mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			364 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2015 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // backtrack is a regular expression search with submatch
 | |
| // tracking for small regular expressions and texts. It allocates
 | |
| // a bit vector with (length of input) * (length of prog) bits,
 | |
| // to make sure it never explores the same (character position, instruction)
 | |
| // state multiple times. This limits the search to run in time linear in
 | |
| // the length of the test.
 | |
| //
 | |
| // backtrack is a fast replacement for the NFA code on small
 | |
| // regexps when onepass cannot be used.
 | |
| 
 | |
| package regexp
 | |
| 
 | |
| import "regexp/syntax"
 | |
| 
 | |
| // A job is an entry on the backtracker's job stack. It holds
 | |
| // the instruction pc and the position in the input.
 | |
| type job struct {
 | |
| 	pc  uint32
 | |
| 	arg int
 | |
| 	pos int
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	visitedBits        = 32
 | |
| 	maxBacktrackProg   = 500        // len(prog.Inst) <= max
 | |
| 	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
 | |
| )
 | |
| 
 | |
| // bitState holds state for the backtracker.
 | |
| type bitState struct {
 | |
| 	prog *syntax.Prog
 | |
| 
 | |
| 	end     int
 | |
| 	cap     []int
 | |
| 	jobs    []job
 | |
| 	visited []uint32
 | |
| }
 | |
| 
 | |
| var notBacktrack *bitState = nil
 | |
| 
 | |
| // maxBitStateLen returns the maximum length of a string to search with
 | |
| // the backtracker using prog.
 | |
| func maxBitStateLen(prog *syntax.Prog) int {
 | |
| 	if !shouldBacktrack(prog) {
 | |
| 		return 0
 | |
| 	}
 | |
| 	return maxBacktrackVector / len(prog.Inst)
 | |
| }
 | |
| 
 | |
| // newBitState returns a new bitState for the given prog,
 | |
| // or notBacktrack if the size of the prog exceeds the maximum size that
 | |
| // the backtracker will be run for.
 | |
| func newBitState(prog *syntax.Prog) *bitState {
 | |
| 	if !shouldBacktrack(prog) {
 | |
| 		return notBacktrack
 | |
| 	}
 | |
| 	return &bitState{
 | |
| 		prog: prog,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // shouldBacktrack reports whether the program is too
 | |
| // long for the backtracker to run.
 | |
| func shouldBacktrack(prog *syntax.Prog) bool {
 | |
| 	return len(prog.Inst) <= maxBacktrackProg
 | |
| }
 | |
| 
 | |
| // reset resets the state of the backtracker.
 | |
| // end is the end position in the input.
 | |
| // ncap is the number of captures.
 | |
| func (b *bitState) reset(end int, ncap int) {
 | |
| 	b.end = end
 | |
| 
 | |
| 	if cap(b.jobs) == 0 {
 | |
| 		b.jobs = make([]job, 0, 256)
 | |
| 	} else {
 | |
| 		b.jobs = b.jobs[:0]
 | |
| 	}
 | |
| 
 | |
| 	visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
 | |
| 	if cap(b.visited) < visitedSize {
 | |
| 		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
 | |
| 	} else {
 | |
| 		b.visited = b.visited[:visitedSize]
 | |
| 		for i := range b.visited {
 | |
| 			b.visited[i] = 0
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if cap(b.cap) < ncap {
 | |
| 		b.cap = make([]int, ncap)
 | |
| 	} else {
 | |
| 		b.cap = b.cap[:ncap]
 | |
| 	}
 | |
| 	for i := range b.cap {
 | |
| 		b.cap[i] = -1
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // shouldVisit reports whether the combination of (pc, pos) has not
 | |
| // been visited yet.
 | |
| func (b *bitState) shouldVisit(pc uint32, pos int) bool {
 | |
| 	n := uint(int(pc)*(b.end+1) + pos)
 | |
| 	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // push pushes (pc, pos, arg) onto the job stack if it should be
 | |
| // visited.
 | |
| func (b *bitState) push(pc uint32, pos int, arg int) {
 | |
| 	if b.prog.Inst[pc].Op == syntax.InstFail {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Only check shouldVisit when arg == 0.
 | |
| 	// When arg > 0, we are continuing a previous visit.
