mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* GeneralPath.java -- represents a shape built from subpaths
 | |
|    Copyright (C) 2002, 2003, 2004, 2006 Free Software Foundation
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.awt.geom;
 | |
| 
 | |
| import java.awt.Rectangle;
 | |
| import java.awt.Shape;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * A general geometric path, consisting of any number of subpaths
 | |
|  * constructed out of straight lines and cubic or quadratic Bezier
 | |
|  * curves.
 | |
|  *
 | |
|  * <p>The inside of the curve is defined for drawing purposes by a winding
 | |
|  * rule. Either the WIND_EVEN_ODD or WIND_NON_ZERO winding rule can be chosen.
 | |
|  *
 | |
|  * <p><img src="doc-files/GeneralPath-1.png" width="300" height="210"
 | |
|  * alt="A drawing of a GeneralPath" />
 | |
|  * <p>The EVEN_ODD winding rule defines a point as inside a path if:
 | |
|  * A ray from the point towards infinity in an arbitrary direction
 | |
|  * intersects the path an odd number of times. Points <b>A</b> and
 | |
|  * <b>C</b> in the image are considered to be outside the path.
 | |
|  * (both intersect twice)
 | |
|  * Point <b>B</b> intersects once, and is inside.
 | |
|  *
 | |
|  * <p>The NON_ZERO winding rule defines a point as inside a path if:
 | |
|  * The path intersects the ray in an equal number of opposite directions.
 | |
|  * Point <b>A</b> in the image is outside (one intersection in the 
 | |
|  * ’up’
 | |
|  * direction, one in the ’down’ direction) Point <b>B</b> in 
 | |
|  * the image is inside (one intersection ’down’)
 | |
|  * Point <b>C</b> in the image is outside (two intersections 
 | |
|  * ’down’)
 | |
|  *
 | |
|  * @see Line2D
 | |
|  * @see CubicCurve2D
 | |
|  * @see QuadCurve2D
 | |
|  *
 | |
|  * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|  * @author Sven de Marothy (sven@physto.se)
 | |
|  *
 | |
|  * @since 1.2
 | |
|  */
 | |
| public final class GeneralPath implements Shape, Cloneable
 | |
| {
 | |
|   // WORKAROUND for gcj 4.0.x (x < 3)
 | |
|   // fully qualify PathIterator constants.
 | |
| 
 | |
|   /** Same constant as {@link PathIterator#WIND_EVEN_ODD}. */
 | |
|   public static final int WIND_EVEN_ODD
 | |
|     = java.awt.geom.PathIterator.WIND_EVEN_ODD;
 | |
| 
 | |
|   /** Same constant as {@link PathIterator.WIND_NON_ZERO}. */
 | |
|   public static final int WIND_NON_ZERO
 | |
|     = java.awt.geom.PathIterator.WIND_NON_ZERO;
 | |
| 
 | |
|   /** Initial size if not specified. */
 | |
|   private static final int INIT_SIZE = 10;
 | |
| 
 | |
|   /** A big number, but not so big it can't survive a few float operations */
 | |
|   private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
 | |
| 
 | |
|   /** The winding rule.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   int rule;
 | |
| 
 | |
|   /**
 | |
|    * The path type in points. Note that xpoints[index] and ypoints[index] maps
 | |
|    * to types[index]; the control points of quad and cubic paths map as
 | |
|    * well but are ignored.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   byte[] types;
 | |
| 
 | |
|   /**
 | |
|    * The list of all points seen. Since you can only append floats, it makes
 | |
|    * sense for these to be float[]. I have no idea why Sun didn't choose to
 | |
|    * allow a general path of double precision points.
 | |
|    * Note: Storing x and y coords seperately makes for a slower transforms,
 | |
|    * But it speeds up and simplifies box-intersection checking a lot.
 | |
|    * These are package-private to avoid accessor methods.
 | |
|    */
 | |
|   float[] xpoints;
 | |
|   float[] ypoints;
 | |
| 
 | |
|   /** The index of the most recent moveto point, or null. */
 | |
|   private int subpath = -1;
 | |
| 
 | |
|   /** The next available index into points.
 | |
|    * This is package-private to avoid an accessor method.
 | |
|    */
 | |
|   int index;
 | |
| 
 | |
|   /**
 | |
|    * Constructs a GeneralPath with the default (NON_ZERO)
 | |
|    * winding rule and initial capacity (20).
