mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3010 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3010 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the MATMUL intrinsic
 | |
|    Copyright (C) 2002-2019 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 3 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "libgfortran.h"
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| 
 | |
| #if defined (HAVE_GFC_INTEGER_1)
 | |
| 
 | |
| /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
 | |
|    passed to us by the front-end, in which case we call it for large
 | |
|    matrices.  */
 | |
| 
 | |
| typedef void (*blas_call)(const char *, const char *, const int *, const int *,
 | |
|                           const int *, const GFC_INTEGER_1 *, const GFC_INTEGER_1 *,
 | |
|                           const int *, const GFC_INTEGER_1 *, const int *,
 | |
|                           const GFC_INTEGER_1 *, GFC_INTEGER_1 *, const int *,
 | |
|                           int, int);
 | |
| 
 | |
| /* The order of loops is different in the case of plain matrix
 | |
|    multiplication C=MATMUL(A,B), and in the frequent special case where
 | |
|    the argument A is the temporary result of a TRANSPOSE intrinsic:
 | |
|    C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by
 | |
|    looking at their strides.
 | |
| 
 | |
|    The equivalent Fortran pseudo-code is:
 | |
| 
 | |
|    DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
 | |
|    IF (.NOT.IS_TRANSPOSED(A)) THEN
 | |
|      C = 0
 | |
|      DO J=1,N
 | |
|        DO K=1,COUNT
 | |
|          DO I=1,M
 | |
|            C(I,J) = C(I,J)+A(I,K)*B(K,J)
 | |
|    ELSE
 | |
|      DO J=1,N
 | |
|        DO I=1,M
 | |
|          S = 0
 | |
|          DO K=1,COUNT
 | |
|            S = S+A(I,K)*B(K,J)
 | |
|          C(I,J) = S
 | |
|    ENDIF
 | |
| */
 | |
| 
 | |
| /* If try_blas is set to a nonzero value, then the matmul function will
 | |
|    see if there is a way to perform the matrix multiplication by a call
 | |
|    to the BLAS gemm function.  */
 | |
| 
 | |
| extern void matmul_i1 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm);
 | |
| export_proto(matmul_i1);
 | |
| 
 | |
| /* Put exhaustive list of possible architectures here here, ORed together.  */
 | |
| 
 | |
| #if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
 | |
| 
 | |
| #ifdef HAVE_AVX
 | |
| static void
 | |
| matmul_i1_avx (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
 | |
| static void
 | |
| matmul_i1_avx (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_INTEGER_1 * restrict abase;
 | |
|   const GFC_INTEGER_1 * restrict bbase;
 | |
|   GFC_INTEGER_1 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
| */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|   else if (unlikely (compile_options.bounds_check))
 | |
|     {
 | |
|       index_type ret_extent, arg_extent;
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 2 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
 | |
| 		       "in dimension 1: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
|          The value is only used for calculation of the
 | |
|          memory by the buffer.  */
 | |
|       bystride = 256;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   /* Now that everything is set up, we perform the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| #define min(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define max(a,b) ((a) >= (b) ? (a) : (b))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|     {
 | |
|       const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|       const GFC_INTEGER_1 one = 1, zero = 0;
 | |
|       const int lda = (axstride == 1) ? aystride : axstride,
 | |
| 		ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|       if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
| 	{
 | |
| 	  assert (gemm != NULL);
 | |
| 	  const char *transa, *transb;
 | |
| 	  if (try_blas & 2)
 | |
| 	    transa = "C";
 | |
| 	  else
 | |
| 	    transa = axstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  if (try_blas & 4)
 | |
| 	    transb = "C";
 | |
| 	  else
 | |
| 	    transb = bxstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  gemm (transa, transb , &m,
 | |
| 		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | |
| 		&ldc, 1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       /* This block of code implements a tuned matmul, derived from
 | |
|          Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | |
| 
 | |
|                Bo Kagstrom and Per Ling
 | |
|                Department of Computing Science
 | |
|                Umea University
 | |
|                S-901 87 Umea, Sweden
 | |
| 
 | |
| 	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | |
| 
 | |
|       const GFC_INTEGER_1 *a, *b;
 | |
|       GFC_INTEGER_1 *c;
 | |
|       const index_type m = xcount, n = ycount, k = count;
 | |
| 
 | |
|       /* System generated locals */
 | |
|       index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | |
| 		 i1, i2, i3, i4, i5, i6;
 | |
| 
 | |
|       /* Local variables */
 | |
|       GFC_INTEGER_1 f11, f12, f21, f22, f31, f32, f41, f42,
 | |
| 		 f13, f14, f23, f24, f33, f34, f43, f44;
 | |
|       index_type i, j, l, ii, jj, ll;
 | |
|       index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | |
|       GFC_INTEGER_1 *t1;
 | |
| 
 | |
|       a = abase;
 | |
|       b = bbase;
 | |
|       c = retarray->base_addr;
 | |
| 
 | |
|       /* Parameter adjustments */
 | |
|       c_dim1 = rystride;
 | |
|       c_offset = 1 + c_dim1;
 | |
|       c -= c_offset;
 | |
|       a_dim1 = aystride;
 | |
|       a_offset = 1 + a_dim1;
 | |
|       a -= a_offset;
 | |
|       b_dim1 = bystride;
 | |
|       b_offset = 1 + b_dim1;
 | |
|       b -= b_offset;
 | |
| 
 | |
|       /* Empty c first.  */
 | |
|       for (j=1; j<=n; j++)
 | |
| 	for (i=1; i<=m; i++)
 | |
| 	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       /* Early exit if possible */
 | |
|       if (m == 0 || n == 0 || k == 0)
 | |
| 	return;
 | |
| 
 | |
|       /* Adjust size of t1 to what is needed.  */
 | |
|       index_type t1_dim, a_sz;
 | |
|       if (aystride == 1)
 | |
|         a_sz = rystride;
 | |
|       else
 | |
|         a_sz = a_dim1;
 | |
| 
 | |
|       t1_dim = a_sz * 256 + b_dim1;
 | |
|       if (t1_dim > 65536)
 | |
| 	t1_dim = 65536;
 | |
| 
 | |
|       t1 = malloc (t1_dim * sizeof(GFC_INTEGER_1));
 | |
| 
 | |
|       /* Start turning the crank. */
 | |
|       i1 = n;
 | |
|       for (jj = 1; jj <= i1; jj += 512)
 | |
| 	{
 | |
| 	  /* Computing MIN */
