mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /* sha1.c - Functions to compute SHA1 message digest of files or
 | |
|    memory blocks according to the NIST specification FIPS-180-1.
 | |
| 
 | |
|    Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
 | |
|    Foundation, Inc.
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify it
 | |
|    under the terms of the GNU General Public License as published by the
 | |
|    Free Software Foundation; either version 2, or (at your option) any
 | |
|    later version.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software Foundation,
 | |
|    Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
 | |
| 
 | |
| /* Written by Scott G. Miller
 | |
|    Credits:
 | |
|       Robert Klep <robert@ilse.nl>  -- Expansion function fix
 | |
| */
 | |
| 
 | |
| #include <config.h>
 | |
| 
 | |
| #include "sha1.h"
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #if USE_UNLOCKED_IO
 | |
| # include "unlocked-io.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| # define SWAP(n) (n)
 | |
| #else
 | |
| # define SWAP(n) \
 | |
|     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
 | |
| #endif
 | |
| 
 | |
| #define BLOCKSIZE 4096
 | |
| #if BLOCKSIZE % 64 != 0
 | |
| # error "invalid BLOCKSIZE"
 | |
| #endif
 | |
| 
 | |
| /* This array contains the bytes used to pad the buffer to the next
 | |
|    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
 | |
| static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
 | |
| 
 | |
| 
 | |
| /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
 | |
|    initialize it to the start constants of the SHA1 algorithm.  This
 | |
|    must be called before using hash in the call to sha1_hash.  */
 | |
| void
 | |
| sha1_init_ctx (struct sha1_ctx *ctx)
 | |
| {
 | |
|   ctx->A = 0x67452301;
 | |
|   ctx->B = 0xefcdab89;
 | |
|   ctx->C = 0x98badcfe;
 | |
|   ctx->D = 0x10325476;
 | |
|   ctx->E = 0xc3d2e1f0;
 | |
| 
 | |
|   ctx->total[0] = ctx->total[1] = 0;
 | |
|   ctx->buflen = 0;
 | |
| }
 | |
| 
 | |
| /* Put result from CTX in first 20 bytes following RESBUF.  The result
 | |
|    must be in little endian byte order.
 | |
| 
 | |
|    IMPORTANT: On some systems it is required that RESBUF is correctly
 | |
|    aligned for a 32-bit value.  */
 | |
| void *
 | |
| sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
 | |
| {
 | |
|   ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
 | |
|   ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
 | |
|   ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
 | |
|   ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
 | |
|   ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
 | |
| 
 | |
|   return resbuf;
 | |
| }
 | |
| 
 | |
| /* Process the remaining bytes in the internal buffer and the usual
 | |
|    prolog according to the standard and write the result to RESBUF.
 | |
| 
 | |
|    IMPORTANT: On some systems it is required that RESBUF is correctly
 | |
|    aligned for a 32-bit value.  */
 | |
| void *
 | |
| sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
 | |
| {
 | |
|   /* Take yet unprocessed bytes into account.  */
 | |
|   sha1_uint32 bytes = ctx->buflen;
 | |
|   size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
 | |
| 
 | |
|   /* Now count remaining bytes.  */
 | |
|   ctx->total[0] += bytes;
 | |
|   if (ctx->total[0] < bytes)
 | |
|     ++ctx->total[1];
 | |
| 
 | |
|   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
 | |
|   ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
 | |
|   ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
 | |
| 
 | |
|   memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
 | |
| 
 | |
|   /* Process last bytes.  */
 | |
|   sha1_process_block (ctx->buffer, size * 4, ctx);
 | |
| 
 | |
|   return sha1_read_ctx (ctx, resbuf);
 | |
| }
 | |
| 
 | |
| /* Compute SHA1 message digest for bytes read from STREAM.  The
 | |
|    resulting message digest number will be written into the 16 bytes
 | |
|    beginning at RESBLOCK.  */
 | |
| int
 | |
| sha1_stream (FILE *stream, void *resblock)
 | |
| {
 | |
|   struct sha1_ctx ctx;
 | |
|   char buffer[BLOCKSIZE + 72];
 | |
|   size_t sum;
 | |
| 
 | |
|   /* Initialize the computation context.  */
 | |
|   sha1_init_ctx (&ctx);
 | |
| 
 | |
|   /* Iterate over full file contents.  */
 | |
|   while (1)
 | |
|     {
 | |
|       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
 | |
| 	 computation function processes the whole buffer so that with the
 | |
| 	 next round of the loop another block can be read.  */
 | |
|       size_t n;
 | |
|       sum = 0;
 | |
| 
 | |
|       /* Read block.  Take care for partial reads.  */
 | |
|       while (1)
 | |
| 	{
 | |
| 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
 | |
| 
 | |
| 	  sum += n;
 | |
| 
 | |
| 	  if (sum == BLOCKSIZE)
 | |
| 	    break;
 | |
| 
 | |
| 	  if (n == 0)
 | |
| 	    {
 | |
| 	      /* Check for the error flag IFF N == 0, so that we don't
 | |
| 		 exit the loop after a partial read due to e.g., EAGAIN
 | |
| 		 or EWOULDBLOCK.  */
 | |
| 	      if (ferror (stream))
 | |
| 		return 1;
 | |
| 	      goto process_partial_block;
 | |
| 	    }
 | |
| 
 | |
| 	  /* We've read at least one byte, so ignore errors.  But always
 | |
| 	     check for EOF, since feof may be true even though N > 0.