 | |
|    */
 | |
|   public GeneralPath()
 | |
|   {
 | |
|     this(WIND_NON_ZERO, INIT_SIZE);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a GeneralPath with a specific winding rule
 | |
|    * and the default initial capacity (20).
 | |
|    * @param rule the winding rule (WIND_NON_ZERO or WIND_EVEN_ODD)
 | |
|    */
 | |
|   public GeneralPath(int rule)
 | |
|   {
 | |
|     this(rule, INIT_SIZE);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a GeneralPath with a specific winding rule
 | |
|    * and the initial capacity. The initial capacity should be
 | |
|    * the approximate number of path segments to be used.
 | |
|    * @param rule the winding rule (WIND_NON_ZERO or WIND_EVEN_ODD)
 | |
|    * @param capacity the inital capacity, in path segments
 | |
|    */
 | |
|   public GeneralPath(int rule, int capacity)
 | |
|   {
 | |
|     if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
 | |
|       throw new IllegalArgumentException();
 | |
|     this.rule = rule;
 | |
|     if (capacity < INIT_SIZE)
 | |
|       capacity = INIT_SIZE;
 | |
|     types = new byte[capacity];
 | |
|     xpoints = new float[capacity];
 | |
|     ypoints = new float[capacity];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Constructs a GeneralPath from an arbitrary shape object.
 | |
|    * The Shapes PathIterator path and winding rule will be used.
 | |
|    * @param s the shape
 | |
|    */
 | |
|   public GeneralPath(Shape s)
 | |
|   {
 | |
|     types = new byte[INIT_SIZE];
 | |
|     xpoints = new float[INIT_SIZE];
 | |
|     ypoints = new float[INIT_SIZE];
 | |
|     PathIterator pi = s.getPathIterator(null);
 | |
|     setWindingRule(pi.getWindingRule());
 | |
|     append(pi, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Adds a new point to a path.
 | |
|    */
 | |
|   public void moveTo(float x, float y)
 | |
|   {
 | |
|     subpath = index;
 | |
|     ensureSize(index + 1);
 | |
|     types[index] = PathIterator.SEG_MOVETO;
 | |
|     xpoints[index] = x;
 | |
|     ypoints[index++] = y;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Appends a straight line to the current path.
 | |
|    * @param x x coordinate of the line endpoint.
 | |
|    * @param y y coordinate of the line endpoint.
 | |
|    */
 | |
|   public void lineTo(float x, float y)
 | |
|   {
 | |
|     ensureSize(index + 1);
 | |
|     types[index] = PathIterator.SEG_LINETO;
 | |
|     xpoints[index] = x;
 | |
|     ypoints[index++] = y;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Appends a quadratic Bezier curve to the current path.
 | |
|    * @param x1 x coordinate of the control point
 | |
|    * @param y1 y coordinate of the control point
 | |
|    * @param x2 x coordinate of the curve endpoint.
 | |
|    * @param y2 y coordinate of the curve endpoint.
 | |
|    */
 | |
|   public void quadTo(float x1, float y1, float x2, float y2)
 | |
|   {
 | |
|     ensureSize(index + 2);
 | |
|     types[index] = PathIterator.SEG_QUADTO;
 | |
|     xpoints[index] = x1;
 | |
|     ypoints[index++] = y1;
 | |
|     xpoints[index] = x2;
 | |
|     ypoints[index++] = y2;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Appends a cubic Bezier curve to the current path.
 | |
|    * @param x1 x coordinate of the first control point
 | |
|    * @param y1 y coordinate of the first control point
 | |
|    * @param x2 x coordinate of the second control point
 | |
|    * @param y2 y coordinate of the second control point
 | |
|    * @param x3 x coordinate of the curve endpoint.
 | |
|    * @param y3 y coordinate of the curve endpoint.
 | |
|    */
 | |
|   public void curveTo(float x1, float y1, float x2, float y2, float x3,
 | |
|                       float y3)
 | |
|   {
 | |
|     ensureSize(index + 3);
 | |
|     types[index] = PathIterator.SEG_CUBICTO;
 | |
|     xpoints[index] = x1;
 | |
|     ypoints[index++] = y1;
 | |
|     xpoints[index] = x2;
 | |
|     ypoints[index++] = y2;
 | |
|     xpoints[index] = x3;
 | |
|     ypoints[index++] = y3;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Closes the current subpath by drawing a line
 | |
|    * back to the point of the last moveTo.