 | |
| 	  i2 = 512;
 | |
| 	  i3 = n - jj + 1;
 | |
| 	  jsec = min(i2,i3);
 | |
| 	  ujsec = jsec - jsec % 4;
 | |
| 	  i2 = k;
 | |
| 	  for (ll = 1; ll <= i2; ll += 256)
 | |
| 	    {
 | |
| 	      /* Computing MIN */
 | |
| 	      i3 = 256;
 | |
| 	      i4 = k - ll + 1;
 | |
| 	      lsec = min(i3,i4);
 | |
| 	      ulsec = lsec - lsec % 2;
 | |
| 
 | |
| 	      i3 = m;
 | |
| 	      for (ii = 1; ii <= i3; ii += 256)
 | |
| 		{
 | |
| 		  /* Computing MIN */
 | |
| 		  i4 = 256;
 | |
| 		  i5 = m - ii + 1;
 | |
| 		  isec = min(i4,i5);
 | |
| 		  uisec = isec - isec % 2;
 | |
| 		  i4 = ll + ulsec - 1;
 | |
| 		  for (l = ll; l <= i4; l += 2)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 2)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + (l + 1) * a_dim1];
 | |
| 			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ulsec < lsec)
 | |
| 		    {
 | |
| 		      i4 = ii + isec - 1;
 | |
| 		      for (i = ii; i<= i4; ++i)
 | |
| 			{
 | |
| 			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | |
| 				    a[i + (ll + lsec - 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		  uisec = isec - isec % 4;
 | |
| 		  i4 = jj + ujsec - 1;
 | |
| 		  for (j = jj; j <= i4; j += 4)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 4)
 | |
| 			{
 | |
| 			  f11 = c[i + j * c_dim1];
 | |
| 			  f21 = c[i + 1 + j * c_dim1];
 | |
| 			  f12 = c[i + (j + 1) * c_dim1];
 | |
| 			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | |
| 			  f13 = c[i + (j + 2) * c_dim1];
 | |
| 			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | |
| 			  f14 = c[i + (j + 3) * c_dim1];
 | |
| 			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | |
| 			  f31 = c[i + 2 + j * c_dim1];
 | |
| 			  f41 = c[i + 3 + j * c_dim1];
 | |
| 			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | |
| 			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | |
| 			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | |
| 			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | |
| 			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | |
| 			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | |
| 			  i6 = ll + lsec - 1;
 | |
| 			  for (l = ll; l <= i6; ++l)
 | |
| 			    {
 | |
| 			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			    }
 | |
| 			  c[i + j * c_dim1] = f11;
 | |
| 			  c[i + 1 + j * c_dim1] = f21;
 | |
| 			  c[i + (j + 1) * c_dim1] = f12;
 | |
| 			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | |
| 			  c[i + (j + 2) * c_dim1] = f13;
 | |
| 			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | |
| 			  c[i + (j + 3) * c_dim1] = f14;
 | |
| 			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | |
| 			  c[i + 2 + j * c_dim1] = f31;
 | |
| 			  c[i + 3 + j * c_dim1] = f41;
 | |
| 			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | |
| 			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | |
| 			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | |
| 			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | |
| 			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | |
| 			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f12 = c[i + (j + 1) * c_dim1];
 | |
| 			      f13 = c[i + (j + 2) * c_dim1];
 | |
| 			      f14 = c[i + (j + 3) * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 1) * b_dim1];
 | |
| 				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 2) * b_dim1];
 | |
| 				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 3) * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + (j + 1) * c_dim1] = f12;
 | |
| 			      c[i + (j + 2) * c_dim1] = f13;
 | |
| 			      c[i + (j + 3) * c_dim1] = f14;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ujsec < jsec)
 | |
| 		    {
 | |
| 		      i4 = jj + jsec - 1;
 | |
| 		      for (j = jj + ujsec; j <= i4; ++j)
 | |
| 			{
 | |
| 			  i5 = ii + uisec - 1;
 | |
| 			  for (i = ii; i <= i5; i += 4)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f21 = c[i + 1 + j * c_dim1];
 | |
| 			      f31 = c[i + 2 + j * c_dim1];
 | |
| 			      f41 = c[i + 3 + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + 1 + j * c_dim1] = f21;
 | |
| 			      c[i + 2 + j * c_dim1] = f31;
 | |
| 			      c[i + 3 + j * c_dim1] = f41;
 | |
| 			    }
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       free(t1);
 | |
|       return;
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict abase_x;
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 *restrict dest_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_INTEGER_1) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] +=
 | |
| 					abase[x*axstride + n*aystride] *
 | |
| 					bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_INTEGER_1) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict abase_x;
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 *restrict dest_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #undef POW3
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| #endif /* HAVE_AVX */
 | |
| 
 | |
| #ifdef HAVE_AVX2
 | |
| static void
 | |
| matmul_i1_avx2 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm) __attribute__((__target__("avx2,fma")));
 | |
| static void
 | |
| matmul_i1_avx2 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_INTEGER_1 * restrict abase;
 | |
|   const GFC_INTEGER_1 * restrict bbase;
 | |
|   GFC_INTEGER_1 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
| */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|   else if (unlikely (compile_options.bounds_check))
 | |
|     {
 | |
|       index_type ret_extent, arg_extent;
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 2 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
 | |
| 		       "in dimension 1: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
|          The value is only used for calculation of the
 | |
|          memory by the buffer.  */
 | |
|       bystride = 256;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   /* Now that everything is set up, we perform the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| #define min(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define max(a,b) ((a) >= (b) ? (a) : (b))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|     {
 | |
|       const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|       const GFC_INTEGER_1 one = 1, zero = 0;
 | |
|       const int lda = (axstride == 1) ? aystride : axstride,
 | |
| 		ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|       if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
| 	{
 | |
| 	  assert (gemm != NULL);
 | |
| 	  const char *transa, *transb;
 | |
| 	  if (try_blas & 2)
