PCs to re-verify.
 | |
| 	states[npc]->next = next_verify_pc;
 | |
| 	next_verify_pc = npc;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void push_jump (int offset)
 | |
|   {
 | |
|     int npc = compute_jump (offset);
 | |
|     if (npc < PC)
 | |
|       current_state->check_no_uninitialized_objects (current_method->max_locals);
 | |
|     push_jump_merge (npc, current_state);
 | |
|   }
 | |
| 
 | |
|   void push_exception_jump (type t, int pc)
 | |
|   {
 | |
|     current_state->check_no_uninitialized_objects (current_method->max_locals,
 | |
| 						  true);
 | |
|     state s (current_state, current_method->max_stack,
 | |
| 	     current_method->max_locals);
 | |
|     s.set_exception (t, current_method->max_stack);
 | |
|     push_jump_merge (pc, &s);
 | |
|   }
 | |
| 
 | |
|   int pop_jump ()
 | |
|   {
 | |
|     int *prev_loc = &next_verify_pc;
 | |
|     int npc = next_verify_pc;
 | |
|     bool skipped = false;
 | |
| 
 | |
|     while (npc != state::NO_NEXT)
 | |
|       {
 | |
| 	// If the next available PC is an unmerged `ret' state, then
 | |
| 	// we aren't yet ready to handle it.  That's because we would
 | |
| 	// need all kind of special cases to do so.  So instead we
 | |
| 	// defer this jump until after we've processed it via a
 | |
| 	// fall-through.  This has to happen because the instruction
 | |
| 	// before this one must be a `jsr'.
 | |
| 	if (! states[npc]->is_unmerged_ret_state (current_method->max_locals))
 | |
| 	  {
 | |
| 	    *prev_loc = states[npc]->next;
 | |
| 	    states[npc]->next = state::INVALID;
 | |
| 	    return npc;
 | |
| 	  }
 | |
| 
 | |
| 	skipped = true;
 | |
| 	prev_loc = &states[npc]->next;
 | |
| 	npc = states[npc]->next;
 | |
|       }
 | |
| 
 | |
|     // If we've skipped states and there is nothing else, that's a
 | |
|     // bug.
 | |
|     if (skipped)
 | |
|       verify_fail ("pop_jump: can't happen");
 | |
|     return state::NO_NEXT;
 | |
|   }
 | |
| 
 | |
|   void invalidate_pc ()
 | |
|   {
 | |
|     PC = state::NO_NEXT;
 | |
|   }
 | |
| 
 | |
|   void note_branch_target (int pc, bool is_jsr_target = false)
 | |
|   {
 | |
|     // Don't check `pc <= PC', because we've advanced PC after
 | |
|     // fetching the target and we haven't yet checked the next
 | |
|     // instruction.
 | |
|     if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
 | |
|       verify_fail ("branch not to instruction start", start_PC);
 | |
|     flags[pc] |= FLAG_BRANCH_TARGET;
 | |
|     if (is_jsr_target)
 | |
|       {
 | |
| 	// Record the jsr which called this instruction.
 | |
| 	subr_info *info = (subr_info *) _Jv_Malloc (sizeof (subr_info));
 | |
| 	info->pc = PC;
 | |
| 	info->next = jsr_ptrs[pc];
 | |
| 	jsr_ptrs[pc] = info;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void skip_padding ()
 | |
|   {
 | |
|     while ((PC % 4) > 0)
 | |
|       if (get_byte () != 0)
 | |
| 	verify_fail ("found nonzero padding byte");
 | |
|   }
 | |
| 
 | |
|   // Return the subroutine to which the instruction at PC belongs.
 | |
|   int get_subroutine (int pc)
 | |
|   {
 | |
|     if (states[pc] == NULL)
 | |
|       return 0;
 | |
|     return states[pc]->subroutine;
 | |
|   }
 | |
| 
 | |
|   // Do the work for a `ret' instruction.  INDEX is the index into the
 | |
|   // local variables.
 | |
|   void handle_ret_insn (int index)
 | |
|   {
 | |
|     get_variable (index, return_address_type);
 | |
| 
 | |
|     int csub = current_state->subroutine;
 | |
|     if (csub == 0)
 | |
|       verify_fail ("no subroutine");
 | |
| 
 | |
|     for (subr_info *subr = jsr_ptrs[csub]; subr != NULL; subr = subr->next)
 | |
|       {
 | |
| 	// Temporarily modify the current state so it looks like we're
 | |
| 	// in the enclosing context.
 | |
| 	current_state->subroutine = get_subroutine (subr->pc);
 | |
| 	if (subr->pc < PC)
 | |
| 	  current_state->check_no_uninitialized_objects (current_method->max_locals);
 | |
| 	push_jump_merge (subr->pc, current_state, true);
 | |
|       }
 | |
| 
 | |
|     current_state->subroutine = csub;
 | |
|     invalidate_pc ();
 | |
|   }
 | |
| 
 | |
|   // We're in the subroutine SUB, calling a subroutine at DEST.  Make
 | |
|   // sure this subroutine isn't already on the stack.
 | |
|   void check_nonrecursive_call (int sub, int dest)
 | |
|   {
 | |
|     if (sub == 0)
 | |
|       return;
 | |
|     if (sub == dest)
 | |
|       verify_fail ("recursive subroutine call");
 | |
|     for (subr_info *info = jsr_ptrs[sub]; info != NULL; info = info->next)
 | |
|       check_nonrecursive_call (get_subroutine (info->pc), dest);
 | |
|   }
 | |
| 
 | |
|   void handle_jsr_insn (int offset)
 | |
|   {
 | |
|     int npc = compute_jump (offset);
 | |
| 
 | |
|     if (npc < PC)
 | |
|       current_state->check_no_uninitialized_objects (current_method->max_locals);
 | |
|     check_nonrecursive_call (current_state->subroutine, npc);
 | |
| 
 | |
|     // Temporarily modify the current state so that it looks like we are
 | |
|     // in the subroutine.
 | |
|     push_type (return_address_type);
 | |
|     int save = current_state->subroutine;
 | |
|     current_state->subroutine = npc;
 | |
| 
 | |
|     // Merge into the subroutine.
 | |
|     push_jump_merge (npc, current_state);
 | |
| 
 | |
|     // Undo our modifications.
 | |
|     current_state->subroutine = save;
 | |
|     pop_type (return_address_type);
 | |
|   }
 | |
| 
 | |
|   jclass construct_primitive_array_type (type_val prim)
 | |
|   {
 | |
|     jclass k = NULL;
 | |
|     switch (prim)
 | |
|       {
 | |
|       case boolean_type:
 | |
| 	k = JvPrimClass (boolean);
 | |
| 	break;
 | |
|       case char_type:
 | |
| 	k = JvPrimClass (char);
 | |
| 	break;
 | |
|       case float_type:
 | |
| 	k = JvPrimClass (float);
 | |
| 	break;
 | |
|       case double_type:
 | |
| 	k = JvPrimClass (double);
 | |
| 	break;
 | |
|       case byte_type:
 | |
| 	k = JvPrimClass (byte);
 | |
| 	break;
 | |
|       case short_type:
 | |
| 	k = JvPrimClass (short);
 | |
| 	break;
 | |
|       case int_type:
 | |
| 	k = JvPrimClass (int);
 | |
| 	break;
 | |
|       case long_type:
 | |
| 	k = JvPrimClass (long);
 | |
| 	break;
 | |
|       default:
 | |
| 	verify_fail ("unknown type in construct_primitive_array_type");
 | |
|       }
 | |
|     k = _Jv_GetArrayClass (k, NULL);
 | |
|     return k;
 | |
|   }
 | |
| 
 | |
|   // This pass computes the location of branch targets and also
 | |
|   // instruction starts.
