mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2930 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2930 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the MATMUL intrinsic
 | 
						|
   Copyright (C) 2002-2018 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_GFC_INTEGER_2)
 | 
						|
 | 
						|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
 | 
						|
   passed to us by the front-end, in which case we call it for large
 | 
						|
   matrices.  */
 | 
						|
 | 
						|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
 | 
						|
                          const int *, const GFC_INTEGER_2 *, const GFC_INTEGER_2 *,
 | 
						|
                          const int *, const GFC_INTEGER_2 *, const int *,
 | 
						|
                          const GFC_INTEGER_2 *, GFC_INTEGER_2 *, const int *,
 | 
						|
                          int, int);
 | 
						|
 | 
						|
/* The order of loops is different in the case of plain matrix
 | 
						|
   multiplication C=MATMUL(A,B), and in the frequent special case where
 | 
						|
   the argument A is the temporary result of a TRANSPOSE intrinsic:
 | 
						|
   C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by
 | 
						|
   looking at their strides.
 | 
						|
 | 
						|
   The equivalent Fortran pseudo-code is:
 | 
						|
 | 
						|
   DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
 | 
						|
   IF (.NOT.IS_TRANSPOSED(A)) THEN
 | 
						|
     C = 0
 | 
						|
     DO J=1,N
 | 
						|
       DO K=1,COUNT
 | 
						|
         DO I=1,M
 | 
						|
           C(I,J) = C(I,J)+A(I,K)*B(K,J)
 | 
						|
   ELSE
 | 
						|
     DO J=1,N
 | 
						|
       DO I=1,M
 | 
						|
         S = 0
 | 
						|
         DO K=1,COUNT
 | 
						|
           S = S+A(I,K)*B(K,J)
 | 
						|
         C(I,J) = S
 | 
						|
   ENDIF
 | 
						|
*/
 | 
						|
 | 
						|
/* If try_blas is set to a nonzero value, then the matmul function will
 | 
						|
   see if there is a way to perform the matrix multiplication by a call
 | 
						|
   to the BLAS gemm function.  */
 | 
						|
 | 
						|
extern void matmul_i2 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm);
 | 
						|
export_proto(matmul_i2);
 | 
						|
 | 
						|
/* Put exhaustive list of possible architectures here here, ORed together.  */
 | 
						|
 | 
						|
#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
 | 
						|
 | 
						|
#ifdef HAVE_AVX
 | 
						|
static void
 | 
						|
matmul_i2_avx (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
 | 
						|
static void
 | 
						|
matmul_i2_avx (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  const GFC_INTEGER_2 * restrict abase;
 | 
						|
  const GFC_INTEGER_2 * restrict bbase;
 | 
						|
  GFC_INTEGER_2 * restrict dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
*/
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 1:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 2:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | 
						|
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
 | 
						|
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | 
						|
    {
 | 
						|
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | 
						|
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
         The value is only used for calculation of the
 | 
						|
         memory by the buffer.  */
 | 
						|
      bystride = 256;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  bbase = b->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  /* Now that everything is set up, we perform the multiplication
 | 
						|
     itself.  */
 | 
						|
 | 
						|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | 
						|
#define min(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define max(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | 
						|
      && (bxstride == 1 || bystride == 1)
 | 
						|
      && (((float) xcount) * ((float) ycount) * ((float) count)
 | 
						|
          > POW3(blas_limit)))
 | 
						|
    {
 | 
						|
      const int m = xcount, n = ycount, k = count, ldc = rystride;
 | 
						|
      const GFC_INTEGER_2 one = 1, zero = 0;
 | 
						|
      const int lda = (axstride == 1) ? aystride : axstride,
 | 
						|
		ldb = (bxstride == 1) ? bystride : bxstride;
 | 
						|
 | 
						|
      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | 
						|
	{
 | 
						|
	  assert (gemm != NULL);
 | 
						|
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
 | 
						|
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | 
						|
		&ldc, 1, 1);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      /* This block of code implements a tuned matmul, derived from
 | 
						|
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | 
						|
 | 
						|
               Bo Kagstrom and Per Ling
 | 
						|
               Department of Computing Science
 | 
						|
               Umea University
 | 
						|
               S-901 87 Umea, Sweden
 | 
						|
 | 
						|
	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | 
						|
 | 
						|
      const GFC_INTEGER_2 *a, *b;
 | 
						|
      GFC_INTEGER_2 *c;
 | 
						|
      const index_type m = xcount, n = ycount, k = count;
 | 
						|
 | 
						|
      /* System generated locals */
 | 
						|
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | 
						|
		 i1, i2, i3, i4, i5, i6;
 | 
						|
 | 
						|
      /* Local variables */
 | 
						|
      GFC_INTEGER_2 f11, f12, f21, f22, f31, f32, f41, f42,
 | 
						|
		 f13, f14, f23, f24, f33, f34, f43, f44;
 | 
						|
      index_type i, j, l, ii, jj, ll;
 | 
						|
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | 
						|
      GFC_INTEGER_2 *t1;
 | 
						|
 | 
						|
      a = abase;
 | 
						|
      b = bbase;
 | 
						|
      c = retarray->base_addr;
 | 
						|
 | 
						|
      /* Parameter adjustments */
 | 
						|
      c_dim1 = rystride;
 | 
						|
      c_offset = 1 + c_dim1;
 | 
						|
      c -= c_offset;
 | 
						|
      a_dim1 = aystride;
 | 
						|
      a_offset = 1 + a_dim1;
 | 
						|
      a -= a_offset;
 | 
						|
      b_dim1 = bystride;
 | 
						|
      b_offset = 1 + b_dim1;
 | 
						|
      b -= b_offset;
 | 
						|
 | 
						|
      /* Empty c first.  */
 | 
						|
      for (j=1; j<=n; j++)
 | 
						|
	for (i=1; i<=m; i++)
 | 
						|
	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      /* Early exit if possible */
 | 
						|
      if (m == 0 || n == 0 || k == 0)
 | 
						|
	return;
 | 
						|
 | 
						|
      /* Adjust size of t1 to what is needed.  */
 | 
						|
      index_type t1_dim;
 | 
						|
      t1_dim = (a_dim1 - (ycount > 1)) * 256 + b_dim1;
 | 
						|
      if (t1_dim > 65536)
 | 
						|
	t1_dim = 65536;
 | 
						|
 | 
						|
      t1 = malloc (t1_dim * sizeof(GFC_INTEGER_2));
 | 
						|
 | 
						|
      /* Start turning the crank. */
 | 
						|
      i1 = n;
 | 
						|
      for (jj = 1; jj <= i1; jj += 512)
 | 
						|
	{
 | 
						|
	  /* Computing MIN */
 | 
						|
	  i2 = 512;
 | 
						|
	  i3 = n - jj + 1;
 | 
						|
	  jsec = min(i2,i3);
 | 
						|
	  ujsec = jsec - jsec % 4;
 | 
						|
	  i2 = k;
 | 
						|
	  for (ll = 1; ll <= i2; ll += 256)
 | 
						|
	    {
 | 
						|
	      /* Computing MIN */
 | 
						|
	      i3 = 256;
 | 
						|
	      i4 = k - ll + 1;
 | 
						|
	      lsec = min(i3,i4);
 | 
						|
	      ulsec = lsec - lsec % 2;
 | 
						|
 | 
						|
	      i3 = m;
 | 
						|
	      for (ii = 1; ii <= i3; ii += 256)
 | 
						|
		{
 | 
						|
		  /* Computing MIN */
 | 
						|
		  i4 = 256;
 | 
						|
		  i5 = m - ii + 1;
 | 
						|
		  isec = min(i4,i5);
 | 
						|
		  uisec = isec - isec % 2;
 | 
						|
		  i4 = ll + ulsec - 1;
 | 
						|
		  for (l = ll; l <= i4; l += 2)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 2)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + (l + 1) * a_dim1];
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ulsec < lsec)
 | 
						|
		    {
 | 
						|