 | |
| 	    transa = "C";
 | |
| 	  else
 | |
| 	    transa = axstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  if (try_blas & 4)
 | |
| 	    transb = "C";
 | |
| 	  else
 | |
| 	    transb = bxstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  gemm (transa, transb , &m,
 | |
| 		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | |
| 		&ldc, 1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       /* This block of code implements a tuned matmul, derived from
 | |
|          Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | |
| 
 | |
|                Bo Kagstrom and Per Ling
 | |
|                Department of Computing Science
 | |
|                Umea University
 | |
|                S-901 87 Umea, Sweden
 | |
| 
 | |
| 	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | |
| 
 | |
|       const GFC_INTEGER_1 *a, *b;
 | |
|       GFC_INTEGER_1 *c;
 | |
|       const index_type m = xcount, n = ycount, k = count;
 | |
| 
 | |
|       /* System generated locals */
 | |
|       index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | |
| 		 i1, i2, i3, i4, i5, i6;
 | |
| 
 | |
|       /* Local variables */
 | |
|       GFC_INTEGER_1 f11, f12, f21, f22, f31, f32, f41, f42,
 | |
| 		 f13, f14, f23, f24, f33, f34, f43, f44;
 | |
|       index_type i, j, l, ii, jj, ll;
 | |
|       index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | |
|       GFC_INTEGER_1 *t1;
 | |
| 
 | |
|       a = abase;
 | |
|       b = bbase;
 | |
|       c = retarray->base_addr;
 | |
| 
 | |
|       /* Parameter adjustments */
 | |
|       c_dim1 = rystride;
 | |
|       c_offset = 1 + c_dim1;
 | |
|       c -= c_offset;
 | |
|       a_dim1 = aystride;
 | |
|       a_offset = 1 + a_dim1;
 | |
|       a -= a_offset;
 | |
|       b_dim1 = bystride;
 | |
|       b_offset = 1 + b_dim1;
 | |
|       b -= b_offset;
 | |
| 
 | |
|       /* Empty c first.  */
 | |
|       for (j=1; j<=n; j++)
 | |
| 	for (i=1; i<=m; i++)
 | |
| 	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       /* Early exit if possible */
 | |
|       if (m == 0 || n == 0 || k == 0)
 | |
| 	return;
 | |
| 
 | |
|       /* Adjust size of t1 to what is needed.  */
 | |
|       index_type t1_dim, a_sz;
 | |
|       if (aystride == 1)
 | |
|         a_sz = rystride;
 | |
|       else
 | |
|         a_sz = a_dim1;
 | |
| 
 | |
|       t1_dim = a_sz * 256 + b_dim1;
 | |
|       if (t1_dim > 65536)
 | |
| 	t1_dim = 65536;
 | |
| 
 | |
|       t1 = malloc (t1_dim * sizeof(GFC_INTEGER_1));
 | |
| 
 | |
|       /* Start turning the crank. */
 | |
|       i1 = n;
 | |
|       for (jj = 1; jj <= i1; jj += 512)
 | |
| 	{
 | |
| 	  /* Computing MIN */
 | |
| 	  i2 = 512;
 | |
| 	  i3 = n - jj + 1;
 | |
| 	  jsec = min(i2,i3);
 | |
| 	  ujsec = jsec - jsec % 4;
 | |
| 	  i2 = k;
 | |
| 	  for (ll = 1; ll <= i2; ll += 256)
 | |
| 	    {
 | |
| 	      /* Computing MIN */
 | |
| 	      i3 = 256;
 | |
| 	      i4 = k - ll + 1;
 | |
| 	      lsec = min(i3,i4);
 | |
| 	      ulsec = lsec - lsec % 2;
 | |
| 
 | |
| 	      i3 = m;
 | |
| 	      for (ii = 1; ii <= i3; ii += 256)
 | |
| 		{
 | |
| 		  /* Computing MIN */
 | |
| 		  i4 = 256;
 | |
| 		  i5 = m - ii + 1;
 | |
| 		  isec = min(i4,i5);
 | |
| 		  uisec = isec - isec % 2;
 | |
| 		  i4 = ll + ulsec - 1;
 | |
| 		  for (l = ll; l <= i4; l += 2)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 2)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + (l + 1) * a_dim1];
 | |
| 			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ulsec < lsec)
 | |
| 		    {
 | |
| 		      i4 = ii + isec - 1;
 | |
| 		      for (i = ii; i<= i4; ++i)
 | |
| 			{
 | |
| 			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | |
| 				    a[i + (ll + lsec - 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		  uisec = isec - isec % 4;
 | |
| 		  i4 = jj + ujsec - 1;
 | |
| 		  for (j = jj; j <= i4; j += 4)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 4)
 | |
| 			{
 | |
| 			  f11 = c[i + j * c_dim1];
 | |
| 			  f21 = c[i + 1 + j * c_dim1];
 | |
| 			  f12 = c[i + (j + 1) * c_dim1];
 | |
| 			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | |
| 			  f13 = c[i + (j + 2) * c_dim1];
 | |
| 			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | |
| 			  f14 = c[i + (j + 3) * c_dim1];
 | |
| 			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | |
| 			  f31 = c[i + 2 + j * c_dim1];
 | |
| 			  f41 = c[i + 3 + j * c_dim1];
 | |
| 			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | |
| 			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | |
| 			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | |
| 			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | |
| 			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | |
| 			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | |
| 			  i6 = ll + lsec - 1;
 | |
| 			  for (l = ll; l <= i6; ++l)
 | |
| 			    {
 | |
| 			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			    }
 | |
| 			  c[i + j * c_dim1] = f11;
 | |
| 			  c[i + 1 + j * c_dim1] = f21;
 | |
| 			  c[i + (j + 1) * c_dim1] = f12;
 | |
| 			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | |
| 			  c[i + (j + 2) * c_dim1] = f13;
 | |
| 			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | |
| 			  c[i + (j + 3) * c_dim1] = f14;
 | |
| 			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | |
| 			  c[i + 2 + j * c_dim1] = f31;
 | |
| 			  c[i + 3 + j * c_dim1] = f41;
 | |
| 			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | |
| 			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | |
| 			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | |
| 			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | |
| 			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | |
| 			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f12 = c[i + (j + 1) * c_dim1];
 | |
| 			      f13 = c[i + (j + 2) * c_dim1];
 | |
| 			      f14 = c[i + (j + 3) * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 1) * b_dim1];
 | |
| 				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 2) * b_dim1];
 | |
| 				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 3) * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + (j + 1) * c_dim1] = f12;
 | |
| 			      c[i + (j + 2) * c_dim1] = f13;
 | |
| 			      c[i + (j + 3) * c_dim1] = f14;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ujsec < jsec)
 | |
| 		    {
 | |
| 		      i4 = jj + jsec - 1;
 | |
| 		      for (j = jj + ujsec; j <= i4; ++j)
 | |
| 			{
 | |
| 			  i5 = ii + uisec - 1;
 | |
| 			  for (i = ii; i <= i5; i += 4)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f21 = c[i + 1 + j * c_dim1];