 | |
|    */
 | |
|   public void closePath()
 | |
|   {
 | |
|     ensureSize(index + 1);
 | |
|     types[index] = PathIterator.SEG_CLOSE;
 | |
|     xpoints[index] = xpoints[subpath];
 | |
|     ypoints[index++] = ypoints[subpath];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Appends the segments of a Shape to the path. If <code>connect</code> is 
 | |
|    * true, the new path segments are connected to the existing one with a line.
 | |
|    * The winding rule of the Shape is ignored.
 | |
|    */
 | |
|   public void append(Shape s, boolean connect)
 | |
|   {
 | |
|     append(s.getPathIterator(null), connect);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Appends the segments of a PathIterator to this GeneralPath.
 | |
|    * Optionally, the initial {@link PathIterator#SEG_MOVETO} segment
 | |
|    * of the appended path is changed into a {@link
 | |
|    * PathIterator#SEG_LINETO} segment.
 | |
|    *
 | |
|    * @param iter the PathIterator specifying which segments shall be
 | |
|    * appended.
 | |
|    *
 | |
|    * @param connect <code>true</code> for substituting the initial
 | |
|    * {@link PathIterator#SEG_MOVETO} segment by a {@link
 | |
|    * PathIterator#SEG_LINETO}, or <code>false</code> for not
 | |
|    * performing any substitution. If this GeneralPath is currently
 | |
|    * empty, <code>connect</code> is assumed to be <code>false</code>,
 | |
|    * thus leaving the initial {@link PathIterator#SEG_MOVETO}
 | |
|    * unchanged.
 | |
|    */
 | |
|   public void append(PathIterator iter, boolean connect)
 | |
|   {
 | |
|     // A bad implementation of this method had caused Classpath bug #6076.
 | |
|     float[] f = new float[6];
 | |
|     while (! iter.isDone())
 | |
|       {
 | |
| 	switch (iter.currentSegment(f))
 | |
| 	  {
 | |
| 	  case PathIterator.SEG_MOVETO:
 | |
| 	    if (! connect || (index == 0))
 | |
| 	      {
 | |
| 		moveTo(f[0], f[1]);
 | |
| 		break;
 | |
| 	      }
 | |
| 	    if ((index >= 1) && (types[index - 1] == PathIterator.SEG_CLOSE)
 | |
| 	        && (f[0] == xpoints[index - 1])
 | |
| 	        && (f[1] == ypoints[index - 1]))
 | |
| 	      break;
 | |
| 
 | |
| 	  // Fall through.
 | |
| 	  case PathIterator.SEG_LINETO:
 | |
| 	    lineTo(f[0], f[1]);
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_QUADTO:
 | |
| 	    quadTo(f[0], f[1], f[2], f[3]);
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_CUBICTO:
 | |
| 	    curveTo(f[0], f[1], f[2], f[3], f[4], f[5]);
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_CLOSE:
 | |
| 	    closePath();
 | |
| 	    break;
 | |
| 	  }
 | |
| 
 | |
| 	connect = false;
 | |
| 	iter.next();
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the path’s current winding rule.
 | |
|    */
 | |
|   public int getWindingRule()
 | |
|   {
 | |
|     return rule;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Sets the path’s winding rule, which controls which areas are 
 | |
|    * considered ’inside’ or ’outside’ the path 
 | |
|    * on drawing. Valid rules are WIND_EVEN_ODD for an even-odd winding rule, 
 | |
|    * or WIND_NON_ZERO for a non-zero winding rule.
 | |
|    */
 | |
|   public void setWindingRule(int rule)
 | |
|   {
 | |
|     if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
 | |
|       throw new IllegalArgumentException();
 | |
|     this.rule = rule;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the current appending point of the path.
 | |
|    */
 | |
|   public Point2D getCurrentPoint()
 | |
|   {
 | |
|     if (subpath < 0)
 | |
|       return null;
 | |
|     return new Point2D.Float(xpoints[index - 1], ypoints[index - 1]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Resets the path. All points and segments are destroyed.
 | |
|    */
 | |
|   public void reset()
 | |
|   {
 | |
|     subpath = -1;
 | |
|     index = 0;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Applies a transform to the path.
 | |
|    */
 | |
|   public void transform(AffineTransform xform)
 | |
|   {
 | |
|     double nx;
 | |
|     double ny;
 | |
|     double[] m = new double[6];
 | |
|     xform.getMatrix(m);
 | |
|     for (int i = 0; i < index; i++)
 | |
|       {
 | |
| 	nx = m[0] * xpoints[i] + m[2] * ypoints[i] + m[4];
 | |
| 	ny = m[1] * xpoints[i] + m[3] * ypoints[i] + m[5];
 | |
| 	xpoints[i] = (float) nx;
 | |
| 	ypoints[i] = (float) ny;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a transformed version of the path.