		      i4 = ii + isec - 1;
 | 
						|
		      for (i = ii; i<= i4; ++i)
 | 
						|
			{
 | 
						|
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | 
						|
				    a[i + (ll + lsec - 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		  uisec = isec - isec % 4;
 | 
						|
		  i4 = jj + ujsec - 1;
 | 
						|
		  for (j = jj; j <= i4; j += 4)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 4)
 | 
						|
			{
 | 
						|
			  f11 = c[i + j * c_dim1];
 | 
						|
			  f21 = c[i + 1 + j * c_dim1];
 | 
						|
			  f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | 
						|
			  f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | 
						|
			  f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | 
						|
			  f31 = c[i + 2 + j * c_dim1];
 | 
						|
			  f41 = c[i + 3 + j * c_dim1];
 | 
						|
			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | 
						|
			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | 
						|
			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | 
						|
			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | 
						|
			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | 
						|
			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | 
						|
			  i6 = ll + lsec - 1;
 | 
						|
			  for (l = ll; l <= i6; ++l)
 | 
						|
			    {
 | 
						|
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			    }
 | 
						|
			  c[i + j * c_dim1] = f11;
 | 
						|
			  c[i + 1 + j * c_dim1] = f21;
 | 
						|
			  c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | 
						|
			  c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | 
						|
			  c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | 
						|
			  c[i + 2 + j * c_dim1] = f31;
 | 
						|
			  c[i + 3 + j * c_dim1] = f41;
 | 
						|
			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | 
						|
			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | 
						|
			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | 
						|
			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | 
						|
			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | 
						|
			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			      f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			      f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 1) * b_dim1];
 | 
						|
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 2) * b_dim1];
 | 
						|
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 3) * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			      c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			      c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ujsec < jsec)
 | 
						|
		    {
 | 
						|
		      i4 = jj + jsec - 1;
 | 
						|
		      for (j = jj + ujsec; j <= i4; ++j)
 | 
						|
			{
 | 
						|
			  i5 = ii + uisec - 1;
 | 
						|
			  for (i = ii; i <= i5; i += 4)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f21 = c[i + 1 + j * c_dim1];
 | 
						|
			      f31 = c[i + 2 + j * c_dim1];
 | 
						|
			      f41 = c[i + 3 + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + 1 + j * c_dim1] = f21;
 | 
						|
			      c[i + 2 + j * c_dim1] = f31;
 | 
						|
			      c[i + 3 + j * c_dim1] = f41;
 | 
						|
			    }
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      free(t1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) != 1)
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 *restrict dest_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      dest_y = &dest[y*rystride];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  abase_x = &abase[x*axstride];
 | 
						|
		  s = (GFC_INTEGER_2) 0;
 | 
						|
		  for (n = 0; n < count; n++)
 | 
						|
		    s += abase_x[n] * bbase_y[n];
 | 
						|
		  dest_y[x] = s;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase[n*axstride] * bbase_y[n];
 | 
						|
	      dest[y*rystride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else if (axstride < aystride)
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] +=
 | 
						|
					abase[x*axstride + n*aystride] *
 | 
						|
					bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  s = (GFC_INTEGER_2) 0;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | 
						|
	  dest[y*rxstride] = s;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 *restrict dest_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  dest_y = &dest[y*rystride];
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    {
 | 
						|
	      abase_x = &abase[x*axstride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | 
						|
	      dest_y[x*rxstride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef POW3
 | 
						|
#undef min
 | 
						|
#undef max
 | 
						|
 | 
						|
#endif /* HAVE_AVX */
 | 
						|
 | 
						|
#ifdef HAVE_AVX2
 | 
						|
static void
 | 
						|
matmul_i2_avx2 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm) __attribute__((__target__("avx2,fma")));
 | 
						|
static void
 | 
						|
matmul_i2_avx2 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  const GFC_INTEGER_2 * restrict abase;
 | 
						|
  const GFC_INTEGER_2 * restrict bbase;
 | 
						|
  GFC_INTEGER_2 * restrict dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
*/
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 1:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 2:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | 
						|
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
 | 
						|
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | 
						|
    {
 | 
						|
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | 
						|
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
         The value is only used for calculation of the
 | 
						|
         memory by the buffer.  */
 | 
						|
      bystride = 256;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  bbase = b->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  /* Now that everything is set up, we perform the multiplication
 | 
						|
     itself.  */
 | 
						|
 | 
						|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | 
						|
#define min(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define max(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | 
						|
      && (bxstride == 1 || bystride == 1)
 | 
						|
      && (((float) xcount) * ((float) ycount) * ((float) count)
 | 
						|
          > POW3(blas_limit)))
 | 
						|
    {
 | 
						|
      const int m = xcount, n = ycount, k = count, ldc = rystride;
 | 
						|
      const GFC_INTEGER_2 one = 1, zero = 0;
 | 
						|
      const int lda = (axstride == 1) ? aystride : axstride,
 | 
						|
		ldb = (bxstride == 1) ? bystride : bxstride;
 | 
						|
 | 
						|
      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | 
						|
	{
 | 
						|
	  assert (gemm != NULL);
 | 
						|
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
 | 
						|
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | 
						|
		&ldc, 1, 1);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      /* This block of code implements a tuned matmul, derived from
 | 
						|
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | 
						|
 | 
						|
               Bo Kagstrom and Per Ling
 | 
						|
               Department of Computing Science
 | 
						|
               Umea University
 | 
						|
               S-901 87 Umea, Sweden
 | 
						|
 | 
						|
	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | 
						|
 | 
						|
      const GFC_INTEGER_2 *a, *b;
 | 
						|
      GFC_INTEGER_2 *c;
 | 
						|
      const index_type m = xcount, n = ycount, k = count;
 | 
						|
 | 
						|
      /* System generated locals */
 | 
						|
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | 
						|
		 i1, i2, i3, i4, i5, i6;
 | 
						|
 | 
						|
      /* Local variables */
 | 
						|
      GFC_INTEGER_2 f11, f12, f21, f22, f31, f32, f41, f42,
 | 
						|
		 f13, f14, f23, f24, f33, f34, f43, f44;
 | 
						|
      index_type i, j, l, ii, jj, ll;
 | 