 | |
| 	if arg == 0 && !b.shouldVisit(pc, pos) {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
 | |
| }
 | |
| 
 | |
| // tryBacktrack runs a backtracking search starting at pos.
 | |
| func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
 | |
| 	longest := m.re.longest
 | |
| 	m.matched = false
 | |
| 
 | |
| 	b.push(pc, pos, 0)
 | |
| 	for len(b.jobs) > 0 {
 | |
| 		l := len(b.jobs) - 1
 | |
| 		// Pop job off the stack.
 | |
| 		pc := b.jobs[l].pc
 | |
| 		pos := b.jobs[l].pos
 | |
| 		arg := b.jobs[l].arg
 | |
| 		b.jobs = b.jobs[:l]
 | |
| 
 | |
| 		// Optimization: rather than push and pop,
 | |
| 		// code that is going to Push and continue
 | |
| 		// the loop simply updates ip, p, and arg
 | |
| 		// and jumps to CheckAndLoop. We have to
 | |
| 		// do the ShouldVisit check that Push
 | |
| 		// would have, but we avoid the stack
 | |
| 		// manipulation.
 | |
| 		goto Skip
 | |
| 	CheckAndLoop:
 | |
| 		if !b.shouldVisit(pc, pos) {
 | |
| 			continue
 | |
| 		}
 | |
| 	Skip:
 | |
| 
 | |
| 		inst := b.prog.Inst[pc]
 | |
| 
 | |
| 		switch inst.Op {
 | |
| 		default:
 | |
| 			panic("bad inst")
 | |
| 		case syntax.InstFail:
 | |
| 			panic("unexpected InstFail")
 | |
| 		case syntax.InstAlt:
 | |
| 			// Cannot just
 | |
| 			//   b.push(inst.Out, pos, 0)
 | |
| 			//   b.push(inst.Arg, pos, 0)
 | |
| 			// If during the processing of inst.Out, we encounter
 | |
| 			// inst.Arg via another path, we want to process it then.
 | |
| 			// Pushing it here will inhibit that. Instead, re-push
 | |
| 			// inst with arg==1 as a reminder to push inst.Arg out
 | |
| 			// later.
 | |
| 			switch arg {
 | |
| 			case 0:
 | |
| 				b.push(pc, pos, 1)
 | |
| 				pc = inst.Out
 | |
| 				goto CheckAndLoop
 | |
| 			case 1:
 | |
| 				// Finished inst.Out; try inst.Arg.
 | |
| 				arg = 0
 | |
| 				pc = inst.Arg
 | |
| 				goto CheckAndLoop
 | |
| 			}
 | |
| 			panic("bad arg in InstAlt")
 | |
| 
 | |
| 		case syntax.InstAltMatch:
 | |
| 			// One opcode consumes runes; the other leads to match.
 | |
| 			switch b.prog.Inst[inst.Out].Op {
 | |
| 			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
 | |
| 				// inst.Arg is the match.
 | |
| 				b.push(inst.Arg, pos, 0)
 | |
| 				pc = inst.Arg
 | |
| 				pos = b.end
 | |
| 				goto CheckAndLoop
 | |
| 			}
 | |
| 			// inst.Out is the match - non-greedy
 | |
| 			b.push(inst.Out, b.end, 0)
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstRune:
 | |
| 			r, width := i.step(pos)
 | |
| 			if !inst.MatchRune(r) {
 | |
| 				continue
 | |
| 			}
 | |
| 			pos += width
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstRune1:
 | |
| 			r, width := i.step(pos)
 | |
| 			if r != inst.Rune[0] {
 | |
| 				continue
 | |
| 			}
 | |
| 			pos += width
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstRuneAnyNotNL:
 | |
| 			r, width := i.step(pos)
 | |
| 			if r == '\n' || r == endOfText {
 | |
| 				continue
 | |
| 			}
 | |
| 			pos += width
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstRuneAny:
 | |
| 			r, width := i.step(pos)
 | |
| 			if r == endOfText {
 | |
| 				continue
 | |
| 			}
 | |
| 			pos += width
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstCapture:
 | |
| 			switch arg {
 | |
| 			case 0:
 | |
| 				if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
 | |
| 					// Capture pos to register, but save old value.
