mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			999 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			999 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2014 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Memory allocator.
 | 
						|
//
 | 
						|
// This was originally based on tcmalloc, but has diverged quite a bit.
 | 
						|
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
 | 
						|
 | 
						|
// The main allocator works in runs of pages.
 | 
						|
// Small allocation sizes (up to and including 32 kB) are
 | 
						|
// rounded to one of about 70 size classes, each of which
 | 
						|
// has its own free set of objects of exactly that size.
 | 
						|
// Any free page of memory can be split into a set of objects
 | 
						|
// of one size class, which are then managed using a free bitmap.
 | 
						|
//
 | 
						|
// The allocator's data structures are:
 | 
						|
//
 | 
						|
//	fixalloc: a free-list allocator for fixed-size off-heap objects,
 | 
						|
//		used to manage storage used by the allocator.
 | 
						|
//	mheap: the malloc heap, managed at page (8192-byte) granularity.
 | 
						|
//	mspan: a run of pages managed by the mheap.
 | 
						|
//	mcentral: collects all spans of a given size class.
 | 
						|
//	mcache: a per-P cache of mspans with free space.
 | 
						|
//	mstats: allocation statistics.
 | 
						|
//
 | 
						|
// Allocating a small object proceeds up a hierarchy of caches:
 | 
						|
//
 | 
						|
//	1. Round the size up to one of the small size classes
 | 
						|
//	   and look in the corresponding mspan in this P's mcache.
 | 
						|
//	   Scan the mspan's free bitmap to find a free slot.
 | 
						|
//	   If there is a free slot, allocate it.
 | 
						|
//	   This can all be done without acquiring a lock.
 | 
						|
//
 | 
						|
//	2. If the mspan has no free slots, obtain a new mspan
 | 
						|
//	   from the mcentral's list of mspans of the required size
 | 
						|
//	   class that have free space.
 | 
						|
//	   Obtaining a whole span amortizes the cost of locking
 | 
						|
//	   the mcentral.
 | 
						|
//
 | 
						|
//	3. If the mcentral's mspan list is empty, obtain a run
 | 
						|
//	   of pages from the mheap to use for the mspan.
 | 
						|
//
 | 
						|
//	4. If the mheap is empty or has no page runs large enough,
 | 
						|
//	   allocate a new group of pages (at least 1MB) from the
 | 
						|
//	   operating system. Allocating a large run of pages
 | 
						|
//	   amortizes the cost of talking to the operating system.
 | 
						|
//
 | 
						|
// Sweeping an mspan and freeing objects on it proceeds up a similar
 | 
						|
// hierarchy:
 | 
						|
//
 | 
						|
//	1. If the mspan is being swept in response to allocation, it
 | 
						|
//	   is returned to the mcache to satisfy the allocation.
 | 
						|
//
 | 
						|
//	2. Otherwise, if the mspan still has allocated objects in it,
 | 
						|
//	   it is placed on the mcentral free list for the mspan's size
 | 
						|
//	   class.
 | 
						|
//
 | 
						|
//	3. Otherwise, if all objects in the mspan are free, the mspan
 | 
						|
//	   is now "idle", so it is returned to the mheap and no longer
 | 
						|
//	   has a size class.
 | 
						|
//	   This may coalesce it with adjacent idle mspans.
 | 
						|
//
 | 
						|
//	4. If an mspan remains idle for long enough, return its pages
 | 
						|
//	   to the operating system.
 | 
						|
//
 | 
						|
// Allocating and freeing a large object uses the mheap
 | 
						|
// directly, bypassing the mcache and mcentral.
 | 
						|
//
 | 
						|
// Free object slots in an mspan are zeroed only if mspan.needzero is
 | 
						|
// false. If needzero is true, objects are zeroed as they are
 | 
						|
// allocated. There are various benefits to delaying zeroing this way:
 | 
						|
//
 | 
						|
//	1. Stack frame allocation can avoid zeroing altogether.
 | 
						|
//
 | 
						|
//	2. It exhibits better temporal locality, since the program is
 | 
						|
//	   probably about to write to the memory.
 | 
						|
//
 | 
						|
//	3. We don't zero pages that never get reused.
 | 
						|
 | 
						|
package runtime
 | 
						|
 | 
						|
import (
 | 
						|
	"runtime/internal/sys"
 | 
						|
	"unsafe"
 | 
						|
)
 | 
						|
 | 
						|
// C function to get the end of the program's memory.
 | 
						|
func getEnd() uintptr
 | 
						|
 | 
						|
// For gccgo, use go:linkname to rename compiler-called functions to
 | 
						|
// themselves, so that the compiler will export them.
 | 
						|
//
 | 
						|
//go:linkname newobject runtime.newobject
 | 
						|
 | 
						|
// Functions called by C code.
 | 
						|
//go:linkname mallocgc runtime.mallocgc
 | 
						|
 | 
						|
const (
 | 
						|
	debugMalloc = false
 | 
						|
 | 
						|
	maxTinySize   = _TinySize
 | 
						|
	tinySizeClass = _TinySizeClass
 | 
						|
	maxSmallSize  = _MaxSmallSize
 | 
						|
 | 
						|
	pageShift = _PageShift
 | 
						|
	pageSize  = _PageSize
 | 
						|
	pageMask  = _PageMask
 | 
						|
	// By construction, single page spans of the smallest object class
 | 
						|
	// have the most objects per span.
