mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
| /***************************************************************************
 | |
| 
 | |
| Interface between g++ and Boehm GC
 | |
| 
 | |
|     Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
 | |
| 
 | |
|     THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | |
|     OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | |
| 
 | |
|     Permission is hereby granted to copy this code for any purpose,
 | |
|     provided the above notices are retained on all copies.
 | |
| 
 | |
|     Last modified on Sun Jul 16 23:21:14 PDT 1995 by ellis
 | |
| 
 | |
| This module provides runtime support for implementing the
 | |
| Ellis/Detlefs GC proposal, "Safe, Efficient Garbage Collection for
 | |
| C++", within g++, using its -fgc-keyword extension.  It defines
 | |
| versions of __builtin_new, __builtin_new_gc, __builtin_vec_new,
 | |
| __builtin_vec_new_gc, __builtin_delete, and __builtin_vec_delete that
 | |
| invoke the Bohem GC.  It also implements the WeakPointer.h interface.
 | |
| 
 | |
| This module assumes the following configuration options of the Boehm GC:
 | |
| 
 | |
|     -DALL_INTERIOR_POINTERS
 | |
|     -DDONT_ADD_BYTE_AT_END   
 | |
| 
 | |
| This module adds its own required padding to the end of objects to
 | |
| support C/C++ "one-past-the-object" pointer semantics.
 | |
| 
 | |
| ****************************************************************************/
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include "gc.h"
 | |
| 
 | |
| #if defined(__STDC__) 
 | |
| #   define PROTO( args ) args
 | |
| #else
 | |
| #    define PROTO( args ) ()
 | |
| #    endif
 | |
| 
 | |
| #define BITSPERBYTE 8     
 | |
|     /* What's the portable way to do this? */
 | |
| 
 | |
| 
 | |
| typedef void (*vfp) PROTO(( void ));
 | |
| extern vfp __new_handler;
 | |
| extern void __default_new_handler PROTO(( void ));
 | |
| 
 | |
| 
 | |
| /* A destructor_proc is the compiler generated procedure representing a 
 | |
| C++ destructor.  The "flag" argument is a hidden argument following some
 | |
| compiler convention. */
 | |
| 
 | |
| typedef (*destructor_proc) PROTO(( void* this, int flag ));
 | |
| 
 | |
| 
 | |
| /***************************************************************************
 | |
| 
 | |
| A BI_header is the header the compiler adds to the front of
 | |
| new-allocated arrays of objects with destructors.  The header is
 | |
| padded out to a double, because that's what the compiler does to
 | |
| ensure proper alignment of array elements on some architectures.  
 | |
| 
 | |
| int NUM_ARRAY_ELEMENTS (void* o)
 | |
|     returns the number of array elements for array object o.
 | |
| 
 | |
| char* FIRST_ELEMENT_P (void* o)
 | |
|     returns the address of the first element of array object o.
 | |
| 
 | |
| ***************************************************************************/
 | |
| 
 | |
| typedef struct BI_header {
 | |
|     int nelts;
 | |
|     char padding [sizeof( double ) - sizeof( int )]; 
 | |
|         /* Better way to do this? */
 | |
| } BI_header;
 | |
| 
 | |
| #define NUM_ARRAY_ELEMENTS( o ) \
 | |
|   (((BI_header*) o)->nelts)
 | |
| 
 | |
| #define FIRST_ELEMENT_P( o ) \
 | |
|   ((char*) o + sizeof( BI_header ))
 | |
| 
 | |
| 
 | |
| /***************************************************************************
 | |
| 
 | |
| The __builtin_new routines add a descriptor word to the end of each
 | |
| object.   The descriptor serves two purposes.  
 | |
| 
 | |
| First, the descriptor acts as padding, implementing C/C++ pointer
 | |
| semantics.  C and C++ allow a valid array pointer to be incremented
 | |
| one past the end of an object.  The extra padding ensures that the
 | |
| collector will recognize that such a pointer points to the object and
 | |
| not the next object in memory.
 | |
| 
 | |
| Second, the descriptor stores three extra pieces of information,
 | |
| whether an object has a registered finalizer (destructor), whether it
 | |
| may have any weak pointers referencing it, and for collectible arrays,
 | |
| the element size of the array.  The element size is required for the
 | |
| array's finalizer to iterate through the elements of the array.  (An
 | |
| alternative design would have the compiler generate a finalizer
 | |
| procedure for each different array type.  But given the overhead of
 | |
| finalization, there isn't any efficiency to be gained by that.)