 | |
| 			      f31 = c[i + 2 + j * c_dim1];
 | |
| 			      f41 = c[i + 3 + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + 1 + j * c_dim1] = f21;
 | |
| 			      c[i + 2 + j * c_dim1] = f31;
 | |
| 			      c[i + 3 + j * c_dim1] = f41;
 | |
| 			    }
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       free(t1);
 | |
|       return;
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict abase_x;
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 *restrict dest_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_INTEGER_1) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] +=
 | |
| 					abase[x*axstride + n*aystride] *
 | |
| 					bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_INTEGER_1) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict abase_x;
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 *restrict dest_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #undef POW3
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| #endif /* HAVE_AVX2 */
 | |
| 
 | |
| #ifdef HAVE_AVX512F
 | |
| static void
 | |
| matmul_i1_avx512f (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
 | |
| static void
 | |
| matmul_i1_avx512f (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_INTEGER_1 * restrict abase;
 | |
|   const GFC_INTEGER_1 * restrict bbase;
 | |
|   GFC_INTEGER_1 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
| */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|   else if (unlikely (compile_options.bounds_check))
 | |
|     {
 | |
|       index_type ret_extent, arg_extent;
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 2 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
 | |
| 		       "in dimension 1: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
|          The value is only used for calculation of the
 | |
|          memory by the buffer.  */
 | |
|       bystride = 256;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   /* Now that everything is set up, we perform the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| #define min(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define max(a,b) ((a) >= (b) ? (a) : (b))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|     {
 | |
|       const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|       const GFC_INTEGER_1 one = 1, zero = 0;
 | |
|       const int lda = (axstride == 1) ? aystride : axstride,
 | |
| 		ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|       if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
| 	{
 | |
| 	  assert (gemm != NULL);
 | |
| 	  const char *transa, *transb;
 | |
| 	  if (try_blas & 2)
 | |
| 	    transa = "C";
 | |
| 	  else
 | |
| 	    transa = axstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  if (try_blas & 4)
 | |
| 	    transb = "C";
 | |
| 	  else
 | |
| 	    transb = bxstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  gemm (transa, transb , &m,
 | |
| 		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | |
| 		&ldc, 1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       /* This block of code implements a tuned matmul, derived from
 | |
|          Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | |
| 
 | |
|                Bo Kagstrom and Per Ling
 | |
|                Department of Computing Science
 | |
|                Umea University
 | |
|                S-901 87 Umea, Sweden
 | |
| 
 | |
| 	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | |
| 
 | |
|       const GFC_INTEGER_1 *a, *b;
 | |
|       GFC_INTEGER_1 *c;
 | |
|       const index_type m = xcount, n = ycount, k = count;
 | |
| 
 | |
|       /* System generated locals */
 | |
|       index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | |
| 		 i1, i2, i3, i4, i5, i6;
 | |
| 
 | |
|       /* Local variables */
 | |
|       GFC_INTEGER_1 f11, f12, f21, f22, f31, f32, f41, f42,
 | |
| 		 f13, f14, f23, f24, f33, f34, f43, f44;
 | |
|       index_type i, j, l, ii, jj, ll;
 | |
|       index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | |
|       GFC_INTEGER_1 *t1;
 | |
| 
 | |
|       a = abase;
 | |
|       b = bbase;
 | |
|       c = retarray->base_addr;
 | |
| 
 | |
|       /* Parameter adjustments */
 | |
|       c_dim1 = rystride;
 | |
|       c_offset = 1 + c_dim1;
 | |
|       c -= c_offset;
 | |
|       a_dim1 = aystride;
 | |
|       a_offset = 1 + a_dim1;
 | |
|       a -= a_offset;
 | |
|       b_dim1 = bystride;
 | |
|       b_offset = 1 + b_dim1;
 | |
|       b -= b_offset;
 | |
| 
 | |
|       /* Empty c first.  */
 | |
|       for (j=1; j<=n; j++)
 | |
| 	for (i=1; i<=m; i++)
 | |
| 	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       /* Early exit if possible */
 | |
|       if (m == 0 || n == 0 || k == 0)
 | |
| 	return;
 | |
| 
 | |
|       /* Adjust size of t1 to what is needed.  */
 | |
|       index_type t1_dim, a_sz;
 | |
|       if (aystride == 1)
 | |
|         a_sz = rystride;
 | |
|       else
 | |
|         a_sz = a_dim1;
 | |
| 
 | |
|       t1_dim = a_sz * 256 + b_dim1;
 | |
|       if (t1_dim > 65536)
 | |
| 	t1_dim = 65536;
 | |
| 
 | |
|       t1 = malloc (t1_dim * sizeof(GFC_INTEGER_1));
 | |
| 
 | |
|       /* Start turning the crank. */
 | |
|       i1 = n;
 | |
|       for (jj = 1; jj <= i1; jj += 512)
 | |
| 	{
 | |
| 	  /* Computing MIN */
 | |
| 	  i2 = 512;
 | |
| 	  i3 = n - jj + 1;
 | |
| 	  jsec = min(i2,i3);
 | |
| 	  ujsec = jsec - jsec % 4;
 | |
| 	  i2 = k;
 | |
| 	  for (ll = 1; ll <= i2; ll += 256)
 | |
| 	    {
 | |
| 	      /* Computing MIN */
 | |
| 	      i3 = 256;
 | |
| 	      i4 = k - ll + 1;
 | |
| 	      lsec = min(i3,i4);
 | |
| 	      ulsec = lsec - lsec % 2;
 | |
| 
 | |
| 	      i3 = m;
 | |
| 	      for (ii = 1; ii <= i3; ii += 256)
 | |
| 		{
 | |
| 		  /* Computing MIN */
 | |
| 		  i4 = 256;
 | |
| 		  i5 = m - ii + 1;
 | |
| 		  isec = min(i4,i5);
 | |
| 		  uisec = isec - isec % 2;
 | |
| 		  i4 = ll + ulsec - 1;
 | |
| 		  for (l = ll; l <= i4; l += 2)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 2)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + (l + 1) * a_dim1];
 | |
| 			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ulsec < lsec)
 | |
| 		    {
 | |
| 		      i4 = ii + isec - 1;
 | |
| 		      for (i = ii; i<= i4; ++i)
 | |
| 			{
 | |
| 			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | |
| 				    a[i + (ll + lsec - 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		  uisec = isec - isec % 4;
 | |
| 		  i4 = jj + ujsec - 1;
 | |
| 		  for (j = jj; j <= i4; j += 4)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 4)
 | |
| 			{
 | |
| 			  f11 = c[i + j * c_dim1];
 | |