 | 
						|
	maxObjsPerSpan = pageSize / 8
 | 
						|
 | 
						|
	mSpanInUse = _MSpanInUse
 | 
						|
 | 
						|
	concurrentSweep = _ConcurrentSweep
 | 
						|
 | 
						|
	_PageSize = 1 << _PageShift
 | 
						|
	_PageMask = _PageSize - 1
 | 
						|
 | 
						|
	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
 | 
						|
	_64bit = 1 << (^uintptr(0) >> 63) / 2
 | 
						|
 | 
						|
	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
 | 
						|
	_TinySize      = 16
 | 
						|
	_TinySizeClass = 2
 | 
						|
 | 
						|
	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
 | 
						|
	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
 | 
						|
	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth
 | 
						|
 | 
						|
	// Per-P, per order stack segment cache size.
 | 
						|
	_StackCacheSize = 32 * 1024
 | 
						|
 | 
						|
	// Number of orders that get caching. Order 0 is FixedStack
 | 
						|
	// and each successive order is twice as large.
 | 
						|
	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
 | 
						|
	// will be allocated directly.
 | 
						|
	// Since FixedStack is different on different systems, we
 | 
						|
	// must vary NumStackOrders to keep the same maximum cached size.
 | 
						|
	//   OS               | FixedStack | NumStackOrders
 | 
						|
	//   -----------------+------------+---------------
 | 
						|
	//   linux/darwin/bsd | 2KB        | 4
 | 
						|
	//   windows/32       | 4KB        | 3
 | 
						|
	//   windows/64       | 8KB        | 2
 | 
						|
	//   plan9            | 4KB        | 3
 | 
						|
	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
 | 
						|
 | 
						|
	// Number of bits in page to span calculations (4k pages).
 | 
						|
	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
 | 
						|
	// Windows counts memory used by page table into committed memory
 | 
						|
	// of the process, so we can't reserve too much memory.
 | 
						|
	// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
 | 
						|
	// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
 | 
						|
	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
 | 
						|
	// The only exception is mips32 which only has access to low 2GB of virtual memory.
 | 
						|
	// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
 | 
						|
	// but as most devices have less than 4GB of physical memory anyway, we
 | 
						|
	// try to be conservative here, and only ask for a 2GB heap.
 | 
						|
	_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
 | 
						|
	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift
 | 
						|
 | 
						|
	_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
 | 
						|
 | 
						|
	// Max number of threads to run garbage collection.
 | 
						|
	// 2, 3, and 4 are all plausible maximums depending
 | 
						|
	// on the hardware details of the machine. The garbage
 | 
						|
	// collector scales well to 32 cpus.
 | 
						|
	_MaxGcproc = 32
 | 
						|
 | 
						|
	_MaxArena32 = 1<<32 - 1
 | 
						|
 | 
						|
	// minLegalPointer is the smallest possible legal pointer.
 | 
						|
	// This is the smallest possible architectural page size,
 | 
						|
	// since we assume that the first page is never mapped.
 | 
						|
	//
 | 
						|
	// This should agree with minZeroPage in the compiler.
 | 
						|
	minLegalPointer uintptr = 4096
 | 
						|
)
 | 
						|
 | 
						|
// physPageSize is the size in bytes of the OS's physical pages.
 | 
						|
// Mapping and unmapping operations must be done at multiples of
 | 
						|
// physPageSize.
 | 
						|
//
 | 
						|
// This must be set by the OS init code (typically in osinit) before
 | 
						|
// mallocinit.
 | 
						|
var physPageSize uintptr
 | 
						|
 | 
						|
// OS-defined helpers:
 | 
						|
//
 | 
						|
// sysAlloc obtains a large chunk of zeroed memory from the
 | 
						|
// operating system, typically on the order of a hundred kilobytes
 | 
						|
// or a megabyte.
 | 
						|
// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
 | 
						|
// may use larger alignment, so the caller must be careful to realign the
 | 
						|
// memory obtained by sysAlloc.
 | 
						|
//
 | 
						|
// SysUnused notifies the operating system that the contents
 | 
						|
// of the memory region are no longer needed and can be reused
 | 
						|
// for other purposes.
 | 
						|
// SysUsed notifies the operating system that the contents
 | 
						|
// of the memory region are needed again.
 | 
						|
//
 | 
						|
// SysFree returns it unconditionally; this is only used if
 | 
						|
// an out-of-memory error has been detected midway through
 | 
						|
// an allocation. It is okay if SysFree is a no-op.
 | 
						|
//
 | 
						|
// SysReserve reserves address space without allocating memory.
 | 
						|
// If the pointer passed to it is non-nil, the caller wants the
 | 
						|
// reservation there, but SysReserve can still choose another
 | 
						|
// location if that one is unavailable. On some systems and in some
 | 
						|
// cases SysReserve will simply check that the address space is
 | 
						|
// available and not actually reserve it. If SysReserve returns
 | 
						|
// non-nil, it sets *reserved to true if the address space is
 | 
						|
// reserved, false if it has merely been checked.
 | 
						|
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
 | 
						|
// may use larger alignment, so the caller must be careful to realign the
 | 
						|
// memory obtained by sysAlloc.
 | 
						|
//
 | 
						|
// SysMap maps previously reserved address space for use.
 | 
						|
// The reserved argument is true if the address space was really
 | 
						|
// reserved, not merely checked.
 | 
						|
//
 | 
						|
// SysFault marks a (already sysAlloc'd) region to fault
 | 
						|
// if accessed. Used only for debugging the runtime.
 | 
						|
 | 
						|
func mallocinit() {
 | 
						|
	if class_to_size[_TinySizeClass] != _TinySize {
 | 
						|
		throw("bad TinySizeClass")
 | 
						|
	}
 | 
						|
 | 
						|
	// Not used for gccgo.
 | 
						|
	// testdefersizes()
 | 
						|
 | 
						|
	// Copy class sizes out for statistics table.
 | 
						|
	for i := range class_to_size {
 | 
						|
		memstats.by_size[i].size = uint32(class_to_size[i])
 | 
						|
	}
 | 
						|
 | 
						|
	// Check physPageSize.