 | |
|    * @param xform the transform to apply
 | |
|    * @return a new transformed GeneralPath
 | |
|    */
 | |
|   public Shape createTransformedShape(AffineTransform xform)
 | |
|   {
 | |
|     GeneralPath p = new GeneralPath(this);
 | |
|     p.transform(xform);
 | |
|     return p;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the path’s bounding box.
 | |
|    */
 | |
|   public Rectangle getBounds()
 | |
|   {
 | |
|     return getBounds2D().getBounds();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the path’s bounding box, in <code>float</code> precision
 | |
|    */
 | |
|   public Rectangle2D getBounds2D()
 | |
|   {
 | |
|     float x1;
 | |
|     float y1;
 | |
|     float x2;
 | |
|     float y2;
 | |
| 
 | |
|     if (index > 0)
 | |
|       {
 | |
| 	x1 = x2 = xpoints[0];
 | |
| 	y1 = y2 = ypoints[0];
 | |
|       }
 | |
|     else
 | |
|       x1 = x2 = y1 = y2 = 0.0f;
 | |
| 
 | |
|     for (int i = 0; i < index; i++)
 | |
|       {
 | |
| 	x1 = Math.min(xpoints[i], x1);
 | |
| 	y1 = Math.min(ypoints[i], y1);
 | |
| 	x2 = Math.max(xpoints[i], x2);
 | |
| 	y2 = Math.max(ypoints[i], y2);
 | |
|       }
 | |
|     return (new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a point is within the GeneralPath,
 | |
|    * The NON_ZERO winding rule is used, regardless of the
 | |
|    * set winding rule.
 | |
|    * @param x x coordinate of the point to evaluate
 | |
|    * @param y y coordinate of the point to evaluate
 | |
|    * @return true if the point is within the path, false otherwise
 | |
|    */
 | |
|   public boolean contains(double x, double y)
 | |
|   {
 | |
|     return (getWindingNumber(x, y) != 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a Point2D is within the GeneralPath,
 | |
|    * The NON_ZERO winding rule is used, regardless of the
 | |
|    * set winding rule.
 | |
|    * @param p The Point2D to evaluate
 | |
|    * @return true if the point is within the path, false otherwise
 | |
|    */
 | |
|   public boolean contains(Point2D p)
 | |
|   {
 | |
|     return contains(p.getX(), p.getY());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a rectangle is completely contained within the path.
 | |
|    * This method will return false in the cases when the box
 | |
|    * intersects an inner segment of the path.
 | |
|    * (i.e.: The method is accurate for the EVEN_ODD winding rule)
 | |
|    */
 | |
|   public boolean contains(double x, double y, double w, double h)
 | |
|   {
 | |
|     if (! getBounds2D().intersects(x, y, w, h))
 | |
|       return false;
 | |
| 
 | |
|     /* Does any edge intersect? */
 | |
|     if (getAxisIntersections(x, y, false, w) != 0 /* top */
 | |
|         || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
 | |
|         || getAxisIntersections(x + w, y, true, h) != 0 /* right */
 | |
|         || getAxisIntersections(x, y, true, h) != 0) /* left */
 | |
|       return false;
 | |
| 
 | |
|     /* No intersections, is any point inside? */
 | |
|     if (getWindingNumber(x, y) != 0)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a rectangle is completely contained within the path.
 | |
|    * This method will return false in the cases when the box
 | |
|    * intersects an inner segment of the path.
 | |
|    * (i.e.: The method is accurate for the EVEN_ODD winding rule)
 | |
|    * @param r the rectangle
 | |
|    * @return <code>true</code> if the rectangle is completely contained
 | |
|    * within the path, <code>false</code> otherwise
 | |
|    */
 | |
|   public boolean contains(Rectangle2D r)
 | |
|   {
 | |
|     return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a rectangle intersects the path.
 | |
|    * @param x x coordinate of the rectangle
 | |
|    * @param y y coordinate of the rectangle
 | |
|    * @param w width of the rectangle
 | |
|    * @param h height of the rectangle
 | |
|    * @return <code>true</code> if the rectangle intersects the path,
 | |
|    * <code>false</code> otherwise
 | |
|    */
 | |
|   public boolean intersects(double x, double y, double w, double h)
 | |
|   {
 | |
|     /* Does any edge intersect? */
 | |
|     if (getAxisIntersections(x, y, false, w) != 0 /* top */
 | |
|         || getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
 | |
|         || getAxisIntersections(x + w, y, true, h) != 0 /* right */
 | |
|         || getAxisIntersections(x, y, true, h) != 0) /* left */
 | |
|       return true;
 | |
| 
 | |
|     /* No intersections, is any point inside? */
 | |
|     if (getWindingNumber(x, y) != 0)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Evaluates if a Rectangle2D intersects the path.