 | |
|   void branch_prepass ()
 | |
|   {
 | |
|     flags = (char *) _Jv_Malloc (current_method->code_length);
 | |
|     jsr_ptrs = (subr_info **) _Jv_Malloc (sizeof (subr_info *)
 | |
| 					  * current_method->code_length);
 | |
| 
 | |
|     for (int i = 0; i < current_method->code_length; ++i)
 | |
|       {
 | |
| 	flags[i] = 0;
 | |
| 	jsr_ptrs[i] = NULL;
 | |
|       }
 | |
| 
 | |
|     bool last_was_jsr = false;
 | |
| 
 | |
|     PC = 0;
 | |
|     while (PC < current_method->code_length)
 | |
|       {
 | |
| 	// Set `start_PC' early so that error checking can have the
 | |
| 	// correct value.
 | |
| 	start_PC = PC;
 | |
| 	flags[PC] |= FLAG_INSN_START;
 | |
| 
 | |
| 	// If the previous instruction was a jsr, then the next
 | |
| 	// instruction is a branch target -- the branch being the
 | |
| 	// corresponding `ret'.
 | |
| 	if (last_was_jsr)
 | |
| 	  note_branch_target (PC);
 | |
| 	last_was_jsr = false;
 | |
| 
 | |
| 	java_opcode opcode = (java_opcode) bytecode[PC++];
 | |
| 	switch (opcode)
 | |
| 	  {
 | |
| 	  case op_nop:
 | |
| 	  case op_aconst_null:
 | |
| 	  case op_iconst_m1:
 | |
| 	  case op_iconst_0:
 | |
| 	  case op_iconst_1:
 | |
| 	  case op_iconst_2:
 | |
| 	  case op_iconst_3:
 | |
| 	  case op_iconst_4:
 | |
| 	  case op_iconst_5:
 | |
| 	  case op_lconst_0:
 | |
| 	  case op_lconst_1:
 | |
| 	  case op_fconst_0:
 | |
| 	  case op_fconst_1:
 | |
| 	  case op_fconst_2:
 | |
| 	  case op_dconst_0:
 | |
| 	  case op_dconst_1:
 | |
| 	  case op_iload_0:
 | |
| 	  case op_iload_1:
 | |
| 	  case op_iload_2:
 | |
| 	  case op_iload_3:
 | |
| 	  case op_lload_0:
 | |
| 	  case op_lload_1:
 | |
| 	  case op_lload_2:
 | |
| 	  case op_lload_3:
 | |
| 	  case op_fload_0:
 | |
| 	  case op_fload_1:
 | |
| 	  case op_fload_2:
 | |
| 	  case op_fload_3:
 | |
| 	  case op_dload_0:
 | |
| 	  case op_dload_1:
 | |
| 	  case op_dload_2:
 | |
| 	  case op_dload_3:
 | |
| 	  case op_aload_0:
 | |
| 	  case op_aload_1:
 | |
| 	  case op_aload_2:
 | |
| 	  case op_aload_3:
 | |
| 	  case op_iaload:
 | |
| 	  case op_laload:
 | |
| 	  case op_faload:
 | |
| 	  case op_daload:
 | |
| 	  case op_aaload:
 | |
| 	  case op_baload:
 | |
| 	  case op_caload:
 | |
| 	  case op_saload:
 | |
| 	  case op_istore_0:
 | |
| 	  case op_istore_1:
 | |
| 	  case op_istore_2:
 | |
| 	  case op_istore_3:
 | |
| 	  case op_lstore_0:
 | |
| 	  case op_lstore_1:
 | |
| 	  case op_lstore_2:
 | |
| 	  case op_lstore_3:
 | |
| 	  case op_fstore_0:
 | |
| 	  case op_fstore_1:
 | |
| 	  case op_fstore_2:
 | |
| 	  case op_fstore_3:
 | |
| 	  case op_dstore_0:
 | |
| 	  case op_dstore_1:
 | |
| 	  case op_dstore_2:
 | |
| 	  case op_dstore_3:
 | |
| 	  case op_astore_0:
 | |
| 	  case op_astore_1:
 | |
| 	  case op_astore_2:
 | |
| 	  case op_astore_3:
 | |
| 	  case op_iastore:
 | |
| 	  case op_lastore:
 | |
| 	  case op_fastore:
 | |
| 	  case op_dastore:
 | |
| 	  case op_aastore:
 | |
| 	  case op_bastore:
 | |
| 	  case op_castore:
 | |
| 	  case op_sastore:
 | |
| 	  case op_pop:
 | |
| 	  case op_pop2:
 | |
| 	  case op_dup:
 | |
| 	  case op_dup_x1:
 | |
| 	  case op_dup_x2:
 | |
| 	  case op_dup2:
 | |
| 	  case op_dup2_x1:
 | |
| 	  case op_dup2_x2:
 | |
| 	  case op_swap:
 | |
| 	  case op_iadd:
 | |
| 	  case op_isub:
 | |
| 	  case op_imul:
 | |
| 	  case op_idiv:
 | |
| 	  case op_irem:
 | |
| 	  case op_ishl:
 | |
| 	  case op_ishr:
 | |
| 	  case op_iushr:
 | |
| 	  case op_iand:
 | |
| 	  case op_ior:
 | |
| 	  case op_ixor:
 | |
| 	  case op_ladd:
 | |
| 	  case op_lsub:
 | |
| 	  case op_lmul:
 | |
| 	  case op_ldiv:
 | |
| 	  case op_lrem:
 | |
| 	  case op_lshl:
 | |
| 	  case op_lshr:
 | |
| 	  case op_lushr:
 | |
| 	  case op_land:
 | |
| 	  case op_lor:
 | |
| 	  case op_lxor:
 | |
| 	  case op_fadd:
 | |
| 	  case op_fsub:
 | |
| 	  case op_fmul:
 | |
| 	  case op_fdiv:
 | |
| 	  case op_frem:
 | |
| 	  case op_dadd:
 | |
| 	  case op_dsub:
 | |
| 	  case op_dmul:
 | |
| 	  case op_ddiv:
 | |
| 	  case op_drem:
 | |
| 	  case op_ineg:
 | |
| 	  case op_i2b:
 | |
| 	  case op_i2c:
 | |
| 	  case op_i2s:
 | |
| 	  case op_lneg:
 | |
| 	  case op_fneg:
 | |
| 	  case op_dneg:
 | |
| 	  case op_i2l:
 | |
| 	  case op_i2f:
 | |
| 	  case op_i2d:
 | |
| 	  case op_l2i:
 | |
| 	  case op_l2f:
 | |
| 	  case op_l2d:
 | |
| 	  case op_f2i:
 | |
| 	  case op_f2l:
 | |
| 	  case op_f2d:
 | |
| 	  case op_d2i:
 | |
| 	  case op_d2l:
 | |
| 	  case op_d2f:
 | |
| 	  case op_lcmp:
 | |
| 	  case op_fcmpl:
 | |
| 	  case op_fcmpg:
 | |
| 	  case op_dcmpl:
 | |
| 	  case op_dcmpg:
 | |
| 	  case op_monitorenter:
 | |
| 	  case op_monitorexit:
 | |
| 	  case op_ireturn:
 | |
| 	  case op_lreturn:
 | |
| 	  case op_freturn:
 | |
| 	  case op_dreturn:
 | |
| 	  case op_areturn:
 | |
| 	  case op_return:
 | |
| 	  case op_athrow:
 | |
| 	  case op_arraylength:
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_bipush:
 | |
| 	  case op_ldc:
 | |
| 	  case op_iload:
 | |
| 	  case op_lload:
 | |
| 	  case op_fload:
 | |
| 	  case op_dload:
 | |
| 	  case op_aload:
 | |
| 	  case op_istore:
 | |
| 	  case op_lstore:
 | |
| 	  case op_fstore:
 | |
| 	  case op_dstore:
 | |
| 	  case op_astore:
 | |
| 	  case op_ret:
 | |
| 	  case op_newarray:
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iinc:
 | |
| 	  case op_sipush:
 | |
| 	  case op_ldc_w:
 | |
| 	  case op_ldc2_w:
 | |
| 	  case op_getstatic:
 | |
| 	  case op_getfield:
 | |
| 	  case op_putfield:
 | |
| 	  case op_putstatic:
 | |
| 	  case op_new:
 | |
| 	  case op_anewarray:
 | |
| 	  case op_instanceof:
 | |
| 	  case op_checkcast:
 | |
| 	  case op_invokespecial:
 | |
| 	  case op_invokestatic:
 | |
| 	  case op_invokevirtual:
 | |
| 	    get_short ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_multianewarray:
 | |
| 	    get_short ();
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_jsr:
 | |
| 	    last_was_jsr = true;
 | |
| 	    // Fall through.
 | |
| 	  case op_ifeq:
 | |
| 	  case op_ifne:
 | |
| 	  case op_iflt:
 | |
| 	  case op_ifge:
 | |
| 	  case op_ifgt:
 | |
| 	  case op_ifle:
 | |
| 	  case op_if_icmpeq:
 | |
| 	  case op_if_icmpne:
 | |
| 	  case op_if_icmplt:
 | |
| 	  case op_if_icmpge:
 | |
| 	  case op_if_icmpgt:
 | |
| 	  case op_if_icmple:
 | |
| 	  case op_if_acmpeq:
 | |
| 	  case op_if_acmpne:
 | |
| 	  case op_ifnull:
 | |
| 	  case op_ifnonnull:
 | |
| 	  case op_goto:
 | |
| 	    note_branch_target (compute_jump (get_short ()), last_was_jsr);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_tableswitch:
 | |
| 	    {
 | |
| 	      skip_padding ();
 | |
| 	      note_branch_target (compute_jump (get_int ()));
 | |
| 	      jint low = get_int ();
 | |
| 	      jint hi = get_int ();
 | |
| 	      if (low > hi)
 | |
| 		verify_fail ("invalid tableswitch", start_PC);
 | |
| 	      for (int i = low; i <= hi; ++i)
 | |
| 		note_branch_target (compute_jump (get_int ()));
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lookupswitch:
 | |
| 	    {
 | |
| 	      skip_padding ();
 | |
| 	      note_branch_target (compute_jump (get_int ()));
 | |
| 	      int npairs = get_int ();
 | |
| 	      if (npairs < 0)
 | |
| 		verify_fail ("too few pairs in lookupswitch", start_PC);
 | |
| 	      while (npairs-- > 0)
 | |
| 		{
 | |
| 		  get_int ();
 | |
| 		  note_branch_target (compute_jump (get_int ()));
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_invokeinterface:
 | |
| 	    get_short ();
 | |
| 	    get_byte ();
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_wide:
 | |
| 	    {
 | |
| 	      opcode = (java_opcode) get_byte ();
 | |
| 	      get_short ();
 | |
| 	      if (opcode == op_iinc)
 | |
| 		get_short ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_jsr_w:
 | |
| 	    last_was_jsr = true;
 | |
| 	    // Fall through.
 | |
| 	  case op_goto_w:
 | |
| 	    note_branch_target (compute_jump (get_int ()), last_was_jsr);
 | |
| 	    break;
 | |
| 
 | |
| 	  default:
 | |
| 	    verify_fail ("unrecognized instruction in branch_prepass",
 | |
| 			 start_PC);
 | |
| 	  }
 | |
| 
 | |
| 	// See if any previous branch tried to branch to the middle of
 | |
| 	// this instruction.
 | |
| 	for (int pc = start_PC + 1; pc < PC; ++pc)
 | |
| 	  {
 | |
| 	    if ((flags[pc] & FLAG_BRANCH_TARGET))
 | |
| 	      verify_fail ("branch to middle of instruction", pc);
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|     // Verify exception handlers.
 | |
|     for (int i = 0; i < current_method->exc_count; ++i)
 | |
|       {
 | |
| 	if (! (flags[exception[i].handler_pc] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception handler not at instruction start",
 | |
| 		       exception[i].handler_pc);
 | |
| 	if (! (flags[exception[i].start_pc] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception start not at instruction start",
 | |
| 		       exception[i].start_pc);
 | |
| 	if (exception[i].end_pc != current_method->code_length
 | |
| 	    && ! (flags[exception[i].end_pc] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception end not at instruction start",
 | |
| 		       exception[i].end_pc);
 | |
| 
 | |
| 	flags[exception[i].handler_pc] |= FLAG_BRANCH_TARGET;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void check_pool_index (int index)
 | |
|   {
 | |
|     if (index < 0 || index >= current_class->constants.size)
 | |
|       verify_fail ("constant pool index out of range", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_class_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
 | |
|       return type (pool->data[index].clazz);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Class)
 | |
|       return type (pool->data[index].utf8);
 | |
|     verify_fail ("expected class constant", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] == JV_CONSTANT_ResolvedString
 | |
| 	|| pool->tags[index] == JV_CONSTANT_String)
 | |
|       return type (&java::lang::String::class$);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Integer)
 | |
|       return type (int_type);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Float)
 | |
|       return type (float_type);
 | |
|     verify_fail ("String, int, or float constant expected", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_wide_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] == JV_CONSTANT_Long)
 | |
|       return type (long_type);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Double)
 | |
|       return type (double_type);
 | |
|     verify_fail ("long or double constant expected", start_PC);
 | |
|   }
 | |
| 
 | |
|   // Helper for both field and method.  These are laid out the same in
 | |
|   // the constant pool.