 | |
| 	     Otherwise, we could end up calling fread after EOF.  */
 | |
| 	  if (feof (stream))
 | |
| 	    goto process_partial_block;
 | |
| 	}
 | |
| 
 | |
|       /* Process buffer with BLOCKSIZE bytes.  Note that
 | |
| 			BLOCKSIZE % 64 == 0
 | |
|        */
 | |
|       sha1_process_block (buffer, BLOCKSIZE, &ctx);
 | |
|     }
 | |
| 
 | |
|  process_partial_block:;
 | |
| 
 | |
|   /* Process any remaining bytes.  */
 | |
|   if (sum > 0)
 | |
|     sha1_process_bytes (buffer, sum, &ctx);
 | |
| 
 | |
|   /* Construct result in desired memory.  */
 | |
|   sha1_finish_ctx (&ctx, resblock);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Compute SHA1 message digest for LEN bytes beginning at BUFFER.  The
 | |
|    result is always in little endian byte order, so that a byte-wise
 | |
|    output yields to the wanted ASCII representation of the message
 | |
|    digest.  */
 | |
| void *
 | |
| sha1_buffer (const char *buffer, size_t len, void *resblock)
 | |
| {
 | |
|   struct sha1_ctx ctx;
 | |
| 
 | |
|   /* Initialize the computation context.  */
 | |
|   sha1_init_ctx (&ctx);
 | |
| 
 | |
|   /* Process whole buffer but last len % 64 bytes.  */
 | |
|   sha1_process_bytes (buffer, len, &ctx);
 | |
| 
 | |
|   /* Put result in desired memory area.  */
 | |
|   return sha1_finish_ctx (&ctx, resblock);
 | |
| }
 | |
| 
 | |
| void
 | |
| sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
 | |
| {
 | |
|   /* When we already have some bits in our internal buffer concatenate
 | |
|      both inputs first.  */
 | |
|   if (ctx->buflen != 0)
 | |
|     {
 | |
|       size_t left_over = ctx->buflen;
 | |
|       size_t add = 128 - left_over > len ? len : 128 - left_over;
 | |
| 
 | |
|       memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
 | |
|       ctx->buflen += add;
 | |
| 
 | |
|       if (ctx->buflen > 64)
 | |
| 	{
 | |
| 	  sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
 | |
| 
 | |
| 	  ctx->buflen &= 63;
 | |
| 	  /* The regions in the following copy operation cannot overlap.  */
 | |
| 	  memcpy (ctx->buffer,
 | |
| 		  &((char *) ctx->buffer)[(left_over + add) & ~63],
 | |
| 		  ctx->buflen);
 | |
| 	}
 | |
| 
 | |
|       buffer = (const char *) buffer + add;
 | |
|       len -= add;
 | |
|     }
 | |
| 
 | |
|   /* Process available complete blocks.  */
 | |
|   if (len >= 64)
 | |
|     {
 | |
| #if !_STRING_ARCH_unaligned
 | |
| # define alignof(type) offsetof (struct { char c; type x; }, x)
 | |
| # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
 | |
|       if (UNALIGNED_P (buffer))
 | |
| 	while (len > 64)
 | |
| 	  {
 | |
| 	    sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
 | |
| 	    buffer = (const char *) buffer + 64;
 | |
| 	    len -= 64;
 | |
| 	  }
 | |
|       else
 | |
| #endif
 | |
| 	{
 | |
| 	  sha1_process_block (buffer, len & ~63, ctx);
 | |
| 	  buffer = (const char *) buffer + (len & ~63);
 | |
| 	  len &= 63;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Move remaining bytes in internal buffer.  */
 | |
|   if (len > 0)
 | |
|     {
 | |
|       size_t left_over = ctx->buflen;
 | |
| 
 | |
|       memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
 | |
|       left_over += len;
 | |
|       if (left_over >= 64)
 | |
| 	{
 | |
| 	  sha1_process_block (ctx->buffer, 64, ctx);
 | |
| 	  left_over -= 64;
 | |
| 	  memcpy (ctx->buffer, &ctx->buffer[16], left_over);
 | |
| 	}
 | |
|       ctx->buflen = left_over;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* --- Code below is the primary difference between md5.c and sha1.c --- */
 | |
| 
 | |
| /* SHA1 round constants */
 | |
| #define K1 0x5a827999
 | |
| #define K2 0x6ed9eba1
 | |
| #define K3 0x8f1bbcdc
 | |
| #define K4 0xca62c1d6
 | |
| 
 | |
| /* Round functions.  Note that F2 is the same as F4.  */
 | |
| #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
 | |
| #define F2(B,C,D) (B ^ C ^ D)
 | |
| #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
 | |
| #define F4(B,C,D) (B ^ C ^ D)
 | |
| 
 | |
| /* Process LEN bytes of BUFFER, accumulating context into CTX.