 | |
| 					b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
 | |
| 					b.cap[inst.Arg] = pos
 | |
| 				}
 | |
| 				pc = inst.Out
 | |
| 				goto CheckAndLoop
 | |
| 			case 1:
 | |
| 				// Finished inst.Out; restore the old value.
 | |
| 				b.cap[inst.Arg] = pos
 | |
| 				continue
 | |
| 
 | |
| 			}
 | |
| 			panic("bad arg in InstCapture")
 | |
| 
 | |
| 		case syntax.InstEmptyWidth:
 | |
| 			if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
 | |
| 				continue
 | |
| 			}
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstNop:
 | |
| 			pc = inst.Out
 | |
| 			goto CheckAndLoop
 | |
| 
 | |
| 		case syntax.InstMatch:
 | |
| 			// We found a match. If the caller doesn't care
 | |
| 			// where the match is, no point going further.
 | |
| 			if len(b.cap) == 0 {
 | |
| 				m.matched = true
 | |
| 				return m.matched
 | |
| 			}
 | |
| 
 | |
| 			// Record best match so far.
 | |
| 			// Only need to check end point, because this entire
 | |
| 			// call is only considering one start position.
 | |
| 			if len(b.cap) > 1 {
 | |
| 				b.cap[1] = pos
 | |
| 			}
 | |
| 			if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
 | |
| 				copy(m.matchcap, b.cap)
 | |
| 			}
 | |
| 			m.matched = true
 | |
| 
 | |
| 			// If going for first match, we're done.
 | |
| 			if !longest {
 | |
| 				return m.matched
 | |
| 			}
 | |
| 
 | |
| 			// If we used the entire text, no longer match is possible.
 | |
| 			if pos == b.end {
 | |
| 				return m.matched
 | |
| 			}
 | |
| 
 | |
| 			// Otherwise, continue on in hope of a longer match.
 | |
| 			continue
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return m.matched
 | |
| }
 | |
| 
 | |
| // backtrack runs a backtracking search of prog on the input starting at pos.
 | |
| func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
 | |
| 	if !i.canCheckPrefix() {
 | |
| 		panic("backtrack called for a RuneReader")
 | |
| 	}
 | |
| 
 | |
| 	startCond := m.re.cond
 | |
| 	if startCond == ^syntax.EmptyOp(0) { // impossible
 | |
| 		return false
 | |
| 	}
 | |
| 	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
 | |
| 		// Anchored match, past beginning of text.
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	b := m.b
 | |
| 	b.reset(end, ncap)
 | |
| 
 | |
| 	m.matchcap = m.matchcap[:ncap]
 | |
| 	for i := range m.matchcap {
 | |
| 		m.matchcap[i] = -1
 | |
| 	}
 | |
| 
 | |
| 	// Anchored search must start at the beginning of the input
 | |
| 	if startCond&syntax.EmptyBeginText != 0 {
 | |
| 		if len(b.cap) > 0 {
 | |
| 			b.cap[0] = pos
 | |
| 		}
 | |
| 		return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
 | |
| 	}
 | |
| 
 | |
| 	// Unanchored search, starting from each possible text position.
 | |
| 	// Notice that we have to try the empty string at the end of
 | |
| 	// the text, so the loop condition is pos <= end, not pos < end.
 | |
| 	// This looks like it's quadratic in the size of the text,
 | |
| 	// but we are not clearing visited between calls to TrySearch,
 | |
| 	// so no work is duplicated and it ends up still being linear.
 | |
| 	width := -1
 | |
| 	for ; pos <= end && width != 0; pos += width {
 | |
| 		if len(m.re.prefix) > 0 {
 | |
| 			// Match requires literal prefix; fast search for it.
 | |
| 			advance := i.index(m.re, pos)
 | |
| 			if advance < 0 {
 | |
| 				return false
 | |
| 			}
 | |
| 			pos += advance
 | |
| 		}
 | |
| 
 | |
| 		if len(b.cap) > 0 {
 | |
| 			b.cap[0] = pos
 | |
| 		}
 | |
| 		if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
 | |
| 			// Match must be leftmost; done.
 | |
| 			return true
 | |
| 		}
 | |
| 		_, width = i.step(pos)
 | |
| 	}
 | |
| 	return false
 | |
| }
 |