 | |
| 
 | |
| The descriptor must be added to non-collectible as well as collectible
 | |
| objects, since the Ellis/Detlefs proposal allows "pointer to gc T" to
 | |
| be assigned to a "pointer to T", which could then be deleted.  Thus,
 | |
| __builtin_delete must determine at runtime whether an object is
 | |
| collectible, whether it has weak pointers referencing it, and whether
 | |
| it may have a finalizer that needs unregistering.  Though
 | |
| GC_REGISTER_FINALIZER doesn't care if you ask it to unregister a
 | |
| finalizer for an object that doesn't have one, it is a non-trivial
 | |
| procedure that does a hash look-up, etc.  The descriptor trades a
 | |
| little extra space for a significant increase in time on the fast path
 | |
| through delete.  (A similar argument applies to
 | |
| GC_UNREGISTER_DISAPPEARING_LINK).
 | |
| 
 | |
| For non-array types, the space for the descriptor could be shrunk to a
 | |
| single byte for storing the "has finalizer" flag.  But this would save
 | |
| space only on arrays of char (whose size is not a multiple of the word
 | |
| size) and structs whose largest member is less than a word in size
 | |
| (very infrequent).  And it would require that programmers actually
 | |
| remember to call "delete[]" instead of "delete" (which they should,
 | |
| but there are probably lots of buggy programs out there).  For the
 | |
| moment, the space savings seems not worthwhile, especially considering
 | |
| that the Boehm GC is already quite space competitive with other
 | |
| malloc's.
 | |
| 
 | |
| 
 | |
| Given a pointer o to the base of an object:
 | |
| 
 | |
| Descriptor* DESCRIPTOR (void* o) 
 | |
|      returns a pointer to the descriptor for o.
 | |
| 
 | |
| The implementation of descriptors relies on the fact that the GC
 | |
| implementation allocates objects in units of the machine's natural
 | |
| word size (e.g. 32 bits on a SPARC, 64 bits on an Alpha).
 | |
| 
 | |
| **************************************************************************/
 | |
| 
 | |
| typedef struct Descriptor {
 | |
|     unsigned has_weak_pointers: 1;
 | |
|     unsigned has_finalizer: 1;
 | |
|     unsigned element_size: BITSPERBYTE * sizeof( unsigned ) - 2; 
 | |
| } Descriptor;
 | |
| 
 | |
| #define DESCRIPTOR( o ) \
 | |
|   ((Descriptor*) ((char*)(o) + GC_size( o ) - sizeof( Descriptor )))
 | |
| 
 | |
| 
 | |
| /**************************************************************************
 | |
| 
 | |
| Implementations of global operator new() and operator delete()
 | |
| 
 | |
| ***************************************************************************/
 | |
| 
 | |
| 
 | |
| void* __builtin_new( size ) 
 | |
|     size_t size;
 | |
|     /* 
 | |
|     For non-gc non-array types, the compiler generates calls to
 | |
|     __builtin_new, which allocates non-collected storage via
 | |
|     GC_MALLOC_UNCOLLECTABLE.  This ensures that the non-collected
 | |
|     storage will be part of the collector's root set, required by the
 | |
|     Ellis/Detlefs semantics. */
 | |
| {
 | |
|     vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | |
| 
 | |
|     while (1) {
 | |
|         void* o = GC_MALLOC_UNCOLLECTABLE( size + sizeof( Descriptor ) );
 | |
|         if (o != 0) return o;
 | |
|         (*handler) ();}}
 | |
| 
 | |
| 
 | |
| void* __builtin_vec_new( size ) 
 | |
|     size_t size;
 | |
|     /* 
 | |
|     For non-gc array types, the compiler generates calls to
 | |
|     __builtin_vec_new. */
 | |
| {
 | |
|     return __builtin_new( size );}
 | |
| 
 | |
| 
 | |
| void* __builtin_new_gc( size )
 | |
|     size_t size;
 | |
|     /* 
 | |
|     For gc non-array types, the compiler generates calls to
 | |
|     __builtin_new_gc, which allocates collected storage via
 | |
|     GC_MALLOC. */
 | |
| {
 | |
|     vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | |
| 
 | |
|     while (1) {
 | |
|         void* o = GC_MALLOC( size + sizeof( Descriptor ) );
 | |
|         if (o != 0) return o;
 | |
|         (*handler) ();}}
 | |
| 
 | |
| 
 | |
| void* __builtin_new_gc_a( size )
 | |
|     size_t size;
 | |
|     /* 
 | |
|     For non-pointer-containing gc non-array types, the compiler
 | |
|     generates calls to __builtin_new_gc_a, which allocates collected