 | 
						|
	if physPageSize == 0 {
 | 
						|
		// The OS init code failed to fetch the physical page size.
 | 
						|
		throw("failed to get system page size")
 | 
						|
	}
 | 
						|
	if physPageSize < minPhysPageSize {
 | 
						|
		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
 | 
						|
		throw("bad system page size")
 | 
						|
	}
 | 
						|
	if physPageSize&(physPageSize-1) != 0 {
 | 
						|
		print("system page size (", physPageSize, ") must be a power of 2\n")
 | 
						|
		throw("bad system page size")
 | 
						|
	}
 | 
						|
 | 
						|
	var p, bitmapSize, spansSize, pSize, limit uintptr
 | 
						|
	var reserved bool
 | 
						|
 | 
						|
	// limit = runtime.memlimit();
 | 
						|
	// See https://golang.org/issue/5049
 | 
						|
	// TODO(rsc): Fix after 1.1.
 | 
						|
	limit = 0
 | 
						|
 | 
						|
	// Set up the allocation arena, a contiguous area of memory where
 | 
						|
	// allocated data will be found. The arena begins with a bitmap large
 | 
						|
	// enough to hold 2 bits per allocated word.
 | 
						|
	if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
 | 
						|
		// On a 64-bit machine, allocate from a single contiguous reservation.
 | 
						|
		// 512 GB (MaxMem) should be big enough for now.
 | 
						|
		//
 | 
						|
		// The code will work with the reservation at any address, but ask
 | 
						|
		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
 | 
						|
		// Allocating a 512 GB region takes away 39 bits, and the amd64
 | 
						|
		// doesn't let us choose the top 17 bits, so that leaves the 9 bits
 | 
						|
		// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
 | 
						|
		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
 | 
						|
		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
 | 
						|
		// UTF-8 sequences, and they are otherwise as far away from
 | 
						|
		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
 | 
						|
		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
 | 
						|
		// on OS X during thread allocations.  0x00c0 causes conflicts with
 | 
						|
		// AddressSanitizer which reserves all memory up to 0x0100.
 | 
						|
		// These choices are both for debuggability and to reduce the
 | 
						|
		// odds of a conservative garbage collector (as is still used in gccgo)
 | 
						|
		// not collecting memory because some non-pointer block of memory
 | 
						|
		// had a bit pattern that matched a memory address.
 | 
						|
		//
 | 
						|
		// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
 | 
						|
		// but it hardly matters: e0 00 is not valid UTF-8 either.
 | 
						|
		//
 | 
						|
		// If this fails we fall back to the 32 bit memory mechanism
 | 
						|
		//
 | 
						|
		// However, on arm64, we ignore all this advice above and slam the
 | 
						|
		// allocation at 0x40 << 32 because when using 4k pages with 3-level
 | 
						|
		// translation buffers, the user address space is limited to 39 bits
 | 
						|
		// On darwin/arm64, the address space is even smaller.
 | 
						|
		arenaSize := round(_MaxMem, _PageSize)
 | 
						|
		bitmapSize = arenaSize / (sys.PtrSize * 8 / 2)
 | 
						|
		spansSize = arenaSize / _PageSize * sys.PtrSize
 | 
						|
		spansSize = round(spansSize, _PageSize)
 | 
						|
		for i := 0; i <= 0x7f; i++ {
 | 
						|
			switch {
 | 
						|
			case GOARCH == "arm64" && GOOS == "darwin":
 | 
						|
				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
 | 
						|
			case GOARCH == "arm64":
 | 
						|
				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
 | 
						|
			default:
 | 
						|
				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
 | 
						|
			}
 | 
						|
			pSize = bitmapSize + spansSize + arenaSize + _PageSize
 | 
						|
			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
 | 
						|
			if p != 0 {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if p == 0 {
 | 
						|
		// On a 32-bit machine, we can't typically get away
 | 
						|
		// with a giant virtual address space reservation.
 | 
						|
		// Instead we map the memory information bitmap
 | 
						|
		// immediately after the data segment, large enough
 | 
						|
		// to handle the entire 4GB address space (256 MB),
 | 
						|
		// along with a reservation for an initial arena.
 | 
						|
		// When that gets used up, we'll start asking the kernel
 | 
						|
		// for any memory anywhere.
 | 
						|
 | 
						|
		// If we fail to allocate, try again with a smaller arena.
 | 
						|
		// This is necessary on Android L where we share a process
 | 
						|
		// with ART, which reserves virtual memory aggressively.
 | 
						|
		// In the worst case, fall back to a 0-sized initial arena,
 | 
						|
		// in the hope that subsequent reservations will succeed.
 | 
						|
		arenaSizes := [...]uintptr{
 | 
						|
			512 << 20,
 | 
						|
			256 << 20,
 | 
						|
			128 << 20,
 | 
						|
			0,
 | 
						|
		}
 | 
						|
 | 
						|
		for _, arenaSize := range &arenaSizes {
 | 
						|
			bitmapSize = (_MaxArena32 + 1) / (sys.PtrSize * 8 / 2)
 | 
						|
			spansSize = (_MaxArena32 + 1) / _PageSize * sys.PtrSize
 | 
						|
			if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
 | 
						|
				bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
 | 
						|
				arenaSize = bitmapSize * 8
 | 
						|
				spansSize = arenaSize / _PageSize * sys.PtrSize
 | 
						|
			}
 | 
						|
			spansSize = round(spansSize, _PageSize)
 | 
						|
 | 
						|
			// SysReserve treats the address we ask for, end, as a hint,
 | 
						|
			// not as an absolute requirement. If we ask for the end
 | 
						|
			// of the data segment but the operating system requires
 | 
						|
			// a little more space before we can start allocating, it will
 | 
						|
			// give out a slightly higher pointer. Except QEMU, which
 | 
						|
			// is buggy, as usual: it won't adjust the pointer upward.