| 			  f21 = c[i + 1 + j * c_dim1];
 | |
| 			  f12 = c[i + (j + 1) * c_dim1];
 | |
| 			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | |
| 			  f13 = c[i + (j + 2) * c_dim1];
 | |
| 			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | |
| 			  f14 = c[i + (j + 3) * c_dim1];
 | |
| 			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | |
| 			  f31 = c[i + 2 + j * c_dim1];
 | |
| 			  f41 = c[i + 3 + j * c_dim1];
 | |
| 			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | |
| 			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | |
| 			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | |
| 			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | |
| 			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | |
| 			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | |
| 			  i6 = ll + lsec - 1;
 | |
| 			  for (l = ll; l <= i6; ++l)
 | |
| 			    {
 | |
| 			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			    }
 | |
| 			  c[i + j * c_dim1] = f11;
 | |
| 			  c[i + 1 + j * c_dim1] = f21;
 | |
| 			  c[i + (j + 1) * c_dim1] = f12;
 | |
| 			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | |
| 			  c[i + (j + 2) * c_dim1] = f13;
 | |
| 			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | |
| 			  c[i + (j + 3) * c_dim1] = f14;
 | |
| 			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | |
| 			  c[i + 2 + j * c_dim1] = f31;
 | |
| 			  c[i + 3 + j * c_dim1] = f41;
 | |
| 			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | |
| 			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | |
| 			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | |
| 			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | |
| 			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | |
| 			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f12 = c[i + (j + 1) * c_dim1];
 | |
| 			      f13 = c[i + (j + 2) * c_dim1];
 | |
| 			      f14 = c[i + (j + 3) * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 1) * b_dim1];
 | |
| 				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 2) * b_dim1];
 | |
| 				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 3) * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + (j + 1) * c_dim1] = f12;
 | |
| 			      c[i + (j + 2) * c_dim1] = f13;
 | |
| 			      c[i + (j + 3) * c_dim1] = f14;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ujsec < jsec)
 | |
| 		    {
 | |
| 		      i4 = jj + jsec - 1;
 | |
| 		      for (j = jj + ujsec; j <= i4; ++j)
 | |
| 			{
 | |
| 			  i5 = ii + uisec - 1;
 | |
| 			  for (i = ii; i <= i5; i += 4)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f21 = c[i + 1 + j * c_dim1];
 | |
| 			      f31 = c[i + 2 + j * c_dim1];
 | |
| 			      f41 = c[i + 3 + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + 1 + j * c_dim1] = f21;
 | |
| 			      c[i + 2 + j * c_dim1] = f31;
 | |
| 			      c[i + 3 + j * c_dim1] = f41;
 | |
| 			    }
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       free(t1);
 | |
|       return;
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict abase_x;
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 *restrict dest_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_INTEGER_1) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] +=
 | |
| 					abase[x*axstride + n*aystride] *
 | |
| 					bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_INTEGER_1) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict abase_x;
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 *restrict dest_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #undef POW3
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| #endif  /* HAVE_AVX512F */
 | |
| 
 | |
| /* AMD-specifix funtions with AVX128 and FMA3/FMA4.  */
 | |
| 
 | |
| #if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
 | |
| void
 | |
| matmul_i1_avx128_fma3 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma")));
 | |
| internal_proto(matmul_i1_avx128_fma3);
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
 | |
| void
 | |
| matmul_i1_avx128_fma4 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4")));
 | |
| internal_proto(matmul_i1_avx128_fma4);
 | |
| #endif
 | |
| 
 | |
| /* Function to fall back to if there is no special processor-specific version.  */
 | |
| static void
 | |
| matmul_i1_vanilla (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_INTEGER_1 * restrict abase;
 | |
|   const GFC_INTEGER_1 * restrict bbase;
 | |
|   GFC_INTEGER_1 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
| */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|   else if (unlikely (compile_options.bounds_check))
 | |
|     {
 | |
|       index_type ret_extent, arg_extent;
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 2 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
 | |
| 		       "in dimension 1: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
|          The value is only used for calculation of the
 | |
|          memory by the buffer.  */
 | |
|       bystride = 256;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   /* Now that everything is set up, we perform the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| #define min(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define max(a,b) ((a) >= (b) ? (a) : (b))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|     {
 | |
|       const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|       const GFC_INTEGER_1 one = 1, zero = 0;
 | |
|       const int lda = (axstride == 1) ? aystride : axstride,
 | |
| 		ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|       if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
| 	{
 | |
| 	  assert (gemm != NULL);
 | |
| 	  const char *transa, *transb;
 | |
| 	  if (try_blas & 2)
 | |
| 	    transa = "C";
 | |
| 	  else
 | |
| 	    transa = axstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  if (try_blas & 4)
 | |
| 	    transb = "C";
 | |
| 	  else
 | |
| 	    transb = bxstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  gemm (transa, transb , &m,
 | |
| 		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | |
| 		&ldc, 1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       /* This block of code implements a tuned matmul, derived from
 | |
|          Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | |
| 
 | |
|                Bo Kagstrom and Per Ling
 | |
|                Department of Computing Science
 | |
|                Umea University
 | |
|                S-901 87 Umea, Sweden
 | |
| 
 | |
| 	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | |
| 
 | |
|       const GFC_INTEGER_1 *a, *b;
 | |
|       GFC_INTEGER_1 *c;