 | |
|     storage via GC_MALLOC_ATOMIC. */
 | |
| {
 | |
|     vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | |
| 
 | |
|     while (1) {
 | |
|         void* o = GC_MALLOC_ATOMIC( size + sizeof( Descriptor ) );
 | |
|         if (o != 0) return o;
 | |
|         (*handler) ();}}
 | |
| 
 | |
| 
 | |
| void* __builtin_vec_new_gc( size )
 | |
|     size_t size;
 | |
|     /*
 | |
|     For gc array types, the compiler generates calls to
 | |
|     __builtin_vec_new_gc. */
 | |
| {
 | |
|     return __builtin_new_gc( size );}
 | |
| 
 | |
| 
 | |
| void* __builtin_vec_new_gc_a( size )
 | |
|     size_t size;
 | |
|     /*
 | |
|     For non-pointer-containing gc array types, the compiler generates
 | |
|     calls to __builtin_vec_new_gc_a. */
 | |
| {
 | |
|     return __builtin_new_gc_a( size );}
 | |
| 
 | |
| 
 | |
| static void call_destructor( o, data )
 | |
|     void* o;
 | |
|     void* data;
 | |
|     /* 
 | |
|     call_destructor is the GC finalizer proc registered for non-array
 | |
|     gc objects with destructors.  Its client data is the destructor
 | |
|     proc, which it calls with the magic integer 2, a special flag
 | |
|     obeying the compiler convention for destructors. */
 | |
| {
 | |
|     ((destructor_proc) data)( o, 2 );}
 | |
| 
 | |
| 
 | |
| void* __builtin_new_gc_dtor( o, d )
 | |
|     void* o;
 | |
|     destructor_proc d;
 | |
|     /* 
 | |
|     The compiler generates a call to __builtin_new_gc_dtor to register
 | |
|     the destructor "d" of a non-array gc object "o" as a GC finalizer.
 | |
|     The destructor is registered via
 | |
|     GC_REGISTER_FINALIZER_IGNORE_SELF, which causes the collector to
 | |
|     ignore pointers from the object to itself when determining when
 | |
|     the object can be finalized.  This is necessary due to the self
 | |
|     pointers used in the internal representation of multiply-inherited
 | |
|     objects. */
 | |
| {
 | |
|     Descriptor* desc = DESCRIPTOR( o );
 | |
| 
 | |
|     GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_destructor, d, 0, 0 );
 | |
|     desc->has_finalizer = 1;}
 | |
| 
 | |
| 
 | |
| static void call_array_destructor( o, data )
 | |
|     void* o;
 | |
|     void* data;
 | |
|     /*
 | |
|     call_array_destructor is the GC finalizer proc registered for gc
 | |
|     array objects whose elements have destructors. Its client data is
 | |
|     the destructor proc.  It iterates through the elements of the
 | |
|     array in reverse order, calling the destructor on each. */
 | |
| {
 | |
|     int num = NUM_ARRAY_ELEMENTS( o );
 | |
|     Descriptor* desc = DESCRIPTOR( o );
 | |
|     size_t size = desc->element_size;
 | |
|     char* first_p = FIRST_ELEMENT_P( o );
 | |
|     char* p = first_p + (num - 1) * size;
 | |
| 
 | |
|     if (num > 0) {
 | |
|         while (1) {
 | |
|             ((destructor_proc) data)( p, 2 );
 | |
|             if (p == first_p) break;
 | |
|             p -= size;}}}
 | |
| 
 | |
| 
 | |
| void* __builtin_vec_new_gc_dtor( first_elem, d, element_size )
 | |
|     void* first_elem;
 | |
|     destructor_proc d;
 | |
|     size_t element_size;
 | |
|     /* 
 | |
|     The compiler generates a call to __builtin_vec_new_gc_dtor to
 | |
|     register the destructor "d" of a gc array object as a GC
 | |
|     finalizer.  "first_elem" points to the first element of the array,
 | |
|     *not* the beginning of the object (this makes the generated call
 | |
|     to this function smaller).  The elements of the array are of size
 | |
|     "element_size".  The destructor is registered as in
 | |
|     _builtin_new_gc_dtor. */
 | |
| {
 | |
|     void* o = (char*) first_elem - sizeof( BI_header );
 | |
|     Descriptor* desc = DESCRIPTOR( o );
 | |
| 
 | |
|     GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_array_destructor, d, 0, 0 );
 | |
|     desc->element_size = element_size;
 | |
|     desc->has_finalizer = 1;}
 | |
| 
 | |
| 
 | |
| void __builtin_delete( o )
 | |
|     void* o;
 | |
|     /* 
 | |
|     The compiler generates calls to __builtin_delete for operator
 | |
|     delete().  The GC currently requires that any registered
 | |
|     finalizers be unregistered before explicitly freeing an object.