 | |
|   type handle_field_or_method (int index, int expected,
 | |
| 			       _Jv_Utf8Const **name,
 | |
| 			       _Jv_Utf8Const **fmtype)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] != expected)
 | |
|       verify_fail ("didn't see expected constant", start_PC);
 | |
|     // Once we know we have a Fieldref or Methodref we assume that it
 | |
|     // is correctly laid out in the constant pool.  I think the code
 | |
|     // in defineclass.cc guarantees this.
 | |
|     _Jv_ushort class_index, name_and_type_index;
 | |
|     _Jv_loadIndexes (&pool->data[index],
 | |
| 		     class_index,
 | |
| 		     name_and_type_index);
 | |
|     _Jv_ushort name_index, desc_index;
 | |
|     _Jv_loadIndexes (&pool->data[name_and_type_index],
 | |
| 		     name_index, desc_index);
 | |
| 
 | |
|     *name = pool->data[name_index].utf8;
 | |
|     *fmtype = pool->data[desc_index].utf8;
 | |
| 
 | |
|     return check_class_constant (class_index);
 | |
|   }
 | |
| 
 | |
|   // Return field's type, compute class' type if requested.
 | |
|   type check_field_constant (int index, type *class_type = NULL)
 | |
|   {
 | |
|     _Jv_Utf8Const *name, *field_type;
 | |
|     type ct = handle_field_or_method (index,
 | |
| 				      JV_CONSTANT_Fieldref,
 | |
| 				      &name, &field_type);
 | |
|     if (class_type)
 | |
|       *class_type = ct;
 | |
|     if (field_type->data[0] == '[' || field_type->data[0] == 'L')
 | |
|       return type (field_type);
 | |
|     return get_type_val_for_signature (field_type->data[0]);
 | |
|   }
 | |
| 
 | |
|   type check_method_constant (int index, bool is_interface,
 | |
| 			      _Jv_Utf8Const **method_name,
 | |
| 			      _Jv_Utf8Const **method_signature)
 | |
|   {
 | |
|     return handle_field_or_method (index,
 | |
| 				   (is_interface
 | |
| 				    ? JV_CONSTANT_InterfaceMethodref
 | |
| 				    : JV_CONSTANT_Methodref),
 | |
| 				   method_name, method_signature);
 | |
|   }
 | |
| 
 | |
|   type get_one_type (char *&p)
 | |
|   {
 | |
|     char *start = p;
 | |
| 
 | |
|     int arraycount = 0;
 | |
|     while (*p == '[')
 | |
|       {
 | |
| 	++arraycount;
 | |
| 	++p;
 | |
|       }
 | |
| 
 | |
|     char v = *p++;
 | |
| 
 | |
|     if (v == 'L')
 | |
|       {
 | |
| 	while (*p != ';')
 | |
| 	  ++p;
 | |
| 	++p;
 | |
| 	_Jv_Utf8Const *name = make_utf8_const (start, p - start);
 | |
| 	return type (name);
 | |
|       }
 | |
| 
 | |
|     // Casting to jchar here is ok since we are looking at an ASCII
 | |
|     // character.
 | |
|     type_val rt = get_type_val_for_signature (jchar (v));
 | |
| 
 | |
|     if (arraycount == 0)
 | |
|       {
 | |
| 	// Callers of this function eventually push their arguments on
 | |
| 	// the stack.  So, promote them here.
 | |
| 	return type (rt).promote ();
 | |
|       }
 | |
| 
 | |
|     jclass k = construct_primitive_array_type (rt);
 | |
|     while (--arraycount > 0)
 | |
|       k = _Jv_GetArrayClass (k, NULL);
 | |
|     return type (k);
 | |
|   }
 | |
| 
 | |
|   void compute_argument_types (_Jv_Utf8Const *signature,
 | |
| 			       type *types)
 | |
|   {
 | |
|     char *p = signature->data;
 | |
|     // Skip `('.
 | |
|     ++p;
 | |
| 
 | |
|     int i = 0;
 | |
|     while (*p != ')')
 | |
|       types[i++] = get_one_type (p);
 | |
|   }
 | |
| 
 | |
|   type compute_return_type (_Jv_Utf8Const *signature)
 | |
|   {
 | |
|     char *p = signature->data;
 | |
|     while (*p != ')')
 | |
|       ++p;
 | |
|     ++p;
 | |
|     return get_one_type (p);
 | |
|   }
 | |
| 
 | |
|   void check_return_type (type onstack)
 | |
|   {
 | |
|     type rt = compute_return_type (current_method->self->signature);
 | |
|     if (! rt.compatible (onstack))
 | |
|       verify_fail ("incompatible return type", start_PC);
 | |
|   }
 | |
| 
 | |
|   // Initialize the stack for the new method.  Returns true if this
 | |
|   // method is an instance initializer.
 | |
|   bool initialize_stack ()
 | |
|   {
 | |
|     int var = 0;
 | |
|     bool is_init = false;
 | |
| 
 | |
|     using namespace java::lang::reflect;
 | |
|     if (! Modifier::isStatic (current_method->self->accflags))
 | |
|       {
 | |
| 	type kurr (current_class);
 | |
| 	if (_Jv_equalUtf8Consts (current_method->self->name, gcj::init_name))
 | |
| 	  {
 | |
| 	    kurr.set_uninitialized (type::SELF);
 | |
| 	    is_init = true;
 | |
| 	  }
 | |
| 	set_variable (0, kurr);
 | |
| 	current_state->set_this_type (kurr);
 | |
| 	++var;
 | |
|       }
 | |
| 
 | |
|     // We have to handle wide arguments specially here.
 | |
|     int arg_count = _Jv_count_arguments (current_method->self->signature);
 | |
|     type arg_types[arg_count];
 | |
|     compute_argument_types (current_method->self->signature, arg_types);
 | |
|     for (int i = 0; i < arg_count; ++i)
 | |
|       {
 | |
| 	set_variable (var, arg_types[i]);
 | |
| 	++var;
 | |
| 	if (arg_types[i].iswide ())
 | |
| 	  ++var;
 | |
|       }
 | |
| 
 | |
|     return is_init;
 | |
|   }
 | |
| 
 | |
|   void verify_instructions_0 ()
 | |
|   {
 | |
|     current_state = new state (current_method->max_stack,
 | |
| 			       current_method->max_locals);
 | |
| 
 | |
|     PC = 0;
 | |
|     start_PC = 0;
 | |
| 
 | |
|     // True if we are verifying an instance initializer.
 | |
|     bool this_is_init = initialize_stack ();
 | |
| 
 | |
|     states = (state **) _Jv_Malloc (sizeof (state *)
 | |
| 				    * current_method->code_length);
 | |
|     for (int i = 0; i < current_method->code_length; ++i)
 | |
|       states[i] = NULL;
 | |
| 
 | |
|     next_verify_pc = state::NO_NEXT;
 | |
| 
 | |
|     while (true)
 | |
|       {
 | |
| 	// If the PC was invalidated, get a new one from the work list.