 | |
|    * @param r The rectangle
 | |
|    * @return <code>true</code> if the rectangle intersects the path,
 | |
|    * <code>false</code> otherwise
 | |
|    */
 | |
|   public boolean intersects(Rectangle2D r)
 | |
|   {
 | |
|     return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A PathIterator that iterates over the segments of a GeneralPath.
 | |
|    *
 | |
|    * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|    */
 | |
|   private static class GeneralPathIterator implements PathIterator
 | |
|   {
 | |
|     /**
 | |
|      * The number of coordinate values for each segment type.
 | |
|      */
 | |
|     private static final int[] NUM_COORDS = { 
 | |
|                                             /* 0: SEG_MOVETO */ 1, 
 | |
|                                             /* 1: SEG_LINETO */ 1, 
 | |
|                                             /* 2: SEG_QUADTO */ 2, 
 | |
|                                             /* 3: SEG_CUBICTO */ 3, 
 | |
|                                             /* 4: SEG_CLOSE */ 0};
 | |
| 
 | |
|     /**
 | |
|      * The GeneralPath whose segments are being iterated.
 | |
|      * This is package-private to avoid an accessor method.
 | |
|      */
 | |
|     final GeneralPath path;
 | |
| 
 | |
|     /**
 | |
|      * The affine transformation used to transform coordinates.
 | |
|      */
 | |
|     private final AffineTransform transform;
 | |
| 
 | |
|     /**
 | |
|      * The current position of the iterator.
 | |
|      */
 | |
|     private int pos;
 | |
| 
 | |
|     /**
 | |
|      * Constructs a new iterator for enumerating the segments of a
 | |
|      * GeneralPath.
 | |
|      *
 | |
|      * @param path the path to enumerate
 | |
|      * @param transform an affine transformation for projecting the returned
 | |
|      * points, or <code>null</code> to return the original points
 | |
|      * without any mapping.
 | |
|      */
 | |
|     GeneralPathIterator(GeneralPath path, AffineTransform transform)
 | |
|     {
 | |
|       this.path = path;
 | |
|       this.transform = transform;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the current winding rule of the GeneralPath.
 | |
|      */
 | |
|     public int getWindingRule()
 | |
|     {
 | |
|       return path.rule;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines whether the iterator has reached the last segment in
 | |
|      * the path.
 | |
|      */
 | |
|     public boolean isDone()
 | |
|     {
 | |
|       return pos >= path.index;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Advances the iterator position by one segment.
 | |
|      */
 | |
|     public void next()
 | |
|     {
 | |
|       int seg;
 | |
| 
 | |
|       /*
 | |
|        * Increment pos by the number of coordinate pairs.
 | |
|        */
 | |
|       seg = path.types[pos];
 | |
|       if (seg == SEG_CLOSE)
 | |
| 	pos++;
 | |
|       else
 | |
| 	pos += NUM_COORDS[seg];
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the current segment in float coordinates.
 | |
|      */
 | |
|     public int currentSegment(float[] coords)
 | |
|     {
 | |
|       int seg;
 | |
|       int numCoords;
 | |
| 
 | |
|       seg = path.types[pos];
 | |
|       numCoords = NUM_COORDS[seg];
 | |
|       if (numCoords > 0)
 | |
|         {
 | |
| 	  for (int i = 0; i < numCoords; i++)
 | |
| 	    {
 | |
| 	      coords[i << 1] = path.xpoints[pos + i];
 | |
| 	      coords[(i << 1) + 1] = path.ypoints[pos + i];
 | |
| 	    }
 | |
| 
 | |
| 	  if (transform != null)
 | |
| 	    transform.transform( /* src */
 | |
| 	    coords, /* srcOffset */
 | |
| 	    0, /* dest */ coords, /* destOffset */
 | |
| 	    0, /* numPoints */ numCoords);
 | |
|         }
 | |
|       return seg;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the current segment in double coordinates.