						|
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | 
						|
      GFC_INTEGER_2 *t1;
 | 
						|
 | 
						|
      a = abase;
 | 
						|
      b = bbase;
 | 
						|
      c = retarray->base_addr;
 | 
						|
 | 
						|
      /* Parameter adjustments */
 | 
						|
      c_dim1 = rystride;
 | 
						|
      c_offset = 1 + c_dim1;
 | 
						|
      c -= c_offset;
 | 
						|
      a_dim1 = aystride;
 | 
						|
      a_offset = 1 + a_dim1;
 | 
						|
      a -= a_offset;
 | 
						|
      b_dim1 = bystride;
 | 
						|
      b_offset = 1 + b_dim1;
 | 
						|
      b -= b_offset;
 | 
						|
 | 
						|
      /* Empty c first.  */
 | 
						|
      for (j=1; j<=n; j++)
 | 
						|
	for (i=1; i<=m; i++)
 | 
						|
	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      /* Early exit if possible */
 | 
						|
      if (m == 0 || n == 0 || k == 0)
 | 
						|
	return;
 | 
						|
 | 
						|
      /* Adjust size of t1 to what is needed.  */
 | 
						|
      index_type t1_dim;
 | 
						|
      t1_dim = (a_dim1 - (ycount > 1)) * 256 + b_dim1;
 | 
						|
      if (t1_dim > 65536)
 | 
						|
	t1_dim = 65536;
 | 
						|
 | 
						|
      t1 = malloc (t1_dim * sizeof(GFC_INTEGER_2));
 | 
						|
 | 
						|
      /* Start turning the crank. */
 | 
						|
      i1 = n;
 | 
						|
      for (jj = 1; jj <= i1; jj += 512)
 | 
						|
	{
 | 
						|
	  /* Computing MIN */
 | 
						|
	  i2 = 512;
 | 
						|
	  i3 = n - jj + 1;
 | 
						|
	  jsec = min(i2,i3);
 | 
						|
	  ujsec = jsec - jsec % 4;
 | 
						|
	  i2 = k;
 | 
						|
	  for (ll = 1; ll <= i2; ll += 256)
 | 
						|
	    {
 | 
						|
	      /* Computing MIN */
 | 
						|
	      i3 = 256;
 | 
						|
	      i4 = k - ll + 1;
 | 
						|
	      lsec = min(i3,i4);
 | 
						|
	      ulsec = lsec - lsec % 2;
 | 
						|
 | 
						|
	      i3 = m;
 | 
						|
	      for (ii = 1; ii <= i3; ii += 256)
 | 
						|
		{
 | 
						|
		  /* Computing MIN */
 | 
						|
		  i4 = 256;
 | 
						|
		  i5 = m - ii + 1;
 | 
						|
		  isec = min(i4,i5);
 | 
						|
		  uisec = isec - isec % 2;
 | 
						|
		  i4 = ll + ulsec - 1;
 | 
						|
		  for (l = ll; l <= i4; l += 2)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 2)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + (l + 1) * a_dim1];
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ulsec < lsec)
 | 
						|
		    {
 | 
						|
		      i4 = ii + isec - 1;
 | 
						|
		      for (i = ii; i<= i4; ++i)
 | 
						|
			{
 | 
						|
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | 
						|
				    a[i + (ll + lsec - 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		  uisec = isec - isec % 4;
 | 
						|
		  i4 = jj + ujsec - 1;
 | 
						|
		  for (j = jj; j <= i4; j += 4)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 4)
 | 
						|
			{
 | 
						|
			  f11 = c[i + j * c_dim1];
 | 
						|
			  f21 = c[i + 1 + j * c_dim1];
 | 
						|
			  f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | 
						|
			  f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | 
						|
			  f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | 
						|
			  f31 = c[i + 2 + j * c_dim1];
 | 
						|
			  f41 = c[i + 3 + j * c_dim1];
 | 
						|
			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | 
						|
			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | 
						|
			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | 
						|
			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | 
						|
			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | 
						|
			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | 
						|
			  i6 = ll + lsec - 1;
 | 
						|
			  for (l = ll; l <= i6; ++l)
 | 
						|
			    {
 | 
						|
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			    }
 | 
						|
			  c[i + j * c_dim1] = f11;
 | 
						|
			  c[i + 1 + j * c_dim1] = f21;
 | 
						|
			  c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | 
						|
			  c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | 
						|
			  c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | 
						|
			  c[i + 2 + j * c_dim1] = f31;
 | 
						|
			  c[i + 3 + j * c_dim1] = f41;
 | 
						|
			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | 
						|
			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | 
						|
			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | 
						|
			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | 
						|
			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | 
						|
			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			      f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			      f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 1) * b_dim1];
 | 
						|
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 2) * b_dim1];
 | 
						|
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 3) * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			      c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			      c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ujsec < jsec)
 | 
						|
		    {
 | 
						|
		      i4 = jj + jsec - 1;
 | 
						|
		      for (j = jj + ujsec; j <= i4; ++j)
 | 
						|
			{
 | 
						|
			  i5 = ii + uisec - 1;
 | 
						|
			  for (i = ii; i <= i5; i += 4)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f21 = c[i + 1 + j * c_dim1];
 | 
						|
			      f31 = c[i + 2 + j * c_dim1];
 | 
						|
			      f41 = c[i + 3 + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + 1 + j * c_dim1] = f21;
 | 
						|
			      c[i + 2 + j * c_dim1] = f31;
 | 
						|
			      c[i + 3 + j * c_dim1] = f41;
 | 
						|
			    }
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      free(t1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) != 1)
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 *restrict dest_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      dest_y = &dest[y*rystride];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  abase_x = &abase[x*axstride];
 | 
						|
		  s = (GFC_INTEGER_2) 0;
 | 
						|
		  for (n = 0; n < count; n++)
 | 
						|
		    s += abase_x[n] * bbase_y[n];
 | 
						|
		  dest_y[x] = s;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase[n*axstride] * bbase_y[n];
 | 
						|
	      dest[y*rystride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else if (axstride < aystride)
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] +=
 | 
						|
					abase[x*axstride + n*aystride] *
 | 
						|
					bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  s = (GFC_INTEGER_2) 0;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | 
						|
	  dest[y*rxstride] = s;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 *restrict dest_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  dest_y = &dest[y*rystride];
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    {
 | 
						|
	      abase_x = &abase[x*axstride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | 
						|
	      dest_y[x*rxstride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef POW3
 | 
						|
#undef min
 | 
						|
#undef max
 | 
						|
 | 
						|
#endif /* HAVE_AVX2 */
 | 
						|
 | 
						|
#ifdef HAVE_AVX512F
 | 
						|
static void
 | 
						|
matmul_i2_avx512f (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
 | 
						|
static void
 | 
						|
matmul_i2_avx512f (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  const GFC_INTEGER_2 * restrict abase;
 | 
						|
  const GFC_INTEGER_2 * restrict bbase;
 | 
						|
  GFC_INTEGER_2 * restrict dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
*/
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 1:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 2:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | 
						|
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
 | 
						|
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | 
						|
    {
 | 
						|
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | 
						|