 | 
						|
			// So adjust it upward a little bit ourselves: 1/4 MB to get
 | 
						|
			// away from the running binary image and then round up
 | 
						|
			// to a MB boundary.
 | 
						|
			p = round(getEnd()+(1<<18), 1<<20)
 | 
						|
			pSize = bitmapSize + spansSize + arenaSize + _PageSize
 | 
						|
			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
 | 
						|
			if p != 0 {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if p == 0 {
 | 
						|
			throw("runtime: cannot reserve arena virtual address space")
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// PageSize can be larger than OS definition of page size,
 | 
						|
	// so SysReserve can give us a PageSize-unaligned pointer.
 | 
						|
	// To overcome this we ask for PageSize more and round up the pointer.
 | 
						|
	p1 := round(p, _PageSize)
 | 
						|
 | 
						|
	spansStart := p1
 | 
						|
	mheap_.bitmap = p1 + spansSize + bitmapSize
 | 
						|
	if sys.PtrSize == 4 {
 | 
						|
		// Set arena_start such that we can accept memory
 | 
						|
		// reservations located anywhere in the 4GB virtual space.
 | 
						|
		mheap_.arena_start = 0
 | 
						|
	} else {
 | 
						|
		mheap_.arena_start = p1 + (spansSize + bitmapSize)
 | 
						|
	}
 | 
						|
	mheap_.arena_end = p + pSize
 | 
						|
	mheap_.arena_used = p1 + (spansSize + bitmapSize)
 | 
						|
	mheap_.arena_reserved = reserved
 | 
						|
 | 
						|
	if mheap_.arena_start&(_PageSize-1) != 0 {
 | 
						|
		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
 | 
						|
		throw("misrounded allocation in mallocinit")
 | 
						|
	}
 | 
						|
 | 
						|
	// Initialize the rest of the allocator.
 | 
						|
	mheap_.init(spansStart, spansSize)
 | 
						|
	_g_ := getg()
 | 
						|
	_g_.m.mcache = allocmcache()
 | 
						|
}
 | 
						|
 | 
						|
// sysAlloc allocates the next n bytes from the heap arena. The
 | 
						|
// returned pointer is always _PageSize aligned and between
 | 
						|
// h.arena_start and h.arena_end. sysAlloc returns nil on failure.
 | 
						|
// There is no corresponding free function.
 | 
						|
func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
 | 
						|
	if n > h.arena_end-h.arena_used {
 | 
						|
		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
 | 
						|
		// Reserve some more space.
 | 
						|
		p_size := round(n+_PageSize, 256<<20)
 | 
						|
		new_end := h.arena_end + p_size // Careful: can overflow
 | 
						|
		if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxArena32 {
 | 
						|
			// TODO: It would be bad if part of the arena
 | 
						|
			// is reserved and part is not.
 | 
						|
			var reserved bool
 | 
						|
			p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
 | 
						|
			if p == 0 {
 | 
						|
				return nil
 | 
						|
			}
 | 
						|
			if p == h.arena_end {
 | 
						|
				h.arena_end = new_end
 | 
						|
				h.arena_reserved = reserved
 | 
						|
			} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxArena32 {
 | 
						|
				// Keep everything page-aligned.
 | 
						|
				// Our pages are bigger than hardware pages.
 | 
						|
				h.arena_end = p + p_size
 | 
						|
				used := p + (-p & (_PageSize - 1))
 | 
						|
				h.mapBits(used)
 | 
						|
				h.mapSpans(used)
 | 
						|
				h.arena_used = used
 | 
						|
				h.arena_reserved = reserved
 | 
						|
			} else {
 | 
						|
				// We haven't added this allocation to
 | 
						|
				// the stats, so subtract it from a
 | 
						|
				// fake stat (but avoid underflow).
 | 
						|
				stat := uint64(p_size)
 | 
						|
				sysFree(unsafe.Pointer(p), p_size, &stat)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if n <= h.arena_end-h.arena_used {
 | 
						|
		// Keep taking from our reservation.
 | 
						|
		p := h.arena_used
 | 
						|
		sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
 | 
						|
		h.mapBits(p + n)
 | 
						|
		h.mapSpans(p + n)
 | 
						|
		h.arena_used = p + n
 | 
						|
		if raceenabled {
 | 
						|
			racemapshadow(unsafe.Pointer(p), n)
 | 
						|
		}
 | 
						|
 | 
						|
		if p&(_PageSize-1) != 0 {
 | 
						|
			throw("misrounded allocation in MHeap_SysAlloc")
 | 
						|
		}
 | 
						|
		return unsafe.Pointer(p)
 | 
						|
	}
 | 
						|
 | 
						|
	// If using 64-bit, our reservation is all we have.
 | 
						|
	if h.arena_end-h.arena_start > _MaxArena32 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	// On 32-bit, once the reservation is gone we can
 | 
						|
	// try to get memory at a location chosen by the OS.