 | |
|       const index_type m = xcount, n = ycount, k = count;
 | |
| 
 | |
|       /* System generated locals */
 | |
|       index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | |
| 		 i1, i2, i3, i4, i5, i6;
 | |
| 
 | |
|       /* Local variables */
 | |
|       GFC_INTEGER_1 f11, f12, f21, f22, f31, f32, f41, f42,
 | |
| 		 f13, f14, f23, f24, f33, f34, f43, f44;
 | |
|       index_type i, j, l, ii, jj, ll;
 | |
|       index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | |
|       GFC_INTEGER_1 *t1;
 | |
| 
 | |
|       a = abase;
 | |
|       b = bbase;
 | |
|       c = retarray->base_addr;
 | |
| 
 | |
|       /* Parameter adjustments */
 | |
|       c_dim1 = rystride;
 | |
|       c_offset = 1 + c_dim1;
 | |
|       c -= c_offset;
 | |
|       a_dim1 = aystride;
 | |
|       a_offset = 1 + a_dim1;
 | |
|       a -= a_offset;
 | |
|       b_dim1 = bystride;
 | |
|       b_offset = 1 + b_dim1;
 | |
|       b -= b_offset;
 | |
| 
 | |
|       /* Empty c first.  */
 | |
|       for (j=1; j<=n; j++)
 | |
| 	for (i=1; i<=m; i++)
 | |
| 	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       /* Early exit if possible */
 | |
|       if (m == 0 || n == 0 || k == 0)
 | |
| 	return;
 | |
| 
 | |
|       /* Adjust size of t1 to what is needed.  */
 | |
|       index_type t1_dim, a_sz;
 | |
|       if (aystride == 1)
 | |
|         a_sz = rystride;
 | |
|       else
 | |
|         a_sz = a_dim1;
 | |
| 
 | |
|       t1_dim = a_sz * 256 + b_dim1;
 | |
|       if (t1_dim > 65536)
 | |
| 	t1_dim = 65536;
 | |
| 
 | |
|       t1 = malloc (t1_dim * sizeof(GFC_INTEGER_1));
 | |
| 
 | |
|       /* Start turning the crank. */
 | |
|       i1 = n;
 | |
|       for (jj = 1; jj <= i1; jj += 512)
 | |
| 	{
 | |
| 	  /* Computing MIN */
 | |
| 	  i2 = 512;
 | |
| 	  i3 = n - jj + 1;
 | |
| 	  jsec = min(i2,i3);
 | |
| 	  ujsec = jsec - jsec % 4;
 | |
| 	  i2 = k;
 | |
| 	  for (ll = 1; ll <= i2; ll += 256)
 | |
| 	    {
 | |
| 	      /* Computing MIN */
 | |
| 	      i3 = 256;
 | |
| 	      i4 = k - ll + 1;
 | |
| 	      lsec = min(i3,i4);
 | |
| 	      ulsec = lsec - lsec % 2;
 | |
| 
 | |
| 	      i3 = m;
 | |
| 	      for (ii = 1; ii <= i3; ii += 256)
 | |
| 		{
 | |
| 		  /* Computing MIN */
 | |
| 		  i4 = 256;
 | |
| 		  i5 = m - ii + 1;
 | |
| 		  isec = min(i4,i5);
 | |
| 		  uisec = isec - isec % 2;
 | |
| 		  i4 = ll + ulsec - 1;
 | |
| 		  for (l = ll; l <= i4; l += 2)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 2)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + (l + 1) * a_dim1];
 | |
| 			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ulsec < lsec)
 | |
| 		    {
 | |
| 		      i4 = ii + isec - 1;
 | |
| 		      for (i = ii; i<= i4; ++i)
 | |
| 			{
 | |
| 			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | |
| 				    a[i + (ll + lsec - 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		  uisec = isec - isec % 4;
 | |
| 		  i4 = jj + ujsec - 1;
 | |
| 		  for (j = jj; j <= i4; j += 4)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 4)
 | |
| 			{
 | |
| 			  f11 = c[i + j * c_dim1];
 | |
| 			  f21 = c[i + 1 + j * c_dim1];
 | |
| 			  f12 = c[i + (j + 1) * c_dim1];
 | |
| 			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | |
| 			  f13 = c[i + (j + 2) * c_dim1];
 | |
| 			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | |
| 			  f14 = c[i + (j + 3) * c_dim1];
 | |
| 			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | |
| 			  f31 = c[i + 2 + j * c_dim1];
 | |
| 			  f41 = c[i + 3 + j * c_dim1];
 | |
| 			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | |
| 			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | |
| 			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | |
| 			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | |
| 			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | |
| 			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | |
| 			  i6 = ll + lsec - 1;
 | |
| 			  for (l = ll; l <= i6; ++l)
 | |
| 			    {
 | |
| 			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			    }
 | |
| 			  c[i + j * c_dim1] = f11;
 | |
| 			  c[i + 1 + j * c_dim1] = f21;
 | |
| 			  c[i + (j + 1) * c_dim1] = f12;
 | |
| 			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | |
| 			  c[i + (j + 2) * c_dim1] = f13;
 | |
| 			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | |
| 			  c[i + (j + 3) * c_dim1] = f14;
 | |
| 			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | |
| 			  c[i + 2 + j * c_dim1] = f31;
 | |
| 			  c[i + 3 + j * c_dim1] = f41;
 | |
| 			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | |
| 			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | |
| 			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | |
| 			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | |
| 			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | |
| 			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f12 = c[i + (j + 1) * c_dim1];
 | |
| 			      f13 = c[i + (j + 2) * c_dim1];
 | |
| 			      f14 = c[i + (j + 3) * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 1) * b_dim1];
 | |
| 				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 2) * b_dim1];
 | |
| 				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 3) * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + (j + 1) * c_dim1] = f12;
 | |
| 			      c[i + (j + 2) * c_dim1] = f13;
 | |
| 			      c[i + (j + 3) * c_dim1] = f14;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ujsec < jsec)
 | |
| 		    {
 | |
| 		      i4 = jj + jsec - 1;
 | |
| 		      for (j = jj + ujsec; j <= i4; ++j)
 | |
| 			{
 | |
| 			  i5 = ii + uisec - 1;
 | |
| 			  for (i = ii; i <= i5; i += 4)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f21 = c[i + 1 + j * c_dim1];
 | |
| 			      f31 = c[i + 2 + j * c_dim1];
 | |
| 			      f41 = c[i + 3 + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + 1 + j * c_dim1] = f21;
 | |
| 			      c[i + 2 + j * c_dim1] = f31;
 | |
| 			      c[i + 3 + j * c_dim1] = f41;
 | |
| 			    }
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       free(t1);
 | |
|       return;
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict abase_x;
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 *restrict dest_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_INTEGER_1) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] +=
 | |
| 					abase[x*axstride + n*aystride] *
 | |
| 					bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_INTEGER_1) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict abase_x;
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 *restrict dest_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #undef POW3