 | |
|     If the object has any weak pointers referencing it, we can't
 | |
|     actually free it now. */
 | |
| {
 | |
|   if (o != 0) { 
 | |
|       Descriptor* desc = DESCRIPTOR( o );
 | |
|       if (desc->has_finalizer) GC_REGISTER_FINALIZER( o, 0, 0, 0, 0 );
 | |
|       if (! desc->has_weak_pointers) GC_FREE( o );}}
 | |
| 
 | |
| 
 | |
| void __builtin_vec_delete( o )
 | |
|     void* o;
 | |
|     /* 
 | |
|     The compiler generates calls to __builitn_vec_delete for operator
 | |
|     delete[](). */
 | |
| {
 | |
|   __builtin_delete( o );}
 | |
| 
 | |
| 
 | |
| /**************************************************************************
 | |
| 
 | |
| Implementations of the template class WeakPointer from WeakPointer.h
 | |
| 
 | |
| ***************************************************************************/
 | |
| 
 | |
| typedef struct WeakPointer {
 | |
|     void* pointer; 
 | |
| } WeakPointer;
 | |
| 
 | |
| 
 | |
| void* _WeakPointer_New( t )
 | |
|     void* t;
 | |
| {
 | |
|     if (t == 0) {
 | |
|         return 0;}
 | |
|     else {
 | |
|         void* base = GC_base( t );
 | |
|         WeakPointer* wp = 
 | |
|             (WeakPointer*) GC_MALLOC_ATOMIC( sizeof( WeakPointer ) );
 | |
|         Descriptor* desc = DESCRIPTOR( base );
 | |
| 
 | |
|         wp->pointer = t;
 | |
|         desc->has_weak_pointers = 1;
 | |
|         GC_general_register_disappearing_link( &wp->pointer, base );
 | |
|         return wp;}}
 | |
| 
 | |
| 
 | |
| static void* PointerWithLock( wp ) 
 | |
|     WeakPointer* wp;
 | |
| {
 | |
|     if (wp == 0 || wp->pointer == 0) {
 | |
|       return 0;}
 | |
|     else {
 | |
|         return (void*) wp->pointer;}}
 | |
| 
 | |
| 
 | |
| void* _WeakPointer_Pointer( wp )
 | |
|     WeakPointer* wp;
 | |
| {
 | |
|     return (void*) GC_call_with_alloc_lock( PointerWithLock, wp );}
 | |
| 
 | |
| 
 | |
| typedef struct EqualClosure {
 | |
|     WeakPointer* wp1;
 | |
|     WeakPointer* wp2;
 | |
| } EqualClosure;
 | |
| 
 | |
| 
 | |
| static void* EqualWithLock( ec )
 | |
|     EqualClosure* ec;
 | |
| {
 | |
|     if (ec->wp1 == 0 || ec->wp2 == 0) {
 | |
|         return (void*) (ec->wp1 == ec->wp2);}
 | |
|     else {
 | |
|       return (void*) (ec->wp1->pointer == ec->wp2->pointer);}}
 | |
| 
 | |
| 
 | |
| int _WeakPointer_Equal( wp1,  wp2 )
 | |
|     WeakPointer* wp1;
 | |
|     WeakPointer* wp2;
 | |
| {
 | |
|     EqualClosure ec;
 | |
| 
 | |
|     ec.wp1 = wp1;
 | |
|     ec.wp2 = wp2;
 | |
|     return (int) GC_call_with_alloc_lock( EqualWithLock, &ec );}
 | |
| 
 | |
| 
 | |
| int _WeakPointer_Hash( wp )
 | |
|     WeakPointer* wp;
 | |
| {
 | |
|     return (int) _WeakPointer_Pointer( wp );}
 | |
| 
 | |
| 
 | |
| /**************************************************************************
 | |
| 
 | |
| Implementations of the template class CleanUp from WeakPointer.h
 | |
| 
 | |
| ***************************************************************************/
 | |
| 
 | |
| typedef struct Closure {