 | 
						|
	p_size := round(n, _PageSize) + _PageSize
 | 
						|
	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
 | 
						|
	if p == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	if p < h.arena_start || p+p_size-h.arena_start > _MaxArena32 {
 | 
						|
		top := ^uintptr(0)
 | 
						|
		if top-h.arena_start-1 > _MaxArena32 {
 | 
						|
			top = h.arena_start + _MaxArena32 + 1
 | 
						|
		}
 | 
						|
		print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
 | 
						|
		sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	p_end := p + p_size
 | 
						|
	p += -p & (_PageSize - 1)
 | 
						|
	if p+n > h.arena_used {
 | 
						|
		h.mapBits(p + n)
 | 
						|
		h.mapSpans(p + n)
 | 
						|
		h.arena_used = p + n
 | 
						|
		if p_end > h.arena_end {
 | 
						|
			h.arena_end = p_end
 | 
						|
		}
 | 
						|
		if raceenabled {
 | 
						|
			racemapshadow(unsafe.Pointer(p), n)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if p&(_PageSize-1) != 0 {
 | 
						|
		throw("misrounded allocation in MHeap_SysAlloc")
 | 
						|
	}
 | 
						|
	return unsafe.Pointer(p)
 | 
						|
}
 | 
						|
 | 
						|
// base address for all 0-byte allocations
 | 
						|
var zerobase uintptr
 | 
						|
 | 
						|
// nextFreeFast returns the next free object if one is quickly available.
 | 
						|
// Otherwise it returns 0.
 | 
						|
func nextFreeFast(s *mspan) gclinkptr {
 | 
						|
	theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
 | 
						|
	if theBit < 64 {
 | 
						|
		result := s.freeindex + uintptr(theBit)
 | 
						|
		if result < s.nelems {
 | 
						|
			freeidx := result + 1
 | 
						|
			if freeidx%64 == 0 && freeidx != s.nelems {
 | 
						|
				return 0
 | 
						|
			}
 | 
						|
			s.allocCache >>= (theBit + 1)
 | 
						|
			s.freeindex = freeidx
 | 
						|
			v := gclinkptr(result*s.elemsize + s.base())
 | 
						|
			s.allocCount++
 | 
						|
			return v
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// nextFree returns the next free object from the cached span if one is available.
 | 
						|
// Otherwise it refills the cache with a span with an available object and
 | 
						|
// returns that object along with a flag indicating that this was a heavy
 | 
						|
// weight allocation. If it is a heavy weight allocation the caller must
 | 
						|
// determine whether a new GC cycle needs to be started or if the GC is active
 | 
						|
// whether this goroutine needs to assist the GC.
 | 
						|
func (c *mcache) nextFree(sizeclass uint8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
 | 
						|
	s = c.alloc[sizeclass]
 | 
						|
	shouldhelpgc = false
 | 
						|
	freeIndex := s.nextFreeIndex()
 | 
						|
	if freeIndex == s.nelems {
 | 
						|
		// The span is full.
 | 
						|
		if uintptr(s.allocCount) != s.nelems {
 | 
						|
			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
 | 
						|
			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
 | 
						|
		}
 | 
						|
		systemstack(func() {
 | 
						|
			c.refill(int32(sizeclass))
 | 
						|
		})
 | 
						|
		shouldhelpgc = true
 | 
						|
		s = c.alloc[sizeclass]
 | 
						|
 | 
						|
		freeIndex = s.nextFreeIndex()
 | 
						|
	}
 | 
						|
 | 
						|
	if freeIndex >= s.nelems {
 | 
						|
		throw("freeIndex is not valid")
 | 
						|
	}
 | 
						|
 | 
						|
	v = gclinkptr(freeIndex*s.elemsize + s.base())
 | 
						|
	s.allocCount++
 | 
						|
	if uintptr(s.allocCount) > s.nelems {
 | 
						|
		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
 | 
						|
		throw("s.allocCount > s.nelems")
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Allocate an object of size bytes.
 | 
						|
// Small objects are allocated from the per-P cache's free lists.
 | 
						|
// Large objects (> 32 kB) are allocated straight from the heap.
 | 
						|
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
 | 
						|
	if gcphase == _GCmarktermination {
 | 
						|
		throw("mallocgc called with gcphase == _GCmarktermination")
 | 
						|
	}
 | 
						|
 | 
						|
	if size == 0 {
 | 
						|
		return unsafe.Pointer(&zerobase)
 | 
						|
	}
 | 
						|
 | 
						|
	if debug.sbrk != 0 {
 | 
						|
		align := uintptr(16)
 | 
						|
		if typ != nil {
 | 
						|
			align = uintptr(typ.align)
 | 
						|
		}
 | 
						|
		return persistentalloc(size, align, &memstats.other_sys)
 | 
						|
	}
 | 
						|
 | 
						|
	// When using gccgo, when a cgo or SWIG function has an
 | 
						|
	// interface return type and the function returns a
 | 
						|
	// non-pointer, memory allocation occurs after syscall.Cgocall
 | 
						|
	// but before syscall.CgocallDone. Treat this allocation as a
 | 
						|
	// callback.
 | 
						|
	incallback := false
 | 
						|
	if gomcache() == nil && getg().m.ncgo > 0 {
 | 
						|
		exitsyscall(0)
 | 
						|
		incallback = true
 | 
						|
	}
 | 
						|
 | 
						|
	// assistG is the G to charge for this allocation, or nil if
 | 
						|
	// GC is not currently active.
 | 
						|
	var assistG *g
 | 
						|
	if gcBlackenEnabled != 0 {
 | 
						|
		// Charge the current user G for this allocation.
 | 
						|
		assistG = getg()
 | 
						|
		if assistG.m.curg != nil {
 | 
						|
			assistG = assistG.m.curg
 | 
						|
		}
 | 
						|
		// Charge the allocation against the G. We'll account
 | 
						|
		// for internal fragmentation at the end of mallocgc.
 | 
						|
		assistG.gcAssistBytes -= int64(size)
 | 
						|
 | 
						|
		if assistG.gcAssistBytes < 0 {
 | 
						|
			// This G is in debt. Assist the GC to correct
 | 
						|
			// this before allocating. This must happen
 | 
						|
			// before disabling preemption.
 | 
						|
			gcAssistAlloc(assistG)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Set mp.mallocing to keep from being preempted by GC.