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
         The value is only used for calculation of the
 | 
						|
         memory by the buffer.  */
 | 
						|
      bystride = 256;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  bbase = b->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  /* Now that everything is set up, we perform the multiplication
 | 
						|
     itself.  */
 | 
						|
 | 
						|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | 
						|
#define min(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define max(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | 
						|
      && (bxstride == 1 || bystride == 1)
 | 
						|
      && (((float) xcount) * ((float) ycount) * ((float) count)
 | 
						|
          > POW3(blas_limit)))
 | 
						|
    {
 | 
						|
      const int m = xcount, n = ycount, k = count, ldc = rystride;
 | 
						|
      const GFC_INTEGER_2 one = 1, zero = 0;
 | 
						|
      const int lda = (axstride == 1) ? aystride : axstride,
 | 
						|
		ldb = (bxstride == 1) ? bystride : bxstride;
 | 
						|
 | 
						|
      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | 
						|
	{
 | 
						|
	  assert (gemm != NULL);
 | 
						|
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
 | 
						|
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | 
						|
		&ldc, 1, 1);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      /* This block of code implements a tuned matmul, derived from
 | 
						|
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | 
						|
 | 
						|
               Bo Kagstrom and Per Ling
 | 
						|
               Department of Computing Science
 | 
						|
               Umea University
 | 
						|
               S-901 87 Umea, Sweden
 | 
						|
 | 
						|
	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | 
						|
 | 
						|
      const GFC_INTEGER_2 *a, *b;
 | 
						|
      GFC_INTEGER_2 *c;
 | 
						|
      const index_type m = xcount, n = ycount, k = count;
 | 
						|
 | 
						|
      /* System generated locals */
 | 
						|
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | 
						|
		 i1, i2, i3, i4, i5, i6;
 | 
						|
 | 
						|
      /* Local variables */
 | 
						|
      GFC_INTEGER_2 f11, f12, f21, f22, f31, f32, f41, f42,
 | 
						|
		 f13, f14, f23, f24, f33, f34, f43, f44;
 | 
						|
      index_type i, j, l, ii, jj, ll;
 | 
						|
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | 
						|
      GFC_INTEGER_2 *t1;
 | 
						|
 | 
						|
      a = abase;
 | 
						|
      b = bbase;
 | 
						|
      c = retarray->base_addr;
 | 
						|
 | 
						|
      /* Parameter adjustments */
 | 
						|
      c_dim1 = rystride;
 | 
						|
      c_offset = 1 + c_dim1;
 | 
						|
      c -= c_offset;
 | 
						|
      a_dim1 = aystride;
 | 
						|
      a_offset = 1 + a_dim1;
 | 
						|
      a -= a_offset;
 | 
						|
      b_dim1 = bystride;
 | 
						|
      b_offset = 1 + b_dim1;
 | 
						|
      b -= b_offset;
 | 
						|
 | 
						|
      /* Empty c first.  */
 | 
						|
      for (j=1; j<=n; j++)
 | 
						|
	for (i=1; i<=m; i++)
 | 
						|
	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      /* Early exit if possible */
 | 
						|
      if (m == 0 || n == 0 || k == 0)
 | 
						|
	return;
 | 
						|
 | 
						|
      /* Adjust size of t1 to what is needed.  */
 | 
						|
      index_type t1_dim;
 | 
						|
      t1_dim = (a_dim1 - (ycount > 1)) * 256 + b_dim1;
 | 
						|
      if (t1_dim > 65536)
 | 
						|
	t1_dim = 65536;
 | 
						|
 | 
						|
      t1 = malloc (t1_dim * sizeof(GFC_INTEGER_2));
 | 
						|
 | 
						|
      /* Start turning the crank. */
 | 
						|
      i1 = n;
 | 
						|
      for (jj = 1; jj <= i1; jj += 512)
 | 
						|
	{
 | 
						|
	  /* Computing MIN */
 | 
						|
	  i2 = 512;
 | 
						|
	  i3 = n - jj + 1;
 | 
						|
	  jsec = min(i2,i3);
 | 
						|
	  ujsec = jsec - jsec % 4;
 | 
						|
	  i2 = k;
 | 
						|
	  for (ll = 1; ll <= i2; ll += 256)
 | 
						|
	    {
 | 
						|
	      /* Computing MIN */
 | 
						|
	      i3 = 256;
 | 
						|
	      i4 = k - ll + 1;
 | 
						|
	      lsec = min(i3,i4);
 | 
						|
	      ulsec = lsec - lsec % 2;
 | 
						|
 | 
						|
	      i3 = m;
 | 
						|
	      for (ii = 1; ii <= i3; ii += 256)
 | 
						|
		{
 | 
						|
		  /* Computing MIN */
 | 
						|
		  i4 = 256;
 | 
						|
		  i5 = m - ii + 1;
 | 
						|
		  isec = min(i4,i5);
 | 
						|
		  uisec = isec - isec % 2;
 | 
						|
		  i4 = ll + ulsec - 1;
 | 
						|
		  for (l = ll; l <= i4; l += 2)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 2)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + (l + 1) * a_dim1];
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ulsec < lsec)
 | 
						|
		    {
 | 
						|
		      i4 = ii + isec - 1;
 | 
						|
		      for (i = ii; i<= i4; ++i)
 | 
						|
			{
 | 
						|
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | 
						|
				    a[i + (ll + lsec - 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		  uisec = isec - isec % 4;
 | 
						|
		  i4 = jj + ujsec - 1;
 | 
						|
		  for (j = jj; j <= i4; j += 4)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 4)
 | 
						|
			{
 | 
						|
			  f11 = c[i + j * c_dim1];
 | 
						|
			  f21 = c[i + 1 + j * c_dim1];
 | 
						|
			  f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | 
						|
			  f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | 
						|
			  f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | 
						|
			  f31 = c[i + 2 + j * c_dim1];
 | 
						|
			  f41 = c[i + 3 + j * c_dim1];
 | 
						|
			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | 
						|
			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | 
						|
			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | 
						|
			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | 
						|
			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | 
						|
			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | 
						|
			  i6 = ll + lsec - 1;
 | 
						|
			  for (l = ll; l <= i6; ++l)
 | 
						|
			    {
 | 
						|
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			    }
 | 
						|
			  c[i + j * c_dim1] = f11;
 | 
						|
			  c[i + 1 + j * c_dim1] = f21;
 | 
						|
			  c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | 
						|
			  c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | 
						|
			  c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | 
						|
			  c[i + 2 + j * c_dim1] = f31;
 | 
						|
			  c[i + 3 + j * c_dim1] = f41;
 | 
						|
			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | 
						|
			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | 
						|
			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | 
						|
			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | 
						|
			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | 
						|
			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			      f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			      f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 1) * b_dim1];
 | 
						|
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 2) * b_dim1];
 | 
						|
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 3) * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			      c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			      c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ujsec < jsec)
 | 
						|
		    {
 | 
						|
		      i4 = jj + jsec - 1;
 | 
						|
		      for (j = jj + ujsec; j <= i4; ++j)
 | 
						|
			{
 | 
						|
			  i5 = ii + uisec - 1;
 | 
						|
			  for (i = ii; i <= i5; i += 4)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f21 = c[i + 1 + j * c_dim1];
 | 
						|
			      f31 = c[i + 2 + j * c_dim1];
 | 
						|
			      f41 = c[i + 3 + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + 1 + j * c_dim1] = f21;
 | 
						|
			      c[i + 2 + j * c_dim1] = f31;
 | 
						|
			      c[i + 3 + j * c_dim1] = f41;
 | 
						|
			    }