 | |
| 	if (PC == state::NO_NEXT)
 | |
| 	  {
 | |
| 	    PC = pop_jump ();
 | |
| 	    if (PC == state::INVALID)
 | |
| 	      verify_fail ("can't happen: saw state::INVALID");
 | |
| 	    if (PC == state::NO_NEXT)
 | |
| 	      break;
 | |
| 	    // Set up the current state.
 | |
| 	    current_state->copy (states[PC], current_method->max_stack,
 | |
| 				 current_method->max_locals);
 | |
| 	  }
 | |
| 	else
 | |
| 	  {
 | |
| 	    // Control can't fall off the end of the bytecode.  We
 | |
| 	    // only need to check this in the fall-through case,
 | |
| 	    // because branch bounds are checked when they are
 | |
| 	    // pushed.
 | |
| 	    if (PC >= current_method->code_length)
 | |
| 	      verify_fail ("fell off end");
 | |
| 
 | |
| 	    // We only have to do this checking in the situation where
 | |
| 	    // control flow falls through from the previous
 | |
| 	    // instruction.  Otherwise merging is done at the time we
 | |
| 	    // push the branch.
 | |
| 	    if (states[PC] != NULL)
 | |
| 	      {
 | |
| 		// We've already visited this instruction.  So merge
 | |
| 		// the states together.  If this yields no change then
 | |
| 		// we don't have to re-verify.  However, if the new
 | |
| 		// state is an the result of an unmerged `ret', we
 | |
| 		// must continue through it.
 | |
| 		debug_print ("== Fall through merge\n");
 | |
| 		states[PC]->print ("Old", PC, current_method->max_stack,
 | |
| 				   current_method->max_locals);
 | |
| 		current_state->print ("Cur", PC, current_method->max_stack,
 | |
| 				      current_method->max_locals);
 | |
| 		if (! current_state->merge (states[PC], false,
 | |
| 					    current_method->max_locals)
 | |
| 		    && ! states[PC]->is_unmerged_ret_state (current_method->max_locals))
 | |
| 		  {
 | |
| 		    debug_print ("== Fall through optimization\n");
 | |
| 		    invalidate_pc ();
 | |
| 		    continue;
 | |
| 		  }
 | |
| 		// Save a copy of it for later.
 | |
| 		states[PC]->copy (current_state, current_method->max_stack,
 | |
| 				  current_method->max_locals);
 | |
| 		current_state->print ("New", PC, current_method->max_stack,
 | |
| 				      current_method->max_locals);
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	// We only have to keep saved state at branch targets.  If
 | |
| 	// we're at a branch target and the state here hasn't been set
 | |
| 	// yet, we set it now.
 | |
| 	if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
 | |
| 	  {
 | |
| 	    states[PC] = new state (current_state, current_method->max_stack,
 | |
| 				    current_method->max_locals);
 | |
| 	  }
 | |
| 
 | |
| 	// Set this before handling exceptions so that debug output is
 | |
| 	// sane.
 | |
| 	start_PC = PC;
 | |
| 
 | |
| 	// Update states for all active exception handlers.  Ordinarily
 | |
| 	// there are not many exception handlers.  So we simply run
 | |
| 	// through them all.
 | |
| 	for (int i = 0; i < current_method->exc_count; ++i)
 | |
| 	  {
 | |
| 	    if (PC >= exception[i].start_pc && PC < exception[i].end_pc)
 | |
| 	      {
 | |
| 		type handler (&java::lang::Throwable::class$);
 | |
| 		if (exception[i].handler_type != 0)
 | |
| 		  handler = check_class_constant (exception[i].handler_type);
 | |
| 		push_exception_jump (handler, exception[i].handler_pc);
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	current_state->print ("   ", PC, current_method->max_stack,
 | |
| 			      current_method->max_locals);
 | |
| 	java_opcode opcode = (java_opcode) bytecode[PC++];
 | |
| 	switch (opcode)
 | |
| 	  {
 | |
| 	  case op_nop:
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_aconst_null:
 | |
| 	    push_type (null_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iconst_m1:
 | |
| 	  case op_iconst_0:
 | |
| 	  case op_iconst_1:
 | |
| 	  case op_iconst_2:
 | |
| 	  case op_iconst_3:
 | |
| 	  case op_iconst_4:
 | |
| 	  case op_iconst_5:
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lconst_0:
 | |
| 	  case op_lconst_1:
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_fconst_0:
 | |
| 	  case op_fconst_1:
 | |
| 	  case op_fconst_2:
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_dconst_0:
 | |
| 	  case op_dconst_1:
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_bipush:
 | |
| 	    get_byte ();
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_sipush:
 | |
| 	    get_short ();
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_ldc:
 | |
| 	    push_type (check_constant (get_byte ()));
 | |
| 	    break;
 | |
| 	  case op_ldc_w:
 | |
| 	    push_type (check_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_ldc2_w:
 | |
| 	    push_type (check_wide_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iload:
 | |
| 	    push_type (get_variable (get_byte (), int_type));
 | |
| 	    break;
 | |
| 	  case op_lload:
 | |
| 	    push_type (get_variable (get_byte (), long_type));
 | |
| 	    break;
 | |
| 	  case op_fload:
 | |
| 	    push_type (get_variable (get_byte (), float_type));
 | |
| 	    break;
 | |
| 	  case op_dload:
 | |
| 	    push_type (get_variable (get_byte (), double_type));
 | |
| 	    break;
 | |
| 	  case op_aload:
 | |
| 	    push_type (get_variable (get_byte (), reference_type));
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iload_0:
 | |
| 	  case op_iload_1:
 | |
| 	  case op_iload_2:
 | |
| 	  case op_iload_3:
 | |
| 	    push_type (get_variable (opcode - op_iload_0, int_type));
 | |
| 	    break;
 | |
| 	  case op_lload_0:
 | |
| 	  case op_lload_1:
 | |
| 	  case op_lload_2:
 | |
| 	  case op_lload_3:
 | |
| 	    push_type (get_variable (opcode - op_lload_0, long_type));
 | |
| 	    break;
 | |
| 	  case op_fload_0:
 | |
| 	  case op_fload_1:
 | |
| 	  case op_fload_2:
 | |
| 	  case op_fload_3:
 | |
| 	    push_type (get_variable (opcode - op_fload_0, float_type));
 | |
| 	    break;
 | |
| 	  case op_dload_0:
 | |
| 	  case op_dload_1:
 | |
| 	  case op_dload_2:
 | |
| 	  case op_dload_3:
 | |
| 	    push_type (get_variable (opcode - op_dload_0, double_type));
 | |
| 	    break;
 | |
| 	  case op_aload_0:
 | |
| 	  case op_aload_1:
 | |
| 	  case op_aload_2:
 | |
| 	  case op_aload_3:
 | |
| 	    push_type (get_variable (opcode - op_aload_0, reference_type));
 | |
| 	    break;
 | |
| 	  case op_iaload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_type (reference_type),
 | |
| 					   int_type));
 | |
| 	    break;
 | |
| 	  case op_laload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_type (reference_type),
 | |
| 					   long_type));
 | |
| 	    break;
 | |
| 	  case op_faload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_type (reference_type),
 | |
| 					   float_type));
 | |
| 	    break;
 | |
| 	  case op_daload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_type (reference_type),
 | |
| 					   double_type));
 | |
| 	    break;
 | |
| 	  case op_aaload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_type (reference_type),
 | |
| 					   reference_type));
 | |
| 	    break;
 | |
| 	  case op_baload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), byte_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_caload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), char_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_saload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), short_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_istore:
 | |
| 	    set_variable (get_byte (), pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lstore:
 | |
| 	    set_variable (get_byte (), pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fstore:
 | |
| 	    set_variable (get_byte (), pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dstore:
 | |
| 	    set_variable (get_byte (), pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_astore:
 | |
| 	    set_variable (get_byte (), pop_ref_or_return ());
 | |
| 	    break;
 | |
| 	  case op_istore_0:
 | |
| 	  case op_istore_1:
 | |
| 	  case op_istore_2:
 | |
| 	  case op_istore_3:
 | |
| 	    set_variable (opcode - op_istore_0, pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lstore_0:
 | |
| 	  case op_lstore_1:
 | |
| 	  case op_lstore_2:
 | |
| 	  case op_lstore_3:
 | |
| 	    set_variable (opcode - op_lstore_0, pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fstore_0:
 | |
| 	  case op_fstore_1:
 | |
| 	  case op_fstore_2:
 | |
| 	  case op_fstore_3:
 | |
| 	    set_variable (opcode - op_fstore_0, pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dstore_0:
 | |
| 	  case op_dstore_1:
 | |
| 	  case op_dstore_2:
 | |
| 	  case op_dstore_3:
 | |
| 	    set_variable (opcode - op_dstore_0, pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_astore_0:
 | |
| 	  case op_astore_1:
 | |
| 	  case op_astore_2:
 | |
| 	  case op_astore_3:
 | |
| 	    set_variable (opcode - op_astore_0, pop_ref_or_return ());
 | |
| 	    break;
 | |
| 	  case op_iastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), int_type);
 | |
| 	    break;
 | |
| 	  case op_lastore:
 | |
| 	    pop_type (long_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), long_type);
 | |
| 	    break;
 | |
| 	  case op_fastore:
 | |
| 	    pop_type (float_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), float_type);
 | |
| 	    break;
 | |
| 	  case op_dastore:
 | |
| 	    pop_type (double_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), double_type);
 | |
| 	    break;
 | |
| 	  case op_aastore:
 | |
| 	    pop_type (reference_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), reference_type);
 | |
| 	    break;
 | |
| 	  case op_bastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), byte_type);
 | |
| 	    break;
 | |
| 	  case op_castore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), char_type);
 | |
| 	    break;
 | |
| 	  case op_sastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_type (reference_type), short_type);
 | |
| 	    break;
 | |
| 	  case op_pop:
 | |
| 	    pop32 ();
 | |
| 	    break;
 | |
| 	  case op_pop2:
 | |
| 	    pop64 ();
 | |
| 	    break;
 | |
| 	  case op_dup:
 | |
| 	    {
 | |
| 	      type t = pop32 ();
 | |
| 	      push_type (t);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup_x1:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup_x2:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop_raw ();
 | |
| 	      if (! t2.iswide ())
 | |
| 		{
 | |
| 		  type t3 = pop32 ();
 | |
| 		  push_type (t1);
 | |
| 		  push_type (t3);
 | |
| 		}
 | |
| 	      else
 | |
| 		push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2:
 | |
| 	    {
 | |
| 	      type t = pop_raw ();
 | |
| 	      if (! t.iswide ())
 | |
| 		{
 | |
| 		  type t2 = pop32 ();
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t);
 | |
| 		  push_type (t2);
 | |
| 		}
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2_x1:
 | |
| 	    {
 | |
| 	      type t1 = pop_raw ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      if (! t1.iswide ())
 | |
| 		{
 | |
| 		  type t3 = pop32 ();
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t1);
 | |
| 		  push_type (t3);
 | |
| 		}
 | |
| 	      else
 | |
| 		push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2_x2:
 | |
| 	    {
 | |
| 	      // FIXME
 | |
| 	      type t1 = pop_raw ();
 | |
| 	      if (t1.iswide ())
 | |
| 		{
 | |
| 		  type t2 = pop_raw ();
 | |
| 		  if (t2.iswide ())
 | |
| 		    {
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t2);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    {
 | |
| 		      type t3 = pop32 ();
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t3);
 | |
| 		      push_type (t2);
 | |
| 		    }
 | |
| 		  push_type (t1);
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  type t2 = pop32 ();
 | |
| 		  type t3 = pop_raw ();
 | |
| 		  if (t3.iswide ())
 | |
| 		    {
 | |
| 		      push_type (t2);
 | |
| 		      push_type (t1);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    {
 | |
| 		      type t4 = pop32 ();
 | |
| 		      push_type (t2);
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t4);
 | |
| 		    }
 | |
| 		  push_type (t3);
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t1);
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_swap:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_iadd:
 | |
| 	  case op_isub:
 | |
| 	  case op_imul:
 | |
| 	  case op_idiv:
 | |
| 	  case op_irem:
 | |
| 	  case op_ishl:
 | |
| 	  case op_ishr:
 | |
| 	  case op_iushr:
 | |
| 	  case op_iand:
 | |
| 	  case op_ior:
 | |
| 	  case op_ixor:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_ladd:
 | |
| 	  case op_lsub:
 | |
| 	  case op_lmul:
 | |
| 	  case op_ldiv:
 | |
| 	  case op_lrem:
 | |
| 	  case op_land:
 | |
| 	  case op_lor:
 | |
| 	  case op_lxor:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_lshl:
 | |
| 	  case op_lshr:
 | |
| 	  case op_lushr:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fadd:
 | |
| 	  case op_fsub:
 | |
| 	  case op_fmul:
 | |
| 	  case op_fdiv:
 | |
| 	  case op_frem:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dadd:
 | |
| 	  case op_dsub:
 | |
| 	  case op_dmul:
 | |
| 	  case op_ddiv:
 | |
| 	  case op_drem:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_ineg:
 | |
| 	  case op_i2b:
 | |
| 	  case op_i2c:
 | |
| 	  case op_i2s:
 | |
| 	    push_type (pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lneg:
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fneg:
 | |
| 	    push_type (pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dneg:
 | |
| 	    push_type (pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_iinc:
 | |
| 	    get_variable (get_byte (), int_type);
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 	  case op_i2l:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_i2f:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_i2d:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_l2i:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_l2f:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_l2d:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_f2i:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_f2l:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_f2d:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_d2i:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_d2l:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_d2f:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_lcmp:
 | |
| 	    pop_type (long_type);
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_fcmpl:
 | |
| 	  case op_fcmpg:
 | |
| 	    pop_type (float_type);
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_dcmpl:
 | |
| 	  case op_dcmpg:
 | |
| 	    pop_type (double_type);
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_ifeq:
 | |
| 	  case op_ifne:
 | |
| 	  case op_iflt:
 | |
| 	  case op_ifge:
 | |
| 	  case op_ifgt:
 | |
| 	  case op_ifle:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_if_icmpeq:
 | |
| 	  case op_if_icmpne:
 | |
| 	  case op_if_icmplt:
 | |
| 	  case op_if_icmpge:
 | |
| 	  case op_if_icmpgt:
 | |
| 	  case op_if_icmple:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_if_acmpeq:
 | |
| 	  case op_if_acmpne:
 | |
| 	    pop_type (reference_type);
 | |
| 	    pop_type (reference_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_goto:
 | |
| 	    push_jump (get_short ());
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_jsr:
 | |
| 	    handle_jsr_insn (get_short ());
 | |
| 	    break;
 | |
| 	  case op_ret:
 | |
| 	    handle_ret_insn (get_byte ());
 | |
| 	    break;
 | |
| 	  case op_tableswitch:
 | |
| 	    {
 | |
| 	      pop_type (int_type);
 | |
| 	      skip_padding ();
 | |
| 	      push_jump (get_int ());
 | |
| 	      jint low = get_int ();
 | |
| 	      jint high = get_int ();
 | |
| 	      // Already checked LOW -vs- HIGH.