 | |
|    It is assumed that LEN % 64 == 0.
 | |
|    Most of this code comes from GnuPG's cipher/sha1.c.  */
 | |
| 
 | |
| void
 | |
| sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
 | |
| {
 | |
|   const sha1_uint32 *words = (const sha1_uint32*) buffer;
 | |
|   size_t nwords = len / sizeof (sha1_uint32);
 | |
|   const sha1_uint32 *endp = words + nwords;
 | |
|   sha1_uint32 x[16];
 | |
|   sha1_uint32 a = ctx->A;
 | |
|   sha1_uint32 b = ctx->B;
 | |
|   sha1_uint32 c = ctx->C;
 | |
|   sha1_uint32 d = ctx->D;
 | |
|   sha1_uint32 e = ctx->E;
 | |
| 
 | |
|   /* First increment the byte count.  RFC 1321 specifies the possible
 | |
|      length of the file up to 2^64 bits.  Here we only compute the
 | |
|      number of bytes.  Do a double word increment.  */
 | |
|   ctx->total[0] += len;
 | |
|   ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
 | |
| 
 | |
| #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
 | |
| 
 | |
| #define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
 | |
| 		    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
 | |
| 	       , (x[I&0x0f] = rol(tm, 1)) )
 | |
| 
 | |
| #define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
 | |
| 				      + F( B, C, D )  \
 | |
| 				      + K	      \
 | |
| 				      + M;	      \
 | |
| 				 B = rol( B, 30 );    \
 | |
| 			       } while(0)
 | |
| 
 | |
|   while (words < endp)
 | |
|     {
 | |
|       sha1_uint32 tm;
 | |
|       int t;
 | |
|       for (t = 0; t < 16; t++)
 | |
| 	{
 | |
| 	  x[t] = SWAP (*words);
 | |
| 	  words++;
 | |
| 	}
 | |
| 
 | |
|       R( a, b, c, d, e, F1, K1, x[ 0] );
 | |
|       R( e, a, b, c, d, F1, K1, x[ 1] );
 | |
|       R( d, e, a, b, c, F1, K1, x[ 2] );
 | |
|       R( c, d, e, a, b, F1, K1, x[ 3] );
 | |
|       R( b, c, d, e, a, F1, K1, x[ 4] );
 | |
|       R( a, b, c, d, e, F1, K1, x[ 5] );
 | |
|       R( e, a, b, c, d, F1, K1, x[ 6] );
 | |
|       R( d, e, a, b, c, F1, K1, x[ 7] );
 | |
|       R( c, d, e, a, b, F1, K1, x[ 8] );
 | |
|       R( b, c, d, e, a, F1, K1, x[ 9] );
 | |
|       R( a, b, c, d, e, F1, K1, x[10] );
 | |
|       R( e, a, b, c, d, F1, K1, x[11] );
 | |
|       R( d, e, a, b, c, F1, K1, x[12] );
 | |
|       R( c, d, e, a, b, F1, K1, x[13] );
 | |
|       R( b, c, d, e, a, F1, K1, x[14] );
 | |
|       R( a, b, c, d, e, F1, K1, x[15] );
 | |
|       R( e, a, b, c, d, F1, K1, M(16) );
 | |
|       R( d, e, a, b, c, F1, K1, M(17) );
 | |
|       R( c, d, e, a, b, F1, K1, M(18) );
 | |
|       R( b, c, d, e, a, F1, K1, M(19) );
 | |
|       R( a, b, c, d, e, F2, K2, M(20) );
 | |
|       R( e, a, b, c, d, F2, K2, M(21) );
 | |
|       R( d, e, a, b, c, F2, K2, M(22) );
 | |
|       R( c, d, e, a, b, F2, K2, M(23) );
 | |
|       R( b, c, d, e, a, F2, K2, M(24) );
 | |