 | 
						|
	mp := acquirem()
 | 
						|
	if mp.mallocing != 0 {
 | 
						|
		throw("malloc deadlock")
 | 
						|
	}
 | 
						|
	if mp.gsignal == getg() {
 | 
						|
		throw("malloc during signal")
 | 
						|
	}
 | 
						|
	mp.mallocing = 1
 | 
						|
 | 
						|
	shouldhelpgc := false
 | 
						|
	dataSize := size
 | 
						|
	c := gomcache()
 | 
						|
	var x unsafe.Pointer
 | 
						|
	noscan := typ == nil || typ.kind&kindNoPointers != 0
 | 
						|
	if size <= maxSmallSize {
 | 
						|
		if noscan && size < maxTinySize {
 | 
						|
			// Tiny allocator.
 | 
						|
			//
 | 
						|
			// Tiny allocator combines several tiny allocation requests
 | 
						|
			// into a single memory block. The resulting memory block
 | 
						|
			// is freed when all subobjects are unreachable. The subobjects
 | 
						|
			// must be noscan (don't have pointers), this ensures that
 | 
						|
			// the amount of potentially wasted memory is bounded.
 | 
						|
			//
 | 
						|
			// Size of the memory block used for combining (maxTinySize) is tunable.
 | 
						|
			// Current setting is 16 bytes, which relates to 2x worst case memory
 | 
						|
			// wastage (when all but one subobjects are unreachable).
 | 
						|
			// 8 bytes would result in no wastage at all, but provides less
 | 
						|
			// opportunities for combining.
 | 
						|
			// 32 bytes provides more opportunities for combining,
 | 
						|
			// but can lead to 4x worst case wastage.
 | 
						|
			// The best case winning is 8x regardless of block size.
 | 
						|
			//
 | 
						|
			// Objects obtained from tiny allocator must not be freed explicitly.
 | 
						|
			// So when an object will be freed explicitly, we ensure that
 | 
						|
			// its size >= maxTinySize.
 | 
						|
			//
 | 
						|
			// SetFinalizer has a special case for objects potentially coming
 | 
						|
			// from tiny allocator, it such case it allows to set finalizers
 | 
						|
			// for an inner byte of a memory block.
 | 
						|
			//
 | 
						|
			// The main targets of tiny allocator are small strings and
 | 
						|
			// standalone escaping variables. On a json benchmark
 | 
						|
			// the allocator reduces number of allocations by ~12% and
 | 
						|
			// reduces heap size by ~20%.
 | 
						|
			off := c.tinyoffset
 | 
						|
			// Align tiny pointer for required (conservative) alignment.
 | 
						|
			if size&7 == 0 {
 | 
						|
				off = round(off, 8)
 | 
						|
			} else if size&3 == 0 {
 | 
						|
				off = round(off, 4)
 | 
						|
			} else if size&1 == 0 {
 | 
						|
				off = round(off, 2)
 | 
						|
			}
 | 
						|
			if off+size <= maxTinySize && c.tiny != 0 {
 | 
						|
				// The object fits into existing tiny block.
 | 
						|
				x = unsafe.Pointer(c.tiny + off)
 | 
						|
				c.tinyoffset = off + size
 | 
						|
				c.local_tinyallocs++
 | 
						|
				mp.mallocing = 0
 | 
						|
				releasem(mp)
 | 
						|
				if incallback {
 | 
						|
					entersyscall(0)
 | 
						|
				}
 | 
						|
				return x
 | 
						|
			}
 | 
						|
			// Allocate a new maxTinySize block.
 | 
						|
			span := c.alloc[tinySizeClass]
 | 
						|
			v := nextFreeFast(span)
 | 
						|
			if v == 0 {
 | 
						|
				v, _, shouldhelpgc = c.nextFree(tinySizeClass)
 | 
						|
			}
 | 
						|
			x = unsafe.Pointer(v)
 | 
						|
			(*[2]uint64)(x)[0] = 0
 | 
						|
			(*[2]uint64)(x)[1] = 0
 | 
						|
			// See if we need to replace the existing tiny block with the new one
 | 
						|
			// based on amount of remaining free space.
 | 
						|
			if size < c.tinyoffset || c.tiny == 0 {
 | 
						|
				c.tiny = uintptr(x)
 | 
						|
				c.tinyoffset = size
 | 
						|
			}
 | 
						|
			size = maxTinySize
 | 
						|
		} else {
 | 
						|
			var sizeclass uint8
 | 
						|
			if size <= smallSizeMax-8 {
 | 
						|
				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
 | 
						|
			} else {
 | 
						|
				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
 | 
						|
			}
 | 
						|
			size = uintptr(class_to_size[sizeclass])
 | 
						|
			span := c.alloc[sizeclass]
 | 
						|
			v := nextFreeFast(span)
 | 
						|
			if v == 0 {
 | 
						|
				v, span, shouldhelpgc = c.nextFree(sizeclass)
 | 
						|
			}
 | 
						|
			x = unsafe.Pointer(v)
 | 
						|
			if needzero && span.needzero != 0 {
 | 
						|
				memclrNoHeapPointers(unsafe.Pointer(v), size)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		var s *mspan
 | 
						|
		shouldhelpgc = true
 | 
						|
		systemstack(func() {
 | 
						|
			s = largeAlloc(size, needzero)
 | 
						|
		})
 | 
						|
		s.freeindex = 1
 | 
						|
		s.allocCount = 1
 | 
						|
		x = unsafe.Pointer(s.base())
 | 
						|
		size = s.elemsize
 | 
						|
	}
 | 
						|
 | 
						|
	var scanSize uintptr
 | 
						|
	if noscan {
 | 
						|
		heapBitsSetTypeNoScan(uintptr(x))
 | 
						|
	} else {
 | 
						|
		heapBitsSetType(uintptr(x), size, dataSize, typ)
 | 
						|
		if dataSize > typ.size {
 | 
						|
			// Array allocation. If there are any
 | 
						|
			// pointers, GC has to scan to the last
 | 
						|
			// element.