 | |
| 	      for (int i = low; i <= high; ++i)
 | |
| 		push_jump (get_int ());
 | |
| 	      invalidate_pc ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lookupswitch:
 | |
| 	    {
 | |
| 	      pop_type (int_type);
 | |
| 	      skip_padding ();
 | |
| 	      push_jump (get_int ());
 | |
| 	      jint npairs = get_int ();
 | |
| 	      // Already checked NPAIRS >= 0.
 | |
| 	      jint lastkey = 0;
 | |
| 	      for (int i = 0; i < npairs; ++i)
 | |
| 		{
 | |
| 		  jint key = get_int ();
 | |
| 		  if (i > 0 && key <= lastkey)
 | |
| 		    verify_fail ("lookupswitch pairs unsorted", start_PC);
 | |
| 		  lastkey = key;
 | |
| 		  push_jump (get_int ());
 | |
| 		}
 | |
| 	      invalidate_pc ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_ireturn:
 | |
| 	    check_return_type (pop_type (int_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_lreturn:
 | |
| 	    check_return_type (pop_type (long_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_freturn:
 | |
| 	    check_return_type (pop_type (float_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_dreturn:
 | |
| 	    check_return_type (pop_type (double_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_areturn:
 | |
| 	    check_return_type (pop_type (reference_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_return:
 | |
| 	    // We only need to check this when the return type is
 | |
| 	    // void, because all instance initializers return void.
 | |
| 	    if (this_is_init)
 | |
| 	      current_state->check_this_initialized ();
 | |
| 	    check_return_type (void_type);
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_getstatic:
 | |
| 	    push_type (check_field_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_putstatic:
 | |
| 	    pop_type (check_field_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_getfield:
 | |
| 	    {
 | |
| 	      type klass;
 | |
| 	      type field = check_field_constant (get_ushort (), &klass);
 | |
| 	      pop_type (klass);
 | |
| 	      push_type (field);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_putfield:
 | |
| 	    {
 | |
| 	      type klass;
 | |
| 	      type field = check_field_constant (get_ushort (), &klass);
 | |
| 	      pop_type (field);
 | |
| 
 | |
| 	      // We have an obscure special case here: we can use
 | |
| 	      // `putfield' on a field declared in this class, even if
 | |
| 	      // `this' has not yet been initialized.
 | |
| 	      if (! current_state->this_type.isinitialized ()
 | |
| 		  && current_state->this_type.pc == type::SELF)
 | |
| 		klass.set_uninitialized (type::SELF);
 | |
| 	      pop_type (klass);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_invokevirtual:
 | |
| 	  case op_invokespecial:
 | |
| 	  case op_invokestatic:
 | |
| 	  case op_invokeinterface:
 | |
| 	    {
 | |
| 	      _Jv_Utf8Const *method_name, *method_signature;
 | |
| 	      type class_type
 | |
| 		= check_method_constant (get_ushort (),
 | |
| 					 opcode == op_invokeinterface,
 | |
| 					 &method_name,
 | |
| 					 &method_signature);
 | |
| 	      int arg_count = _Jv_count_arguments (method_signature);
 | |
| 	      if (opcode == op_invokeinterface)
 | |
| 		{
 | |
| 		  int nargs = get_byte ();
 | |
| 		  if (nargs == 0)
 | |
| 		    verify_fail ("too few arguments to invokeinterface",
 | |
| 				 start_PC);
 | |
| 		  if (get_byte () != 0)
 | |
| 		    verify_fail ("invokeinterface dummy byte is wrong",
 | |
| 				 start_PC);
 | |
| 		  if (nargs - 1 != arg_count)
 | |
| 		    verify_fail ("wrong argument count for invokeinterface",
 | |
| 				 start_PC);
 | |
| 		}
 | |
| 
 | |
| 	      bool is_init = false;
 | |
| 	      if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
 | |
| 		{
 | |
| 		  is_init = true;
 | |
| 		  if (opcode != op_invokespecial)
 | |
| 		    verify_fail ("can't invoke <init>", start_PC);
 | |
| 		}
 | |
| 	      else if (method_name->data[0] == '<')
 | |
| 		verify_fail ("can't invoke method starting with `<'",
 | |
| 			     start_PC);
 | |
| 
 | |
| 	      // Pop arguments and check types.
 | |
| 	      type arg_types[arg_count];
 | |
| 	      compute_argument_types (method_signature, arg_types);
 | |
| 	      for (int i = arg_count - 1; i >= 0; --i)
 | |
| 		pop_type (arg_types[i]);
 | |
| 
 | |
| 	      if (opcode != op_invokestatic)
 | |
| 		{
 | |
| 		  type t = class_type;
 | |
| 		  if (is_init)
 | |
| 		    {
 | |
| 		      // In this case the PC doesn't matter.
 | |
| 		      t.set_uninitialized (type::UNINIT);
 | |
| 		    }
 | |
| 		  t = pop_type (t);
 | |
| 		  if (is_init)
 | |
| 		    current_state->set_initialized (t.get_pc (),
 | |
| 						    current_method->max_locals);
 | |
| 		}
 | |
| 
 | |
| 	      type rt = compute_return_type (method_signature);
 | |
| 	      if (! rt.isvoid ())
 | |
| 		push_type (rt);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_new:
 | |
| 	    {
 | |
| 	      type t = check_class_constant (get_ushort ());
 | |
| 	      if (t.isarray () || t.isinterface () || t.isabstract ())
 | |
| 		verify_fail ("type is array, interface, or abstract",
 | |
| 			     start_PC);
 | |
| 	      t.set_uninitialized (start_PC);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_newarray:
 | |
| 	    {
 | |
| 	      int atype = get_byte ();
 | |
| 	      // We intentionally have chosen constants to make this
 | |
| 	      // valid.