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| 
 | |
| /* Compiling main function, with selection code for the processor.  */
 | |
| 
 | |
| /* Currently, this is i386 only.  Adjust for other architectures.  */
 | |
| 
 | |
| #include <config/i386/cpuinfo.h>
 | |
| void matmul_i1 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   static void (*matmul_p) (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm);
 | |
| 
 | |
|   void (*matmul_fn) (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm);
 | |
| 
 | |
|   matmul_fn = __atomic_load_n (&matmul_p, __ATOMIC_RELAXED);
 | |
|   if (matmul_fn == NULL)
 | |
|     {
 | |
|       matmul_fn = matmul_i1_vanilla;
 | |
|       if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
 | |
| 	{
 | |
|           /* Run down the available processors in order of preference.  */
 | |
| #ifdef HAVE_AVX512F
 | |
|       	  if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
 | |
| 	    {
 | |
| 	      matmul_fn = matmul_i1_avx512f;
 | |
| 	      goto store;
 | |
| 	    }
 | |
| 
 | |
| #endif  /* HAVE_AVX512F */
 | |
| 
 | |
| #ifdef HAVE_AVX2
 | |
|       	  if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
 | |
| 	     && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
 | |
| 	    {
 | |
| 	      matmul_fn = matmul_i1_avx2;
 | |
| 	      goto store;
 | |
| 	    }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_AVX
 | |
|       	  if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | |
|  	    {
 | |
|               matmul_fn = matmul_i1_avx;
 | |
| 	      goto store;
 | |
| 	    }
 | |
| #endif  /* HAVE_AVX */
 | |
|         }
 | |
|     else if (__cpu_model.__cpu_vendor == VENDOR_AMD)
 | |
|       {
 | |
| #if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
 | |
|         if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | |
| 	    && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
 | |
| 	  {
 | |
|             matmul_fn = matmul_i1_avx128_fma3;
 | |
| 	    goto store;
 | |
| 	  }
 | |
| #endif
 | |
| #if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
 | |
|         if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
 | |
| 	     && (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA4)))
 | |
| 	  {
 | |
|             matmul_fn = matmul_i1_avx128_fma4;
 | |
| 	    goto store;
 | |
| 	  }
 | |
| #endif
 | |
| 
 | |
|       }
 | |
|    store:
 | |
|       __atomic_store_n (&matmul_p, matmul_fn, __ATOMIC_RELAXED);
 | |
|    }
 | |
| 
 | |
|    (*matmul_fn) (retarray, a, b, try_blas, blas_limit, gemm);
 | |
| }
 | |
| 
 | |
| #else  /* Just the vanilla function.  */
 | |
| 
 | |
| void
 | |
| matmul_i1 (gfc_array_i1 * const restrict retarray, 
 | |
| 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_INTEGER_1 * restrict abase;
 | |
|   const GFC_INTEGER_1 * restrict bbase;
 | |
|   GFC_INTEGER_1 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
| */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|   else if (unlikely (compile_options.bounds_check))
 | |
|     {
 | |
|       index_type ret_extent, arg_extent;
 | |
| 
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 1 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	  if (arg_extent != ret_extent)
 | |
| 	    runtime_error ("Array bound mismatch for dimension 2 of "
 | |
| 	    		   "array (%ld/%ld) ",
 | |
| 			   (long int) ret_extent, (long int) arg_extent);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
 | |
| 		       "in dimension 1: is %ld, should be %ld",
 | |
| 		       (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
|          The value is only used for calculation of the
 | |
|          memory by the buffer.  */
 | |
|       bystride = 256;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   /* Now that everything is set up, we perform the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| #define min(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define max(a,b) ((a) >= (b) ? (a) : (b))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|     {
 | |
|       const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|       const GFC_INTEGER_1 one = 1, zero = 0;
 | |
|       const int lda = (axstride == 1) ? aystride : axstride,
 | |
| 		ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|       if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
| 	{
 | |
| 	  assert (gemm != NULL);
 | |
| 	  const char *transa, *transb;
 | |
| 	  if (try_blas & 2)
 | |
| 	    transa = "C";
 | |
| 	  else
 | |
| 	    transa = axstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  if (try_blas & 4)
 | |
| 	    transb = "C";
 | |
| 	  else
 | |
| 	    transb = bxstride == 1 ? "N" : "T";
 | |
| 
 | |
| 	  gemm (transa, transb , &m,
 | |
| 		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
 | |
| 		&ldc, 1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       /* This block of code implements a tuned matmul, derived from
 | |
|          Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
 | |
| 
 | |
|                Bo Kagstrom and Per Ling
 | |
|                Department of Computing Science
 | |
|                Umea University
 | |
|                S-901 87 Umea, Sweden
 | |
| 
 | |
| 	 from netlib.org, translated to C, and modified for matmul.m4.  */
 | |
| 
 | |
|       const GFC_INTEGER_1 *a, *b;
 | |
|       GFC_INTEGER_1 *c;
 | |
|       const index_type m = xcount, n = ycount, k = count;
 | |
| 
 | |
|       /* System generated locals */
 | |
|       index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
 | |
| 		 i1, i2, i3, i4, i5, i6;
 | |
| 
 | |
|       /* Local variables */
 | |
|       GFC_INTEGER_1 f11, f12, f21, f22, f31, f32, f41, f42,
 | |
| 		 f13, f14, f23, f24, f33, f34, f43, f44;
 | |
|       index_type i, j, l, ii, jj, ll;
 | |
|       index_type isec, jsec, lsec, uisec, ujsec, ulsec;
 | |
|       GFC_INTEGER_1 *t1;
 | |
| 
 | |
|       a = abase;
 | |
|       b = bbase;
 | |
|       c = retarray->base_addr;
 | |
| 
 | |
|       /* Parameter adjustments */
 | |
|       c_dim1 = rystride;
 | |
|       c_offset = 1 + c_dim1;
 | |
|       c -= c_offset;
 | |
|       a_dim1 = aystride;
 | |
|       a_offset = 1 + a_dim1;
 | |
|       a -= a_offset;
 | |
|       b_dim1 = bystride;
 | |
|       b_offset = 1 + b_dim1;
 | |
|       b -= b_offset;
 | |
| 
 | |
|       /* Empty c first.  */
 | |
|       for (j=1; j<=n; j++)
 | |
| 	for (i=1; i<=m; i++)
 | |
| 	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       /* Early exit if possible */
 | |
|       if (m == 0 || n == 0 || k == 0)
 | |
| 	return;
 | |
| 
 | |