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      free(t1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) != 1)
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 *restrict dest_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      dest_y = &dest[y*rystride];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  abase_x = &abase[x*axstride];
 | 
						|
		  s = (GFC_INTEGER_2) 0;
 | 
						|
		  for (n = 0; n < count; n++)
 | 
						|
		    s += abase_x[n] * bbase_y[n];
 | 
						|
		  dest_y[x] = s;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase[n*axstride] * bbase_y[n];
 | 
						|
	      dest[y*rystride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else if (axstride < aystride)
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] +=
 | 
						|
					abase[x*axstride + n*aystride] *
 | 
						|
					bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  s = (GFC_INTEGER_2) 0;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | 
						|
	  dest[y*rxstride] = s;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 *restrict dest_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  dest_y = &dest[y*rystride];
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    {
 | 
						|
	      abase_x = &abase[x*axstride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | 
						|
	      dest_y[x*rxstride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef POW3
 | 
						|
#undef min
 | 
						|
#undef max
 | 
						|
 | 
						|
#endif  /* HAVE_AVX512F */
 | 
						|
 | 
						|
/* AMD-specifix funtions with AVX128 and FMA3/FMA4.  */
 | 
						|
 | 
						|
#if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
 | 
						|
void
 | 
						|
matmul_i2_avx128_fma3 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma")));
 | 
						|
internal_proto(matmul_i2_avx128_fma3);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
 | 
						|
void
 | 
						|
matmul_i2_avx128_fma4 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4")));
 | 
						|
internal_proto(matmul_i2_avx128_fma4);
 | 
						|
#endif
 | 
						|
 | 
						|
/* Function to fall back to if there is no special processor-specific version.  */
 | 
						|
static void
 | 
						|
matmul_i2_vanilla (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  const GFC_INTEGER_2 * restrict abase;
 | 
						|
  const GFC_INTEGER_2 * restrict bbase;
 | 
						|
  GFC_INTEGER_2 * restrict dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
*/
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 1:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 2:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | 
						|
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
 | 
						|
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | 
						|
    {
 | 
						|
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | 
						|
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
         The value is only used for calculation of the
 | 
						|
         memory by the buffer.  */
 | 
						|
      bystride = 256;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  bbase = b->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  /* Now that everything is set up, we perform the multiplication
 | 
						|
     itself.  */
 | 
						|
 | 
						|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | 
						|
#define min(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define max(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | 
						|
      && (bxstride == 1 || bystride == 1)
 | 
						|
      && (((float) xcount) * ((float) ycount) * ((float) count)
 | 
						|
          > POW3(blas_limit)))
 | 
						|
    {
 | 
						|
      const int m = xcount, n = ycount, k = count, ldc = rystride;
 | 
						|
      const GFC_INTEGER_2 one = 1, zero = 0;
 | 
						|
      const int lda = (axstride == 1) ? aystride : axstride,
 | 
						|
		ldb = (bxstride == 1) ? bystride : bxstride;
 | 
						|
 | 
						|
      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | 
						|
	{
 | 
						|
	  assert (gemm != NULL);
 | 
						|
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
 | 
						|
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | 
						|
		&ldc, 1, 1);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      /* This block of code implements a tuned matmul, derived from
 | 
						|
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | 
						|
 | 
						|
               Bo Kagstrom and Per Ling
 | 
						|
               Department of Computing Science
 | 
						|
               Umea University
 | 
						|
               S-901 87 Umea, Sweden
 | 
						|
 | 
						|
	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | 
						|
 | 
						|
      const GFC_INTEGER_2 *a, *b;
 | 
						|
      GFC_INTEGER_2 *c;
 | 
						|
      const index_type m = xcount, n = ycount, k = count;
 | 
						|
 | 
						|
      /* System generated locals */
 | 
						|
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | 
						|
		 i1, i2, i3, i4, i5, i6;
 | 
						|
 | 
						|
      /* Local variables */
 | 
						|
      GFC_INTEGER_2 f11, f12, f21, f22, f31, f32, f41, f42,
 | 
						|
		 f13, f14, f23, f24, f33, f34, f43, f44;
 | 
						|
      index_type i, j, l, ii, jj, ll;
 | 
						|
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | 
						|
      GFC_INTEGER_2 *t1;
 | 
						|
 | 
						|
      a = abase;
 | 
						|
      b = bbase;
 | 
						|
      c = retarray->base_addr;
 | 
						|
 | 
						|
      /* Parameter adjustments */
 | 
						|
      c_dim1 = rystride;
 | 
						|
      c_offset = 1 + c_dim1;
 | 
						|
      c -= c_offset;
 | 
						|
      a_dim1 = aystride;
 | 
						|
      a_offset = 1 + a_dim1;
 | 
						|
      a -= a_offset;
 | 
						|
      b_dim1 = bystride;
 | 
						|
      b_offset = 1 + b_dim1;
 | 
						|
      b -= b_offset;
 | 
						|
 | 
						|
      /* Empty c first.  */
 | 
						|
      for (j=1; j<=n; j++)
 | 
						|
	for (i=1; i<=m; i++)
 | 
						|
	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      /* Early exit if possible */
 | 
						|
      if (m == 0 || n == 0 || k == 0)
 | 
						|
	return;
 | 
						|
 | 
						|
      /* Adjust size of t1 to what is needed.  */
 | 
						|
      index_type t1_dim;
 | 
						|
      t1_dim = (a_dim1 - (ycount > 1)) * 256 + b_dim1;
 | 
						|
      if (t1_dim > 65536)
 | 
						|
	t1_dim = 65536;
 | 
						|
 | 
						|
      t1 = malloc (t1_dim * sizeof(GFC_INTEGER_2));
 | 
						|
 | 
						|
      /* Start turning the crank. */
 | 
						|
      i1 = n;
 | 
						|
      for (jj = 1; jj <= i1; jj += 512)
 | 
						|
	{
 | 
						|
	  /* Computing MIN */
 | 
						|
	  i2 = 512;
 | 
						|
	  i3 = n - jj + 1;
 | 
						|
	  jsec = min(i2,i3);
 | 
						|
	  ujsec = jsec - jsec % 4;
 | 
						|
	  i2 = k;
 | 
						|
	  for (ll = 1; ll <= i2; ll += 256)
 | 
						|
	    {
 | 
						|
	      /* Computing MIN */
 | 
						|
	      i3 = 256;
 | 
						|
	      i4 = k - ll + 1;
 | 
						|
	      lsec = min(i3,i4);
 | 
						|
	      ulsec = lsec - lsec % 2;
 | 
						|
 | 
						|
	      i3 = m;
 | 
						|
	      for (ii = 1; ii <= i3; ii += 256)
 | 
						|
		{
 | 
						|
		  /* Computing MIN */
 | 
						|
		  i4 = 256;
 | 
						|
		  i5 = m - ii + 1;
 | 
						|
		  isec = min(i4,i5);
 | 
						|
		  uisec = isec - isec % 2;
 | 
						|
		  i4 = ll + ulsec - 1;
 | 
						|
		  for (l = ll; l <= i4; l += 2)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 2)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + (l + 1) * a_dim1];
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ulsec < lsec)
 | 
						|
		    {
 | 
						|
		      i4 = ii + isec - 1;
 | 
						|
		      for (i = ii; i<= i4; ++i)
 | 
						|
			{
 | 
						|
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | 
						|
				    a[i + (ll + lsec - 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		  uisec = isec - isec % 4;
 | 
						|
		  i4 = jj + ujsec - 1;
 | 
						|