 | 
						|
			if typ.ptrdata != 0 {
 | 
						|
				scanSize = dataSize - typ.size + typ.ptrdata
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			scanSize = typ.ptrdata
 | 
						|
		}
 | 
						|
		c.local_scan += scanSize
 | 
						|
	}
 | 
						|
 | 
						|
	// Ensure that the stores above that initialize x to
 | 
						|
	// type-safe memory and set the heap bits occur before
 | 
						|
	// the caller can make x observable to the garbage
 | 
						|
	// collector. Otherwise, on weakly ordered machines,
 | 
						|
	// the garbage collector could follow a pointer to x,
 | 
						|
	// but see uninitialized memory or stale heap bits.
 | 
						|
	publicationBarrier()
 | 
						|
 | 
						|
	// Allocate black during GC.
 | 
						|
	// All slots hold nil so no scanning is needed.
 | 
						|
	// This may be racing with GC so do it atomically if there can be
 | 
						|
	// a race marking the bit.
 | 
						|
	if gcphase != _GCoff {
 | 
						|
		gcmarknewobject(uintptr(x), size, scanSize)
 | 
						|
	}
 | 
						|
 | 
						|
	if raceenabled {
 | 
						|
		racemalloc(x, size)
 | 
						|
	}
 | 
						|
 | 
						|
	if msanenabled {
 | 
						|
		msanmalloc(x, size)
 | 
						|
	}
 | 
						|
 | 
						|
	mp.mallocing = 0
 | 
						|
	releasem(mp)
 | 
						|
 | 
						|
	if debug.allocfreetrace != 0 {
 | 
						|
		tracealloc(x, size, typ)
 | 
						|
	}
 | 
						|
 | 
						|
	if rate := MemProfileRate; rate > 0 {
 | 
						|
		if size < uintptr(rate) && int32(size) < c.next_sample {
 | 
						|
			c.next_sample -= int32(size)
 | 
						|
		} else {
 | 
						|
			mp := acquirem()
 | 
						|
			profilealloc(mp, x, size)
 | 
						|
			releasem(mp)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if assistG != nil {
 | 
						|
		// Account for internal fragmentation in the assist
 | 
						|
		// debt now that we know it.
 | 
						|
		assistG.gcAssistBytes -= int64(size - dataSize)
 | 
						|
	}
 | 
						|
 | 
						|
	if shouldhelpgc && gcShouldStart(false) {
 | 
						|
		gcStart(gcBackgroundMode, false)
 | 
						|
	}
 | 
						|
 | 
						|
	if getg().preempt {
 | 
						|
		checkPreempt()
 | 
						|
	}
 | 
						|
 | 
						|
	if incallback {
 | 
						|
		entersyscall(0)
 | 
						|
	}
 | 
						|
 | 
						|
	return x
 | 
						|
}
 | 
						|
 | 
						|
func largeAlloc(size uintptr, needzero bool) *mspan {
 | 
						|
	// print("largeAlloc size=", size, "\n")
 | 
						|
 | 
						|
	if size+_PageSize < size {
 | 
						|
		throw("out of memory")
 | 
						|
	}
 | 
						|
	npages := size >> _PageShift
 | 
						|
	if size&_PageMask != 0 {
 | 
						|
		npages++
 | 
						|
	}
 | 
						|
 | 
						|
	// Deduct credit for this span allocation and sweep if
 | 
						|
	// necessary. mHeap_Alloc will also sweep npages, so this only
 | 
						|
	// pays the debt down to npage pages.
 | 
						|
	deductSweepCredit(npages*_PageSize, npages)
 | 
						|
 | 
						|
	s := mheap_.alloc(npages, 0, true, needzero)
 | 
						|
	if s == nil {
 | 
						|
		throw("out of memory")
 | 
						|
	}
 | 
						|
	s.limit = s.base() + size
 | 
						|
	heapBitsForSpan(s.base()).initSpan(s)
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// implementation of new builtin
 | 
						|
// compiler (both frontend and SSA backend) knows the signature
 | 
						|
// of this function
 | 
						|
func newobject(typ *_type) unsafe.Pointer {
 | 
						|
	return mallocgc(typ.size, typ, true)
 | 
						|
}
 | 
						|
 | 
						|
//go:linkname reflect_unsafe_New reflect.unsafe_New
 | 
						|
func reflect_unsafe_New(typ *_type) unsafe.Pointer {
 | 
						|
	return newobject(typ)
 | 
						|
}
 | 
						|
 | 
						|
// newarray allocates an array of n elements of type typ.
 | 
						|
func newarray(typ *_type, n int) unsafe.Pointer {
 | 
						|
	if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
 | 
						|
		panic(plainError("runtime: allocation size out of range"))
 | 
						|
	}
 | 
						|
	return mallocgc(typ.size*uintptr(n), typ, true)
 | 
						|
}
 | 
						|
 | 
						|
//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
 | 
						|
func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
 | 
						|
	return newarray(typ, n)
 | 
						|
}
 | 
						|
 | 
						|
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
 | 
						|
	mp.mcache.next_sample = nextSample()
 | 
						|
	mProf_Malloc(x, size)
 | 
						|
}
 | 
						|
 | 
						|
// nextSample returns the next sampling point for heap profiling.
 | 
						|
// It produces a random variable with a geometric distribution and
 | 
						|
// mean MemProfileRate. This is done by generating a uniformly
 | 
						|
// distributed random number and applying the cumulative distribution
 | 
						|
// function for an exponential.