 | |
|     void (*c) PROTO(( void* d, void* t ));
 | |
|     ptrdiff_t t_offset; 
 | |
|     void* d;
 | |
| } Closure;
 | |
| 
 | |
| 
 | |
| static void _CleanUp_CallClosure( obj, data ) 
 | |
|     void* obj;
 | |
|     void* data;
 | |
| {
 | |
|     Closure* closure = (Closure*) data;
 | |
|     closure->c( closure->d, (char*) obj + closure->t_offset );}
 | |
| 
 | |
| 
 | |
| void _CleanUp_Set( t, c, d ) 
 | |
|     void* t;
 | |
|     void (*c) PROTO(( void* d, void* t ));
 | |
|     void* d;
 | |
| {
 | |
|     void* base = GC_base( t );
 | |
|     Descriptor* desc = DESCRIPTOR( t );
 | |
| 
 | |
|     if (c == 0) {
 | |
|         GC_REGISTER_FINALIZER_IGNORE_SELF( base, 0, 0, 0, 0 );
 | |
|         desc->has_finalizer = 0;}
 | |
|     else {
 | |
|         Closure* closure = (Closure*) GC_MALLOC( sizeof( Closure ) );
 | |
|         closure->c = c;
 | |
|         closure->t_offset = (char*) t - (char*) base;
 | |
|         closure->d = d;
 | |
|         GC_REGISTER_FINALIZER_IGNORE_SELF( base, _CleanUp_CallClosure, 
 | |
|                                            closure, 0, 0 );
 | |
|         desc->has_finalizer = 1;}}
 | |
| 
 | |
| 
 | |
| void _CleanUp_Call( t ) 
 | |
|     void* t;
 | |
| {
 | |
|       /* ? Aren't we supposed to deactivate weak pointers to t too? 
 | |
|          Why? */
 | |
|     void* base = GC_base( t );
 | |
|     void* d;
 | |
|     GC_finalization_proc f;
 | |
| 
 | |
|     GC_REGISTER_FINALIZER( base, 0, 0, &f, &d );
 | |
|     f( base, d );}
 | |
| 
 | |
| 
 | |
| typedef struct QueueElem {
 | |
|     void* o;
 | |
|     GC_finalization_proc f;
 | |
|     void* d;
 | |
|     struct QueueElem* next; 
 | |
| } QueueElem;
 | |
| 
 | |
| 
 | |
| void* _CleanUp_Queue_NewHead()
 | |
| {
 | |
|     return GC_MALLOC( sizeof( QueueElem ) );}
 | |
|     
 | |
|      
 | |
| static void _CleanUp_Queue_Enqueue( obj, data )
 | |
|     void* obj; 
 | |
|     void* data;
 | |
| {
 | |
|     QueueElem* q = (QueueElem*) data;
 | |
|     QueueElem* head = q->next;
 | |
| 
 | |
|     q->o = obj;
 | |
|     q->next = head->next;
 | |
|     head->next = q;}
 | |
|     
 | |
|     
 | |
| void _CleanUp_Queue_Set( h, t ) 
 | |
|     void* h;
 | |
|     void* t;
 | |
| {
 | |
|     QueueElem* head = (QueueElem*) h;
 | |
|     void* base = GC_base( t );
 | |
|     void* d;
 | |
|     GC_finalization_proc f;
 | |
|     QueueElem* q = (QueueElem*) GC_MALLOC( sizeof( QueueElem ) );
 | |
|      
 | |
|     GC_REGISTER_FINALIZER( base, _CleanUp_Queue_Enqueue, q, &f, &d );
 | |
|     q->f = f;
 | |
|     q->d = d;
 | |
|     q->next = head;}
 | |
|     
 | |
| 
 | |
| int _CleanUp_Queue_Call( h ) 
 | |
|     void* h;
 | |
| {
 | |
|     QueueElem* head = (QueueElem*) h;
 | |
|     QueueElem* q = head->next;
 | |
| 
 | |
|     if (q == 0) {
 | |
|         return 0;}
 | |
|     else {
 | |
|         head->next = q->next;
 | |
|         q->next = 0;
 | |
|         if (q->f != 0) q->f( q->o, q->d );
 | |
|         return 1;}}
 | |
| 
 | |
| 
 | |
| 
 |