 | |
| 	      if (atype < boolean_type || atype > long_type)
 | |
| 		verify_fail ("type not primitive", start_PC);
 | |
| 	      pop_type (int_type);
 | |
| 	      push_type (construct_primitive_array_type (type_val (atype)));
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_anewarray:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (check_class_constant (get_ushort ()).to_array ());
 | |
| 	    break;
 | |
| 	  case op_arraylength:
 | |
| 	    {
 | |
| 	      type t = pop_type (reference_type);
 | |
| 	      if (! t.isarray ())
 | |
| 		verify_fail ("array type expected", start_PC);
 | |
| 	      push_type (int_type);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_athrow:
 | |
| 	    pop_type (type (&java::lang::Throwable::class$));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_checkcast:
 | |
| 	    pop_type (reference_type);
 | |
| 	    push_type (check_class_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_instanceof:
 | |
| 	    pop_type (reference_type);
 | |
| 	    check_class_constant (get_ushort ());
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_monitorenter:
 | |
| 	    pop_type (reference_type);
 | |
| 	    break;
 | |
| 	  case op_monitorexit:
 | |
| 	    pop_type (reference_type);
 | |
| 	    break;
 | |
| 	  case op_wide:
 | |
| 	    {
 | |
| 	      switch (get_byte ())
 | |
| 		{
 | |
| 		case op_iload:
 | |
| 		  push_type (get_variable (get_ushort (), int_type));
 | |
| 		  break;
 | |
| 		case op_lload:
 | |
| 		  push_type (get_variable (get_ushort (), long_type));
 | |
| 		  break;
 | |
| 		case op_fload:
 | |
| 		  push_type (get_variable (get_ushort (), float_type));
 | |
| 		  break;
 | |
| 		case op_dload:
 | |
| 		  push_type (get_variable (get_ushort (), double_type));
 | |
| 		  break;
 | |
| 		case op_aload:
 | |
| 		  push_type (get_variable (get_ushort (), reference_type));
 | |
| 		  break;
 | |
| 		case op_istore:
 | |
| 		  set_variable (get_ushort (), pop_type (int_type));
 | |
| 		  break;
 | |
| 		case op_lstore:
 | |
| 		  set_variable (get_ushort (), pop_type (long_type));
 | |
| 		  break;
 | |
| 		case op_fstore:
 | |
| 		  set_variable (get_ushort (), pop_type (float_type));
 | |
| 		  break;
 | |
| 		case op_dstore:
 | |
| 		  set_variable (get_ushort (), pop_type (double_type));
 | |
| 		  break;
 | |
| 		case op_astore:
 | |
| 		  set_variable (get_ushort (), pop_type (reference_type));
 | |
| 		  break;
 | |
| 		case op_ret:
 | |
| 		  handle_ret_insn (get_short ());
 | |
| 		  break;
 | |
| 		case op_iinc:
 | |
| 		  get_variable (get_ushort (), int_type);
 | |
| 		  get_short ();
 | |
| 		  break;
 | |
| 		default:
 | |
| 		  verify_fail ("unrecognized wide instruction", start_PC);
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_multianewarray:
 | |
| 	    {
 | |
| 	      type atype = check_class_constant (get_ushort ());
 | |
| 	      int dim = get_byte ();
 | |
| 	      if (dim < 1)
 | |
| 		verify_fail ("too few dimensions to multianewarray", start_PC);
 | |
| 	      atype.verify_dimensions (dim);
 | |
| 	      for (int i = 0; i < dim; ++i)
 | |
| 		pop_type (int_type);
 | |
| 	      push_type (atype);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_ifnull:
 | |
| 	  case op_ifnonnull:
 | |
| 	    pop_type (reference_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_goto_w:
 | |
| 	    push_jump (get_int ());
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_jsr_w:
 | |
| 	    handle_jsr_insn (get_int ());
 | |
| 	    break;
 | |
| 
 | |
| 	  default:
 | |
| 	    // Unrecognized opcode.
 | |
| 	    verify_fail ("unrecognized instruction in verify_instructions_0",
 | |
| 			 start_PC);
 | |
| 	  }
 | |
|       }
 | |
|   }
 | |
| 
 | |
| public:
 | |
| 
 | |
|   void verify_instructions ()
 | |
|   {
 | |
|     branch_prepass ();
 | |
|     verify_instructions_0 ();
 | |
|   }
 | |
| 
 | |
|   _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
 | |
|   {
 | |
|     // We just print the text as utf-8.  This is just for debugging
 | |
|     // anyway.
 | |
|     debug_print ("--------------------------------\n");
 | |
|     debug_print ("-- Verifying method `%s'\n", m->self->name->data);
 | |
| 
 | |
|     current_method = m;
 | |
|     bytecode = m->bytecode ();
 | |
|     exception = m->exceptions ();
 | |
|     current_class = m->defining_class;
 | |
| 
 | |
|     states = NULL;
 | |
|     flags = NULL;
 | |
|     jsr_ptrs = NULL;
 | |
|     utf8_list = NULL;
 | |
|   }
 | |
| 
 | |
|   ~_Jv_BytecodeVerifier ()
 | |
|   {
 | |
|     if (states)
 | |
|       _Jv_Free (states);
 | |
|     if (flags)
 | |
|       _Jv_Free (flags);
 | |
|     if (jsr_ptrs)
 | |
|       _Jv_Free (jsr_ptrs);
 | |
|     while (utf8_list != NULL)
 | |
|       {
 | |
| 	linked_utf8 *n = utf8_list->next;
 | |
| 	_Jv_Free (utf8_list->val);
 | |
| 	_Jv_Free (utf8_list);
 | |
| 	utf8_list = n;
 | |
|       }
 | |
|   }
 | |
| };
 | |
| 
 | |
| void
 | |
| _Jv_VerifyMethod (_Jv_InterpMethod *meth)
 | |
| {
 | |
|   _Jv_BytecodeVerifier v (meth);
 | |
|   v.verify_instructions ();
 | |
| }
 | |
| 
 | |
| // FIXME: add more info, like PC, when required.
 | |
| static void
 | |
| verify_fail (char *s, jint pc)
 | |
| {
 | |
|   using namespace java::lang;
 | |
|   StringBuffer *buf = new StringBuffer ();
 | |
| 
 | |
|   buf->append (JvNewStringLatin1 ("verification failed"));
 | |
|   if (pc != -1)
 | |
|     {
 | |
|       buf->append (JvNewStringLatin1 (" at PC "));
 | |
|       buf->append (pc);
 | |
|     }
 | |
|   buf->append (JvNewStringLatin1 (": "));
 | |
|   buf->append (JvNewStringLatin1 (s));
 | |
|   throw new java::lang::VerifyError (buf->toString ());
 | |
| }
 | |
| 
 | |
| #endif	/* INTERPRETER */
 |