|       /* Adjust size of t1 to what is needed.  */
 | |
|       index_type t1_dim, a_sz;
 | |
|       if (aystride == 1)
 | |
|         a_sz = rystride;
 | |
|       else
 | |
|         a_sz = a_dim1;
 | |
| 
 | |
|       t1_dim = a_sz * 256 + b_dim1;
 | |
|       if (t1_dim > 65536)
 | |
| 	t1_dim = 65536;
 | |
| 
 | |
|       t1 = malloc (t1_dim * sizeof(GFC_INTEGER_1));
 | |
| 
 | |
|       /* Start turning the crank. */
 | |
|       i1 = n;
 | |
|       for (jj = 1; jj <= i1; jj += 512)
 | |
| 	{
 | |
| 	  /* Computing MIN */
 | |
| 	  i2 = 512;
 | |
| 	  i3 = n - jj + 1;
 | |
| 	  jsec = min(i2,i3);
 | |
| 	  ujsec = jsec - jsec % 4;
 | |
| 	  i2 = k;
 | |
| 	  for (ll = 1; ll <= i2; ll += 256)
 | |
| 	    {
 | |
| 	      /* Computing MIN */
 | |
| 	      i3 = 256;
 | |
| 	      i4 = k - ll + 1;
 | |
| 	      lsec = min(i3,i4);
 | |
| 	      ulsec = lsec - lsec % 2;
 | |
| 
 | |
| 	      i3 = m;
 | |
| 	      for (ii = 1; ii <= i3; ii += 256)
 | |
| 		{
 | |
| 		  /* Computing MIN */
 | |
| 		  i4 = 256;
 | |
| 		  i5 = m - ii + 1;
 | |
| 		  isec = min(i4,i5);
 | |
| 		  uisec = isec - isec % 2;
 | |
| 		  i4 = ll + ulsec - 1;
 | |
| 		  for (l = ll; l <= i4; l += 2)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 2)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
 | |
| 					a[i + (l + 1) * a_dim1];
 | |
| 			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
 | |
| 					a[i + 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  t1[l - ll + 1 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + l * a_dim1];
 | |
| 			  t1[l - ll + 2 + (isec << 8) - 257] =
 | |
| 				    a[ii + isec - 1 + (l + 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ulsec < lsec)
 | |
| 		    {
 | |
| 		      i4 = ii + isec - 1;
 | |
| 		      for (i = ii; i<= i4; ++i)
 | |
| 			{
 | |
| 			  t1[lsec + ((i - ii + 1) << 8) - 257] =
 | |
| 				    a[i + (ll + lsec - 1) * a_dim1];
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		  uisec = isec - isec % 4;
 | |
| 		  i4 = jj + ujsec - 1;
 | |
| 		  for (j = jj; j <= i4; j += 4)
 | |
| 		    {
 | |
| 		      i5 = ii + uisec - 1;
 | |
| 		      for (i = ii; i <= i5; i += 4)
 | |
| 			{
 | |
| 			  f11 = c[i + j * c_dim1];
 | |
| 			  f21 = c[i + 1 + j * c_dim1];
 | |
| 			  f12 = c[i + (j + 1) * c_dim1];
 | |
| 			  f22 = c[i + 1 + (j + 1) * c_dim1];
 | |
| 			  f13 = c[i + (j + 2) * c_dim1];
 | |
| 			  f23 = c[i + 1 + (j + 2) * c_dim1];
 | |
| 			  f14 = c[i + (j + 3) * c_dim1];
 | |
| 			  f24 = c[i + 1 + (j + 3) * c_dim1];
 | |
| 			  f31 = c[i + 2 + j * c_dim1];
 | |
| 			  f41 = c[i + 3 + j * c_dim1];
 | |
| 			  f32 = c[i + 2 + (j + 1) * c_dim1];
 | |
| 			  f42 = c[i + 3 + (j + 1) * c_dim1];
 | |
| 			  f33 = c[i + 2 + (j + 2) * c_dim1];
 | |
| 			  f43 = c[i + 3 + (j + 2) * c_dim1];
 | |
| 			  f34 = c[i + 2 + (j + 3) * c_dim1];
 | |
| 			  f44 = c[i + 3 + (j + 3) * c_dim1];
 | |
| 			  i6 = ll + lsec - 1;
 | |
| 			  for (l = ll; l <= i6; ++l)
 | |
| 			    {
 | |
| 			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + j * b_dim1];
 | |
| 			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 1) * b_dim1];
 | |
| 			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 2) * b_dim1];
 | |
| 			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
 | |
| 				      * b[l + (j + 3) * b_dim1];
 | |
| 			    }
 | |
| 			  c[i + j * c_dim1] = f11;
 | |
| 			  c[i + 1 + j * c_dim1] = f21;
 | |
| 			  c[i + (j + 1) * c_dim1] = f12;
 | |
| 			  c[i + 1 + (j + 1) * c_dim1] = f22;
 | |
| 			  c[i + (j + 2) * c_dim1] = f13;
 | |
| 			  c[i + 1 + (j + 2) * c_dim1] = f23;
 | |
| 			  c[i + (j + 3) * c_dim1] = f14;
 | |
| 			  c[i + 1 + (j + 3) * c_dim1] = f24;
 | |
| 			  c[i + 2 + j * c_dim1] = f31;
 | |
| 			  c[i + 3 + j * c_dim1] = f41;
 | |
| 			  c[i + 2 + (j + 1) * c_dim1] = f32;
 | |
| 			  c[i + 3 + (j + 1) * c_dim1] = f42;
 | |
| 			  c[i + 2 + (j + 2) * c_dim1] = f33;
 | |
| 			  c[i + 3 + (j + 2) * c_dim1] = f43;
 | |
| 			  c[i + 2 + (j + 3) * c_dim1] = f34;
 | |
| 			  c[i + 3 + (j + 3) * c_dim1] = f44;
 | |
| 			}
 | |
| 		      if (uisec < isec)
 | |
| 			{
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f12 = c[i + (j + 1) * c_dim1];
 | |
| 			      f13 = c[i + (j + 2) * c_dim1];
 | |
| 			      f14 = c[i + (j + 3) * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 1) * b_dim1];
 | |
| 				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 2) * b_dim1];
 | |
| 				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + (j + 3) * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + (j + 1) * c_dim1] = f12;
 | |
| 			      c[i + (j + 2) * c_dim1] = f13;
 | |
| 			      c[i + (j + 3) * c_dim1] = f14;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		  if (ujsec < jsec)
 | |
| 		    {
 | |
| 		      i4 = jj + jsec - 1;
 | |
| 		      for (j = jj + ujsec; j <= i4; ++j)
 | |
| 			{
 | |
| 			  i5 = ii + uisec - 1;
 | |
| 			  for (i = ii; i <= i5; i += 4)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      f21 = c[i + 1 + j * c_dim1];
 | |
| 			      f31 = c[i + 2 + j * c_dim1];
 | |
| 			      f41 = c[i + 3 + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			      c[i + 1 + j * c_dim1] = f21;
 | |
| 			      c[i + 2 + j * c_dim1] = f31;
 | |
| 			      c[i + 3 + j * c_dim1] = f41;
 | |
| 			    }
 | |
| 			  i5 = ii + isec - 1;
 | |
| 			  for (i = ii + uisec; i <= i5; ++i)
 | |
| 			    {
 | |
| 			      f11 = c[i + j * c_dim1];
 | |
| 			      i6 = ll + lsec - 1;
 | |
| 			      for (l = ll; l <= i6; ++l)
 | |
| 				{
 | |
| 				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
 | |
| 					  257] * b[l + j * b_dim1];
 | |
| 				}
 | |
| 			      c[i + j * c_dim1] = f11;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       free(t1);
 | |
|       return;
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict abase_x;
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 *restrict dest_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_INTEGER_1) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_INTEGER_1 *restrict bbase_y;
 | |
| 	  GFC_INTEGER_1 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] +=
 | |
| 					abase[x*axstride + n*aystride] *
 | |
| 					bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_INTEGER_1) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_INTEGER_1 *restrict abase_x;
 | |
|       const GFC_INTEGER_1 *restrict bbase_y;
 | |
|       GFC_INTEGER_1 *restrict dest_y;
 | |
|       GFC_INTEGER_1 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_INTEGER_1) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #undef POW3
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 |