		  for (j = jj; j <= i4; j += 4)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 4)
 | 
						|
			{
 | 
						|
			  f11 = c[i + j * c_dim1];
 | 
						|
			  f21 = c[i + 1 + j * c_dim1];
 | 
						|
			  f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | 
						|
			  f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | 
						|
			  f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | 
						|
			  f31 = c[i + 2 + j * c_dim1];
 | 
						|
			  f41 = c[i + 3 + j * c_dim1];
 | 
						|
			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | 
						|
			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | 
						|
			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | 
						|
			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | 
						|
			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | 
						|
			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | 
						|
			  i6 = ll + lsec - 1;
 | 
						|
			  for (l = ll; l <= i6; ++l)
 | 
						|
			    {
 | 
						|
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			    }
 | 
						|
			  c[i + j * c_dim1] = f11;
 | 
						|
			  c[i + 1 + j * c_dim1] = f21;
 | 
						|
			  c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | 
						|
			  c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | 
						|
			  c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | 
						|
			  c[i + 2 + j * c_dim1] = f31;
 | 
						|
			  c[i + 3 + j * c_dim1] = f41;
 | 
						|
			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | 
						|
			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | 
						|
			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | 
						|
			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | 
						|
			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | 
						|
			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			      f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			      f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 1) * b_dim1];
 | 
						|
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 2) * b_dim1];
 | 
						|
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 3) * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			      c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			      c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ujsec < jsec)
 | 
						|
		    {
 | 
						|
		      i4 = jj + jsec - 1;
 | 
						|
		      for (j = jj + ujsec; j <= i4; ++j)
 | 
						|
			{
 | 
						|
			  i5 = ii + uisec - 1;
 | 
						|
			  for (i = ii; i <= i5; i += 4)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f21 = c[i + 1 + j * c_dim1];
 | 
						|
			      f31 = c[i + 2 + j * c_dim1];
 | 
						|
			      f41 = c[i + 3 + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + 1 + j * c_dim1] = f21;
 | 
						|
			      c[i + 2 + j * c_dim1] = f31;
 | 
						|
			      c[i + 3 + j * c_dim1] = f41;
 | 
						|
			    }
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      free(t1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) != 1)
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 *restrict dest_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      dest_y = &dest[y*rystride];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  abase_x = &abase[x*axstride];
 | 
						|
		  s = (GFC_INTEGER_2) 0;
 | 
						|
		  for (n = 0; n < count; n++)
 | 
						|
		    s += abase_x[n] * bbase_y[n];
 | 
						|
		  dest_y[x] = s;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase[n*axstride] * bbase_y[n];
 | 
						|
	      dest[y*rystride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else if (axstride < aystride)
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] +=
 | 
						|
					abase[x*axstride + n*aystride] *
 | 
						|
					bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  s = (GFC_INTEGER_2) 0;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | 
						|
	  dest[y*rxstride] = s;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 *restrict dest_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  dest_y = &dest[y*rystride];
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    {
 | 
						|
	      abase_x = &abase[x*axstride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | 
						|
	      dest_y[x*rxstride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef POW3
 | 
						|
#undef min
 | 
						|
#undef max
 | 
						|
 | 
						|
 | 
						|
/* Compiling main function, with selection code for the processor.  */
 | 
						|
 | 
						|
/* Currently, this is i386 only.  Adjust for other architectures.  */
 | 
						|
 | 
						|
#include <config/i386/cpuinfo.h>
 | 
						|
void matmul_i2 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  static void (*matmul_p) (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm);
 | 
						|
 | 
						|
  void (*matmul_fn) (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm);
 | 
						|
 | 
						|
  matmul_fn = __atomic_load_n (&matmul_p, __ATOMIC_RELAXED);
 | 
						|
  if (matmul_fn == NULL)
 | 
						|
    {
 | 
						|
      matmul_fn = matmul_i2_vanilla;
 | 
						|
      if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
 | 
						|
	{
 | 
						|
          /* Run down the available processors in order of preference.  */
 | 
						|
#ifdef HAVE_AVX512F
 | 
						|
      	  if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
 | 
						|
	    {
 | 
						|
	      matmul_fn = matmul_i2_avx512f;
 | 
						|
	      goto store;
 | 
						|
	    }
 | 
						|
 | 
						|
#endif  /* HAVE_AVX512F */
 | 
						|
 | 
						|
#ifdef HAVE_AVX2
 | 
						|
      	  if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
 | 
						|
	     && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
 | 
						|
	    {
 | 
						|
	      matmul_fn = matmul_i2_avx2;
 | 
						|
	      goto store;
 | 
						|
	    }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_AVX
 | 
						|
      	  if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | 
						|
 	    {
 | 
						|
              matmul_fn = matmul_i2_avx;
 | 
						|
	      goto store;
 | 
						|
	    }
 | 
						|
#endif  /* HAVE_AVX */
 | 
						|
        }
 | 
						|
    else if (__cpu_model.__cpu_vendor == VENDOR_AMD)
 | 
						|
      {
 | 
						|
#if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
 | 
						|
        if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | 
						|
	    && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
 | 
						|
	  {
 | 
						|
            matmul_fn = matmul_i2_avx128_fma3;
 | 
						|
	    goto store;
 | 
						|
	  }
 | 
						|
#endif
 | 
						|
#if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
 | 
						|
        if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | 
						|
	     && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA4)))
 | 
						|
	  {
 | 
						|
            matmul_fn = matmul_i2_avx128_fma4;
 | 
						|
	    goto store;
 | 
						|
	  }
 | 
						|
#endif
 | 
						|
 | 
						|
      }
 | 
						|
   store:
 | 
						|
      __atomic_store_n (&matmul_p, matmul_fn, __ATOMIC_RELAXED);
 | 
						|
   }
 | 
						|
 | 
						|
   (*matmul_fn) (retarray, a, b, try_blas, blas_limit, gemm);
 | 
						|
}
 | 
						|
 | 
						|
#else  /* Just the vanilla function.  */
 | 
						|
 | 
						|
void
 | 
						|
matmul_i2 (gfc_array_i2 * const restrict retarray, 
 | 
						|
	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
 | 
						|
	int blas_limit, blas_call gemm)
 | 
						|
{
 | 
						|
  const GFC_INTEGER_2 * restrict abase;
 | 
						|
  const GFC_INTEGER_2 * restrict bbase;
 | 
						|
  GFC_INTEGER_2 * restrict dest;
 | 
						|
 | 
						|
  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | 
						|
  index_type x, y, n, count, xcount, ycount;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | 
						|
 | 
						|
   Either A or B (but not both) can be rank 1:
 | 
						|
 | 
						|
   o One-dimensional argument A is implicitly treated as a row matrix
 | 
						|
     dimensioned [1,count], so xcount=1.