 | |
|      */
 | |
|     public int currentSegment(double[] coords)
 | |
|     {
 | |
|       int seg;
 | |
|       int numCoords;
 | |
| 
 | |
|       seg = path.types[pos];
 | |
|       numCoords = NUM_COORDS[seg];
 | |
|       if (numCoords > 0)
 | |
|         {
 | |
| 	  for (int i = 0; i < numCoords; i++)
 | |
| 	    {
 | |
| 	      coords[i << 1] = (double) path.xpoints[pos + i];
 | |
| 	      coords[(i << 1) + 1] = (double) path.ypoints[pos + i];
 | |
| 	    }
 | |
| 	  if (transform != null)
 | |
| 	    transform.transform( /* src */
 | |
| 	    coords, /* srcOffset */
 | |
| 	    0, /* dest */ coords, /* destOffset */
 | |
| 	    0, /* numPoints */ numCoords);
 | |
|         }
 | |
|       return seg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a PathIterator for iterating along the segments of the path.
 | |
|    *
 | |
|    * @param at an affine transformation for projecting the returned
 | |
|    * points, or <code>null</code> to let the created iterator return
 | |
|    * the original points without any mapping.
 | |
|    */
 | |
|   public PathIterator getPathIterator(AffineTransform at)
 | |
|   {
 | |
|     return new GeneralPathIterator(this, at);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new FlatteningPathIterator for the path
 | |
|    */
 | |
|   public PathIterator getPathIterator(AffineTransform at, double flatness)
 | |
|   {
 | |
|     return new FlatteningPathIterator(getPathIterator(at), flatness);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new shape of the same run-time type with the same contents 
 | |
|    * as this one.
 | |
|    *
 | |
|    * @return the clone
 | |
|    *
 | |
|    * @exception OutOfMemoryError If there is not enough memory available.
 | |
|    *
 | |
|    * @since 1.2
 | |
|    */
 | |
|   public Object clone()
 | |
|   {
 | |
|     // This class is final; no need to use super.clone().
 | |
|     return new GeneralPath(this);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method - ensure the size of the data arrays,
 | |
|    * otherwise, reallocate new ones twice the size
 | |
|    */
 | |
|   private void ensureSize(int size)
 | |
|   {
 | |
|     if (subpath < 0)
 | |
|       throw new IllegalPathStateException("need initial moveto");
 | |
|     if (size <= xpoints.length)
 | |
|       return;
 | |
|     byte[] b = new byte[types.length << 1];
 | |
|     System.arraycopy(types, 0, b, 0, index);
 | |
|     types = b;
 | |
|     float[] f = new float[xpoints.length << 1];
 | |
|     System.arraycopy(xpoints, 0, f, 0, index);
 | |
|     xpoints = f;
 | |
|     f = new float[ypoints.length << 1];
 | |
|     System.arraycopy(ypoints, 0, f, 0, index);
 | |
|     ypoints = f;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method - Get the total number of intersections from (x,y) along 
 | |
|    * a given axis, within a given distance.
 | |
|    */
 | |
|   private int getAxisIntersections(double x, double y, boolean useYaxis,
 | |
|                                    double distance)
 | |
|   {
 | |
|     return (evaluateCrossings(x, y, false, useYaxis, distance));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method - returns the winding number of a point.
 | |
|    */
 | |
|   private int getWindingNumber(double x, double y)
 | |
|   {
 | |
|     /* Evaluate the crossings from x,y to infinity on the y axis (arbitrary 
 | |
|        choice). Note that we don't actually use Double.INFINITY, since that's 
 | |
|        slower, and may cause problems. */
 | |
|     return (evaluateCrossings(x, y, true, true, BIG_VALUE));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method - evaluates the number of intersections on an axis from 
 | |
|    * the point (x,y) to the point (x,y+distance) or (x+distance,y).
 | |
|    * @param x x coordinate.
 | |
|    * @param y y coordinate.
 | |
|    * @param neg True if opposite-directed intersections should cancel, 
 | |
|    * false to sum all intersections.
 | |
|    * @param useYaxis Use the Y axis, false uses the X axis.
 | |
|    * @param distance Interval from (x,y) on the selected axis to find 
 | |
|    * intersections.