 | 
						|
func nextSample() int32 {
 | 
						|
	if GOOS == "plan9" {
 | 
						|
		// Plan 9 doesn't support floating point in note handler.
 | 
						|
		if g := getg(); g == g.m.gsignal {
 | 
						|
			return nextSampleNoFP()
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	period := MemProfileRate
 | 
						|
 | 
						|
	// make nextSample not overflow. Maximum possible step is
 | 
						|
	// -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
 | 
						|
	switch {
 | 
						|
	case period > 0x7000000:
 | 
						|
		period = 0x7000000
 | 
						|
	case period == 0:
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
 | 
						|
	// Let m be the sample rate,
 | 
						|
	// the probability distribution function is m*exp(-mx), so the CDF is
 | 
						|
	// p = 1 - exp(-mx), so
 | 
						|
	// q = 1 - p == exp(-mx)
 | 
						|
	// log_e(q) = -mx
 | 
						|
	// -log_e(q)/m = x
 | 
						|
	// x = -log_e(q) * period
 | 
						|
	// x = log_2(q) * (-log_e(2)) * period    ; Using log_2 for efficiency
 | 
						|
	const randomBitCount = 26
 | 
						|
	q := fastrand()%(1<<randomBitCount) + 1
 | 
						|
	qlog := fastlog2(float64(q)) - randomBitCount
 | 
						|
	if qlog > 0 {
 | 
						|
		qlog = 0
 | 
						|
	}
 | 
						|
	const minusLog2 = -0.6931471805599453 // -ln(2)
 | 
						|
	return int32(qlog*(minusLog2*float64(period))) + 1
 | 
						|
}
 | 
						|
 | 
						|
// nextSampleNoFP is similar to nextSample, but uses older,
 | 
						|
// simpler code to avoid floating point.
 | 
						|
func nextSampleNoFP() int32 {
 | 
						|
	// Set first allocation sample size.
 | 
						|
	rate := MemProfileRate
 | 
						|
	if rate > 0x3fffffff { // make 2*rate not overflow
 | 
						|
		rate = 0x3fffffff
 | 
						|
	}
 | 
						|
	if rate != 0 {
 | 
						|
		return int32(int(fastrand()) % (2 * rate))
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
type persistentAlloc struct {
 | 
						|
	base unsafe.Pointer
 | 
						|
	off  uintptr
 | 
						|
}
 | 
						|
 | 
						|
var globalAlloc struct {
 | 
						|
	mutex
 | 
						|
	persistentAlloc
 | 
						|
}
 | 
						|
 | 
						|
// Wrapper around sysAlloc that can allocate small chunks.
 | 
						|
// There is no associated free operation.
 | 
						|
// Intended for things like function/type/debug-related persistent data.
 | 
						|
// If align is 0, uses default align (currently 8).
 | 
						|
// The returned memory will be zeroed.
 | 
						|
//
 | 
						|
// Consider marking persistentalloc'd types go:notinheap.
 | 
						|
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
 | 
						|
	var p unsafe.Pointer
 | 
						|
	systemstack(func() {
 | 
						|
		p = persistentalloc1(size, align, sysStat)
 | 
						|
	})
 | 
						|
	return p
 | 
						|
}
 | 
						|
 | 
						|
// Must run on system stack because stack growth can (re)invoke it.
 | 
						|
// See issue 9174.
 | 
						|
//go:systemstack
 | 
						|
func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
 | 
						|
	const (
 | 
						|
		chunk    = 256 << 10
 | 
						|
		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
 | 
						|
	)
 | 
						|
 | 
						|
	if size == 0 {
 | 
						|
		throw("persistentalloc: size == 0")
 | 
						|
	}
 | 
						|
	if align != 0 {
 | 
						|
		if align&(align-1) != 0 {
 | 
						|
			throw("persistentalloc: align is not a power of 2")
 | 
						|
		}
 | 
						|
		if align > _PageSize {
 | 
						|
			throw("persistentalloc: align is too large")
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		align = 8
 | 
						|
	}
 | 
						|
 | 
						|
	if size >= maxBlock {
 | 
						|
		return sysAlloc(size, sysStat)
 | 
						|
	}
 | 
						|
 | 
						|
	mp := acquirem()
 | 
						|
	var persistent *persistentAlloc
 | 
						|
	if mp != nil && mp.p != 0 {
 | 
						|
		persistent = &mp.p.ptr().palloc
 | 
						|
	} else {
 | 
						|
		lock(&globalAlloc.mutex)
 | 
						|
		persistent = &globalAlloc.persistentAlloc
 | 
						|
	}
 | 
						|
	persistent.off = round(persistent.off, align)
 | 
						|
	if persistent.off+size > chunk || persistent.base == nil {
 | 
						|
		persistent.base = sysAlloc(chunk, &memstats.other_sys)
 | 
						|
		if persistent.base == nil {
 | 
						|
			if persistent == &globalAlloc.persistentAlloc {
 | 
						|
				unlock(&globalAlloc.mutex)
 | 
						|
			}
 | 
						|
			throw("runtime: cannot allocate memory")
 | 
						|
		}
 | 
						|
		persistent.off = 0
 | 
						|
	}
 | 
						|
	p := add(persistent.base, persistent.off)
 | 
						|
	persistent.off += size
 | 
						|
	releasem(mp)
 | 
						|
	if persistent == &globalAlloc.persistentAlloc {
 | 
						|
		unlock(&globalAlloc.mutex)
 | 
						|
	}
 | 
						|
 | 
						|
	if sysStat != &memstats.other_sys {
 | 
						|
		mSysStatInc(sysStat, size)
 | 
						|
		mSysStatDec(&memstats.other_sys, size)
 | 
						|
	}
 | 
						|
	return p
 | 
						|
}
 |