 | 
						|
 | 
						|
   o One-dimensional argument B is implicitly treated as a column matrix
 | 
						|
     dimensioned [count, 1], so ycount=1.
 | 
						|
*/
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 1:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	  if (arg_extent != ret_extent)
 | 
						|
	    runtime_error ("Incorrect extent in return array in"
 | 
						|
			   " MATMUL intrinsic for dimension 2:"
 | 
						|
			   " is %ld, should be %ld",
 | 
						|
			   (long int) ret_extent, (long int) arg_extent);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      /* One-dimensional result may be addressed in the code below
 | 
						|
	 either as a row or a column matrix. We want both cases to
 | 
						|
	 work. */
 | 
						|
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a a row matrix A[1,count]. */
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = 1;
 | 
						|
 | 
						|
      xcount = 1;
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | 
						|
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | 
						|
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
 | 
						|
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | 
						|
    {
 | 
						|
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | 
						|
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      /* Treat it as a column matrix B[count,1] */
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
 | 
						|
      /* bystride should never be used for 1-dimensional b.
 | 
						|
         The value is only used for calculation of the
 | 
						|
         memory by the buffer.  */
 | 
						|
      bystride = 256;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | 
						|
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  bbase = b->base_addr;
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
  /* Now that everything is set up, we perform the multiplication
 | 
						|
     itself.  */
 | 
						|
 | 
						|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | 
						|
#define min(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define max(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
 | 
						|
  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | 
						|
      && (bxstride == 1 || bystride == 1)
 | 
						|
      && (((float) xcount) * ((float) ycount) * ((float) count)
 | 
						|
          > POW3(blas_limit)))
 | 
						|
    {
 | 
						|
      const int m = xcount, n = ycount, k = count, ldc = rystride;
 | 
						|
      const GFC_INTEGER_2 one = 1, zero = 0;
 | 
						|
      const int lda = (axstride == 1) ? aystride : axstride,
 | 
						|
		ldb = (bxstride == 1) ? bystride : bxstride;
 | 
						|
 | 
						|
      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | 
						|
	{
 | 
						|
	  assert (gemm != NULL);
 | 
						|
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
 | 
						|
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | 
						|
		&ldc, 1, 1);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      /* This block of code implements a tuned matmul, derived from
 | 
						|
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | 
						|
 | 
						|
               Bo Kagstrom and Per Ling
 | 
						|
               Department of Computing Science
 | 
						|
               Umea University
 | 
						|
               S-901 87 Umea, Sweden
 | 
						|
 | 
						|
	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | 
						|
 | 
						|
      const GFC_INTEGER_2 *a, *b;
 | 
						|
      GFC_INTEGER_2 *c;
 | 
						|
      const index_type m = xcount, n = ycount, k = count;
 | 
						|
 | 
						|
      /* System generated locals */
 | 
						|
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | 
						|
		 i1, i2, i3, i4, i5, i6;
 | 
						|
 | 
						|
      /* Local variables */
 | 
						|
      GFC_INTEGER_2 f11, f12, f21, f22, f31, f32, f41, f42,
 | 
						|
		 f13, f14, f23, f24, f33, f34, f43, f44;
 | 
						|
      index_type i, j, l, ii, jj, ll;
 | 
						|
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | 
						|
      GFC_INTEGER_2 *t1;
 | 
						|
 | 
						|
      a = abase;
 | 
						|
      b = bbase;
 | 
						|
      c = retarray->base_addr;
 | 
						|
 | 
						|
      /* Parameter adjustments */
 | 
						|
      c_dim1 = rystride;
 | 
						|
      c_offset = 1 + c_dim1;
 | 
						|
      c -= c_offset;
 | 
						|
      a_dim1 = aystride;
 | 
						|
      a_offset = 1 + a_dim1;
 | 
						|
      a -= a_offset;
 | 
						|
      b_dim1 = bystride;
 | 
						|
      b_offset = 1 + b_dim1;
 | 
						|
      b -= b_offset;
 | 
						|
 | 
						|
      /* Empty c first.  */
 | 
						|
      for (j=1; j<=n; j++)
 | 
						|
	for (i=1; i<=m; i++)
 | 
						|
	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      /* Early exit if possible */
 | 
						|
      if (m == 0 || n == 0 || k == 0)
 | 
						|
	return;
 | 
						|
 | 
						|
      /* Adjust size of t1 to what is needed.  */
 | 
						|
      index_type t1_dim;
 | 
						|
      t1_dim = (a_dim1 - (ycount > 1)) * 256 + b_dim1;
 | 
						|
      if (t1_dim > 65536)
 | 
						|
	t1_dim = 65536;
 | 
						|
 | 
						|
      t1 = malloc (t1_dim * sizeof(GFC_INTEGER_2));
 | 
						|
 | 
						|
      /* Start turning the crank. */
 | 
						|
      i1 = n;
 | 
						|
      for (jj = 1; jj <= i1; jj += 512)
 | 
						|
	{
 | 
						|
	  /* Computing MIN */
 | 
						|
	  i2 = 512;
 | 
						|
	  i3 = n - jj + 1;
 | 
						|
	  jsec = min(i2,i3);
 | 
						|
	  ujsec = jsec - jsec % 4;
 | 
						|
	  i2 = k;
 | 
						|
	  for (ll = 1; ll <= i2; ll += 256)
 | 
						|
	    {
 | 
						|
	      /* Computing MIN */
 | 
						|
	      i3 = 256;
 | 
						|
	      i4 = k - ll + 1;
 | 
						|
	      lsec = min(i3,i4);
 | 
						|
	      ulsec = lsec - lsec % 2;
 | 
						|
 | 
						|
	      i3 = m;
 | 
						|
	      for (ii = 1; ii <= i3; ii += 256)
 | 
						|
		{
 | 
						|
		  /* Computing MIN */
 | 
						|
		  i4 = 256;
 | 
						|
		  i5 = m - ii + 1;
 | 
						|
		  isec = min(i4,i5);
 | 
						|
		  uisec = isec - isec % 2;
 | 
						|
		  i4 = ll + ulsec - 1;
 | 
						|
		  for (l = ll; l <= i4; l += 2)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 2)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | 
						|
					a[i + (l + 1) * a_dim1];
 | 
						|
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | 
						|
					a[i + 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  t1[l - ll + 1 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + l * a_dim1];
 | 
						|
			  t1[l - ll + 2 + (isec << 8) - 257] =
 | 
						|
				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ulsec < lsec)
 | 
						|
		    {
 | 
						|
		      i4 = ii + isec - 1;
 | 
						|