 | |
|    */
 | |
|   private int evaluateCrossings(double x, double y, boolean neg,
 | |
|                                 boolean useYaxis, double distance)
 | |
|   {
 | |
|     float cx = 0.0f;
 | |
|     float cy = 0.0f;
 | |
|     float firstx = 0.0f;
 | |
|     float firsty = 0.0f;
 | |
| 
 | |
|     int negative = (neg) ? -1 : 1;
 | |
|     double x0;
 | |
|     double x1;
 | |
|     double x2;
 | |
|     double x3;
 | |
|     double y0;
 | |
|     double y1;
 | |
|     double y2;
 | |
|     double y3;
 | |
|     double[] r = new double[4];
 | |
|     int nRoots;
 | |
|     double epsilon = 0.0;
 | |
|     int pos = 0;
 | |
|     int windingNumber = 0;
 | |
|     boolean pathStarted = false;
 | |
| 
 | |
|     if (index == 0)
 | |
|       return (0);
 | |
|     if (useYaxis)
 | |
|       {
 | |
| 	float[] swap1;
 | |
| 	swap1 = ypoints;
 | |
| 	ypoints = xpoints;
 | |
| 	xpoints = swap1;
 | |
| 	double swap2;
 | |
| 	swap2 = y;
 | |
| 	y = x;
 | |
| 	x = swap2;
 | |
|       }
 | |
| 
 | |
|     /* Get a value which is hopefully small but not insignificant relative
 | |
|      the path. */
 | |
|     epsilon = ypoints[0] * 1E-7;
 | |
| 
 | |
|     if(epsilon == 0) 
 | |
|       epsilon = 1E-7;
 | |
| 
 | |
|     pos = 0;
 | |
|     while (pos < index)
 | |
|       {
 | |
| 	switch (types[pos])
 | |
| 	  {
 | |
| 	  case PathIterator.SEG_MOVETO:
 | |
| 	    if (pathStarted) // close old path
 | |
| 	      {
 | |
| 		x0 = cx;
 | |
| 		y0 = cy;
 | |
| 		x1 = firstx;
 | |
| 		y1 = firsty;
 | |
| 
 | |
| 		if (y0 == 0.0)
 | |
| 		  y0 -= epsilon;
 | |
| 		if (y1 == 0.0)
 | |
| 		  y1 -= epsilon;
 | |
| 		if (Line2D.linesIntersect(x0, y0, x1, y1, 
 | |
| 					  epsilon, 0.0, distance, 0.0))
 | |
| 		  windingNumber += (y1 < y0) ? 1 : negative;
 | |
| 
 | |
| 		cx = firstx;
 | |
| 		cy = firsty;
 | |
| 	      }
 | |
| 	    cx = firstx = xpoints[pos] - (float) x;
 | |
| 	    cy = firsty = ypoints[pos++] - (float) y;
 | |
| 	    pathStarted = true;
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_CLOSE:
 | |
| 	    x0 = cx;
 | |
| 	    y0 = cy;
 | |
| 	    x1 = firstx;
 | |
| 	    y1 = firsty;
 | |
| 
 | |
| 	    if (y0 == 0.0)
 | |
| 	      y0 -= epsilon;
 | |
| 	    if (y1 == 0.0)
 | |
| 	      y1 -= epsilon;
 | |
| 	    if (Line2D.linesIntersect(x0, y0, x1, y1, 
 | |
| 				      epsilon, 0.0, distance, 0.0))
 | |
| 	      windingNumber += (y1 < y0) ? 1 : negative;
 | |
| 
 | |
| 	    cx = firstx;
 | |
| 	    cy = firsty;
 | |
| 	    pos++;
 | |
| 	    pathStarted = false;
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_LINETO:
 | |
| 	    x0 = cx;
 | |
| 	    y0 = cy;
 | |
| 	    x1 = xpoints[pos] - (float) x;
 | |
| 	    y1 = ypoints[pos++] - (float) y;
 | |
| 
 | |
| 	    if (y0 == 0.0)
 | |
| 	      y0 -= epsilon;
 | |
| 	    if (y1 == 0.0)
 | |
| 	      y1 -= epsilon;
 | |
| 	    if (Line2D.linesIntersect(x0, y0, x1, y1, 
 | |
| 				      epsilon, 0.0, distance, 0.0))
 | |
| 	      windingNumber += (y1 < y0) ? 1 : negative;
 | |
| 
 | |
| 	    cx = xpoints[pos - 1] - (float) x;
 | |
| 	    cy = ypoints[pos - 1] - (float) y;
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_QUADTO:
 | |
| 	    x0 = cx;
 | |
| 	    y0 = cy;
 | |
| 	    x1 = xpoints[pos] - x;
 | |
| 	    y1 = ypoints[pos++] - y;