|       R( a, b, c, d, e, F2, K2, M(25) );
 | |
|       R( e, a, b, c, d, F2, K2, M(26) );
 | |
|       R( d, e, a, b, c, F2, K2, M(27) );
 | |
|       R( c, d, e, a, b, F2, K2, M(28) );
 | |
|       R( b, c, d, e, a, F2, K2, M(29) );
 | |
|       R( a, b, c, d, e, F2, K2, M(30) );
 | |
|       R( e, a, b, c, d, F2, K2, M(31) );
 | |
|       R( d, e, a, b, c, F2, K2, M(32) );
 | |
|       R( c, d, e, a, b, F2, K2, M(33) );
 | |
|       R( b, c, d, e, a, F2, K2, M(34) );
 | |
|       R( a, b, c, d, e, F2, K2, M(35) );
 | |
|       R( e, a, b, c, d, F2, K2, M(36) );
 | |
|       R( d, e, a, b, c, F2, K2, M(37) );
 | |
|       R( c, d, e, a, b, F2, K2, M(38) );
 | |
|       R( b, c, d, e, a, F2, K2, M(39) );
 | |
|       R( a, b, c, d, e, F3, K3, M(40) );
 | |
|       R( e, a, b, c, d, F3, K3, M(41) );
 | |
|       R( d, e, a, b, c, F3, K3, M(42) );
 | |
|       R( c, d, e, a, b, F3, K3, M(43) );
 | |
|       R( b, c, d, e, a, F3, K3, M(44) );
 | |
|       R( a, b, c, d, e, F3, K3, M(45) );
 | |
|       R( e, a, b, c, d, F3, K3, M(46) );
 | |
|       R( d, e, a, b, c, F3, K3, M(47) );
 | |
|       R( c, d, e, a, b, F3, K3, M(48) );
 | |
|       R( b, c, d, e, a, F3, K3, M(49) );
 | |
|       R( a, b, c, d, e, F3, K3, M(50) );
 | |
|       R( e, a, b, c, d, F3, K3, M(51) );
 | |
|       R( d, e, a, b, c, F3, K3, M(52) );
 | |
|       R( c, d, e, a, b, F3, K3, M(53) );
 | |
|       R( b, c, d, e, a, F3, K3, M(54) );
 | |
|       R( a, b, c, d, e, F3, K3, M(55) );
 | |
|       R( e, a, b, c, d, F3, K3, M(56) );
 | |
|       R( d, e, a, b, c, F3, K3, M(57) );
 | |
|       R( c, d, e, a, b, F3, K3, M(58) );
 | |
|       R( b, c, d, e, a, F3, K3, M(59) );
 | |
|       R( a, b, c, d, e, F4, K4, M(60) );
 | |
|       R( e, a, b, c, d, F4, K4, M(61) );
 | |
|       R( d, e, a, b, c, F4, K4, M(62) );
 | |
|       R( c, d, e, a, b, F4, K4, M(63) );
 | |
|       R( b, c, d, e, a, F4, K4, M(64) );
 | |
|       R( a, b, c, d, e, F4, K4, M(65) );
 | |
|       R( e, a, b, c, d, F4, K4, M(66) );
 | |
|       R( d, e, a, b, c, F4, K4, M(67) );
 | |
|       R( c, d, e, a, b, F4, K4, M(68) );
 | |
|       R( b, c, d, e, a, F4, K4, M(69) );
 | |
|       R( a, b, c, d, e, F4, K4, M(70) );
 | |
|       R( e, a, b, c, d, F4, K4, M(71) );
 | |
|       R( d, e, a, b, c, F4, K4, M(72) );
 | |
|       R( c, d, e, a, b, F4, K4, M(73) );
 | |
|       R( b, c, d, e, a, F4, K4, M(74) );
 | |
|       R( a, b, c, d, e, F4, K4, M(75) );
 | |
|       R( e, a, b, c, d, F4, K4, M(76) );
 | |
|       R( d, e, a, b, c, F4, K4, M(77) );
 | |
|       R( c, d, e, a, b, F4, K4, M(78) );
 | |
|       R( b, c, d, e, a, F4, K4, M(79) );
 | |
| 
 | |
|       a = ctx->A += a;
 | |
|       b = ctx->B += b;
 | |
|       c = ctx->C += c;
 | |
|       d = ctx->D += d;
 | |
|       e = ctx->E += e;
 | |
|     }
 | |
| }
 |