		      for (i = ii; i<= i4; ++i)
 | 
						|
			{
 | 
						|
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | 
						|
				    a[i + (ll + lsec - 1) * a_dim1];
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		  uisec = isec - isec % 4;
 | 
						|
		  i4 = jj + ujsec - 1;
 | 
						|
		  for (j = jj; j <= i4; j += 4)
 | 
						|
		    {
 | 
						|
		      i5 = ii + uisec - 1;
 | 
						|
		      for (i = ii; i <= i5; i += 4)
 | 
						|
			{
 | 
						|
			  f11 = c[i + j * c_dim1];
 | 
						|
			  f21 = c[i + 1 + j * c_dim1];
 | 
						|
			  f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | 
						|
			  f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | 
						|
			  f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | 
						|
			  f31 = c[i + 2 + j * c_dim1];
 | 
						|
			  f41 = c[i + 3 + j * c_dim1];
 | 
						|
			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | 
						|
			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | 
						|
			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | 
						|
			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | 
						|
			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | 
						|
			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | 
						|
			  i6 = ll + lsec - 1;
 | 
						|
			  for (l = ll; l <= i6; ++l)
 | 
						|
			    {
 | 
						|
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + j * b_dim1];
 | 
						|
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 1) * b_dim1];
 | 
						|
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 2) * b_dim1];
 | 
						|
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | 
						|
				      * b[l + (j + 3) * b_dim1];
 | 
						|
			    }
 | 
						|
			  c[i + j * c_dim1] = f11;
 | 
						|
			  c[i + 1 + j * c_dim1] = f21;
 | 
						|
			  c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | 
						|
			  c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | 
						|
			  c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | 
						|
			  c[i + 2 + j * c_dim1] = f31;
 | 
						|
			  c[i + 3 + j * c_dim1] = f41;
 | 
						|
			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | 
						|
			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | 
						|
			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | 
						|
			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | 
						|
			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | 
						|
			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | 
						|
			}
 | 
						|
		      if (uisec < isec)
 | 
						|
			{
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f12 = c[i + (j + 1) * c_dim1];
 | 
						|
			      f13 = c[i + (j + 2) * c_dim1];
 | 
						|
			      f14 = c[i + (j + 3) * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 1) * b_dim1];
 | 
						|
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 2) * b_dim1];
 | 
						|
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + (j + 3) * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + (j + 1) * c_dim1] = f12;
 | 
						|
			      c[i + (j + 2) * c_dim1] = f13;
 | 
						|
			      c[i + (j + 3) * c_dim1] = f14;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		  if (ujsec < jsec)
 | 
						|
		    {
 | 
						|
		      i4 = jj + jsec - 1;
 | 
						|
		      for (j = jj + ujsec; j <= i4; ++j)
 | 
						|
			{
 | 
						|
			  i5 = ii + uisec - 1;
 | 
						|
			  for (i = ii; i <= i5; i += 4)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      f21 = c[i + 1 + j * c_dim1];
 | 
						|
			      f31 = c[i + 2 + j * c_dim1];
 | 
						|
			      f41 = c[i + 3 + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			      c[i + 1 + j * c_dim1] = f21;
 | 
						|
			      c[i + 2 + j * c_dim1] = f31;
 | 
						|
			      c[i + 3 + j * c_dim1] = f41;
 | 
						|
			    }
 | 
						|
			  i5 = ii + isec - 1;
 | 
						|
			  for (i = ii + uisec; i <= i5; ++i)
 | 
						|
			    {
 | 
						|
			      f11 = c[i + j * c_dim1];
 | 
						|
			      i6 = ll + lsec - 1;
 | 
						|
			      for (l = ll; l <= i6; ++l)
 | 
						|
				{
 | 
						|
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | 
						|
					  257] * b[l + j * b_dim1];
 | 
						|
				}
 | 
						|
			      c[i + j * c_dim1] = f11;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      free(t1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) != 1)
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 *restrict dest_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      dest_y = &dest[y*rystride];
 | 
						|
	      for (x = 0; x < xcount; x++)
 | 
						|
		{
 | 
						|
		  abase_x = &abase[x*axstride];
 | 
						|
		  s = (GFC_INTEGER_2) 0;
 | 
						|
		  for (n = 0; n < count; n++)
 | 
						|
		    s += abase_x[n] * bbase_y[n];
 | 
						|
		  dest_y[x] = s;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
	  GFC_INTEGER_2 s;
 | 
						|
 | 
						|
	  for (y = 0; y < ycount; y++)
 | 
						|
	    {
 | 
						|
	      bbase_y = &bbase[y*bystride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase[n*axstride] * bbase_y[n];
 | 
						|
	      dest[y*rystride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else if (axstride < aystride)
 | 
						|
    {
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (x = 0; x < xcount; x++)
 | 
						|
	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	for (n = 0; n < count; n++)
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    /* dest[x,y] += a[x,n] * b[n,y] */
 | 
						|
	    dest[x*rxstride + y*rystride] +=
 | 
						|
					abase[x*axstride + n*aystride] *
 | 
						|
					bbase[n*bxstride + y*bystride];
 | 
						|
    }
 | 
						|
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  s = (GFC_INTEGER_2) 0;
 | 
						|
	  for (n = 0; n < count; n++)
 | 
						|
	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | 
						|
	  dest[y*rxstride] = s;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      const GFC_INTEGER_2 *restrict abase_x;
 | 
						|
      const GFC_INTEGER_2 *restrict bbase_y;
 | 
						|
      GFC_INTEGER_2 *restrict dest_y;
 | 
						|
      GFC_INTEGER_2 s;
 | 
						|
 | 
						|
      for (y = 0; y < ycount; y++)
 | 
						|
	{
 | 
						|
	  bbase_y = &bbase[y*bystride];
 | 
						|
	  dest_y = &dest[y*rystride];
 | 
						|
	  for (x = 0; x < xcount; x++)
 | 
						|
	    {
 | 
						|
	      abase_x = &abase[x*axstride];
 | 
						|
	      s = (GFC_INTEGER_2) 0;
 | 
						|
	      for (n = 0; n < count; n++)
 | 
						|
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | 
						|
	      dest_y[x*rxstride] = s;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#undef POW3
 | 
						|
#undef min
 | 
						|
#undef max
 | 
						|
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 |