 | |
| 	    x2 = xpoints[pos] - x;
 | |
| 	    y2 = ypoints[pos++] - y;
 | |
| 
 | |
| 	    /* check if curve may intersect X+ axis. */
 | |
| 	    if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0)
 | |
| 	        && (y0 * y1 <= 0 || y1 * y2 <= 0))
 | |
| 	      {
 | |
| 		if (y0 == 0.0)
 | |
| 		  y0 -= epsilon;
 | |
| 		if (y2 == 0.0)
 | |
| 		  y2 -= epsilon;
 | |
| 
 | |
| 		r[0] = y0;
 | |
| 		r[1] = 2 * (y1 - y0);
 | |
| 		r[2] = (y2 - 2 * y1 + y0);
 | |
| 
 | |
| 		/* degenerate roots (=tangent points) do not
 | |
| 		   contribute to the winding number. */
 | |
| 		if ((nRoots = QuadCurve2D.solveQuadratic(r)) == 2)
 | |
| 		  for (int i = 0; i < nRoots; i++)
 | |
| 		    {
 | |
| 		      float t = (float) r[i];
 | |
| 		      if (t > 0.0f && t < 1.0f)
 | |
| 		        {
 | |
| 			  double crossing = t * t * (x2 - 2 * x1 + x0)
 | |
| 			                    + 2 * t * (x1 - x0) + x0;
 | |
| 			  if (crossing >= 0.0 && crossing <= distance)
 | |
| 			    windingNumber += (2 * t * (y2 - 2 * y1 + y0)
 | |
| 			                   + 2 * (y1 - y0) < 0) ? 1 : negative;
 | |
| 		        }
 | |
| 		    }
 | |
| 	      }
 | |
| 
 | |
| 	    cx = xpoints[pos - 1] - (float) x;
 | |
| 	    cy = ypoints[pos - 1] - (float) y;
 | |
| 	    break;
 | |
| 	  case PathIterator.SEG_CUBICTO:
 | |
| 	    x0 = cx;
 | |
| 	    y0 = cy;
 | |
| 	    x1 = xpoints[pos] - x;
 | |
| 	    y1 = ypoints[pos++] - y;
 | |
| 	    x2 = xpoints[pos] - x;
 | |
| 	    y2 = ypoints[pos++] - y;
 | |
| 	    x3 = xpoints[pos] - x;
 | |
| 	    y3 = ypoints[pos++] - y;
 | |
| 
 | |
| 	    /* check if curve may intersect X+ axis. */
 | |
| 	    if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
 | |
| 	        && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
 | |
| 	      {
 | |
| 		if (y0 == 0.0)
 | |
| 		  y0 -= epsilon;
 | |
| 		if (y3 == 0.0)
 | |
| 		  y3 -= epsilon;
 | |
| 
 | |
| 		r[0] = y0;
 | |
| 		r[1] = 3 * (y1 - y0);
 | |
| 		r[2] = 3 * (y2 + y0 - 2 * y1);
 | |
| 		r[3] = y3 - 3 * y2 + 3 * y1 - y0;
 | |
| 
 | |
| 		if ((nRoots = CubicCurve2D.solveCubic(r)) != 0)
 | |
| 		  for (int i = 0; i < nRoots; i++)
 | |
| 		    {
 | |
| 		      float t = (float) r[i];
 | |
| 		      if (t > 0.0 && t < 1.0)
 | |
| 		        {
 | |
| 			  double crossing = -(t * t * t) * (x0 - 3 * x1
 | |
| 			                    + 3 * x2 - x3)
 | |
| 			                    + 3 * t * t * (x0 - 2 * x1 + x2)
 | |
| 			                    + 3 * t * (x1 - x0) + x0;
 | |
| 			  if (crossing >= 0 && crossing <= distance)
 | |
| 			    windingNumber += (3 * t * t * (y3 + 3 * y1
 | |
| 			                     - 3 * y2 - y0)
 | |
| 			                     + 6 * t * (y0 - 2 * y1 + y2)
 | |
| 			                   + 3 * (y1 - y0) < 0) ? 1 : negative;
 | |
| 		        }
 | |
| 		    }
 | |
| 	      }
 | |
| 
 | |
| 	    cx = xpoints[pos - 1] - (float) x;
 | |
| 	    cy = ypoints[pos - 1] - (float) y;
 | |
| 	    break;
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|     // swap coordinates back
 | |
|     if (useYaxis)
 | |
|       {
 | |
| 	float[] swap;
 | |
| 	swap = ypoints;
 | |
| 	ypoints = xpoints;
 | |
| 	xpoints = swap;
 | |
|       }
 | |
|     return (windingNumber);
 | |
|   }
 | |
| } // class GeneralPath
 | |
| 
 |