mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1725 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			1725 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
 | |
|    Copyright (C) 2002, 2003, 2004 Free Software Foundation
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| package java.awt.geom;
 | |
| 
 | |
| import java.awt.Rectangle;
 | |
| import java.awt.Shape;
 | |
| import java.util.NoSuchElementException;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * A two-dimensional curve that is parameterized with a cubic
 | |
|  * function.
 | |
|  *
 | |
|  * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|  * alt="A drawing of a CubicCurve2D" />
 | |
|  *
 | |
|  * @author Eric Blake (ebb9@email.byu.edu)
 | |
|  * @author Graydon Hoare (graydon@redhat.com)
 | |
|  * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|  * @author Sven de Marothy (sven@physto.se)
 | |
|  *
 | |
|  * @since 1.2
 | |
|  */
 | |
| public abstract class CubicCurve2D implements Shape, Cloneable
 | |
| {
 | |
|   private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
 | |
|   private static final double EPSILON = 1E-10;
 | |
| 
 | |
|   /**
 | |
|    * Constructs a new CubicCurve2D. Typical users will want to
 | |
|    * construct instances of a subclass, such as {@link
 | |
|    * CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
 | |
|    */
 | |
|   protected CubicCurve2D()
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>x</i> coordinate of the curve’s start
 | |
|    * point.
 | |
|    */
 | |
|   public abstract double getX1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>y</i> coordinate of the curve’s start
 | |
|    * point.
 | |
|    */
 | |
|   public abstract double getY1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the curve’s start point.
 | |
|    */
 | |
|   public abstract Point2D getP1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>x</i> coordinate of the curve’s first
 | |
|    * control point.
 | |
|    */
 | |
|   public abstract double getCtrlX1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>y</i> coordinate of the curve’s first
 | |
|    * control point.
 | |
|    */
 | |
|   public abstract double getCtrlY1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the curve’s first control point.
 | |
|    */
 | |
|   public abstract Point2D getCtrlP1();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>x</i> coordinate of the curve’s second
 | |
|    * control point.
 | |
|    */
 | |
|   public abstract double getCtrlX2();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>y</i> coordinate of the curve’s second
 | |
|    * control point.
 | |
|    */
 | |
|   public abstract double getCtrlY2();
 | |
| 
 | |
|   /**
 | |
|    * Returns the curve’s second control point.
 | |
|    */
 | |
|   public abstract Point2D getCtrlP2();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>x</i> coordinate of the curve’s end
 | |
|    * point.
 | |
|    */
 | |
|   public abstract double getX2();
 | |
| 
 | |
|   /**
 | |
|    * Returns the <i>y</i> coordinate of the curve’s end
 | |
|    * point.
 | |
|    */
 | |
|   public abstract double getY2();
 | |
| 
 | |
|   /**
 | |
|    * Returns the curve’s end point.
 | |
|    */
 | |
|   public abstract Point2D getP2();
 | |
| 
 | |
|   /**
 | |
|    * Changes the curve geometry, separately specifying each coordinate
 | |
|    * value.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|    * alt="A drawing of a CubicCurve2D" />
 | |
|    *
 | |
|    * @param x1 the <i>x</i> coordinate of the curve’s new start
 | |
|    * point.
 | |
|    *
 | |
|    * @param y1 the <i>y</i> coordinate of the curve’s new start
 | |
|    * point.
 | |
|    *
 | |
|    * @param cx1 the <i>x</i> coordinate of the curve’s new
 | |
|    * first control point.
 | |
|    *
 | |
|    * @param cy1 the <i>y</i> coordinate of the curve’s new
 | |
|    * first control point.
 | |
|    *
 | |
|    * @param cx2 the <i>x</i> coordinate of the curve’s new
 | |
|    * second control point.
 | |
|    *
 | |
|    * @param cy2 the <i>y</i> coordinate of the curve’s new
 | |
|    * second control point.
 | |
|    *
 | |
|    * @param x2 the <i>x</i> coordinate of the curve’s new end
 | |
|    * point.
 | |
|    *
 | |
|    * @param y2 the <i>y</i> coordinate of the curve’s new end
 | |
|    * point.
 | |
|    */
 | |
|   public abstract void setCurve(double x1, double y1, double cx1, double cy1,
 | |
|                                 double cx2, double cy2, double x2, double y2);
 | |
| 
 | |
|   /**
 | |
|    * Changes the curve geometry, specifying coordinate values in an
 | |
|    * array.
 | |
|    *
 | |
|    * @param coords an array containing the new coordinate values.  The
 | |
|    * <i>x</i> coordinate of the new start point is located at
 | |
|    * <code>coords[offset]</code>, its <i>y</i> coordinate at
 | |
|    * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
 | |
|    * new first control point is located at <code>coords[offset +
 | |
|    * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 3]</code>.  The <i>x</i> coordinate of the new second control
 | |
|    * point is located at <code>coords[offset + 4]</code>, its <i>y</i>
 | |
|    * coordinate at <code>coords[offset + 5]</code>.  The <i>x</i>
 | |
|    * coordinate of the new end point is located at <code>coords[offset
 | |
|    * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 7]</code>.
 | |
|    *
 | |
|    * @param offset the offset of the first coordinate value in
 | |
|    * <code>coords</code>.
 | |
|    */
 | |
|   public void setCurve(double[] coords, int offset)
 | |
|   {
 | |
|     setCurve(coords[offset++], coords[offset++], coords[offset++],
 | |
|              coords[offset++], coords[offset++], coords[offset++],
 | |
|              coords[offset++], coords[offset++]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Changes the curve geometry, specifying coordinate values in
 | |
|    * separate Point objects.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|    * alt="A drawing of a CubicCurve2D" />
 | |
|    *
 | |
|    * <p>The curve does not keep any reference to the passed point
 | |
|    * objects. Therefore, a later change to <code>p1</code>,
 | |
|    * <code>c1</code>, <code>c2</code> or <code>p2</code> will not
 | |
|    * affect the curve geometry.
 | |
|    *
 | |
|    * @param p1 the new start point.
 | |
|    * @param c1 the new first control point.
 | |
|    * @param c2 the new second control point.
 | |
|    * @param p2 the new end point.
 | |
|    */
 | |
|   public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
 | |
|   {
 | |
|     setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), c2.getX(), c2.getY(),
 | |
|              p2.getX(), p2.getY());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Changes the curve geometry, specifying coordinate values in an
 | |
|    * array of Point objects.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|    * alt="A drawing of a CubicCurve2D" />
 | |
|    *
 | |
|    * <p>The curve does not keep references to the passed point
 | |
|    * objects. Therefore, a later change to the <code>pts</code> array
 | |
|    * or any of its elements will not affect the curve geometry.
 | |
|    *
 | |
|    * @param pts an array containing the points. The new start point
 | |
|    * is located at <code>pts[offset]</code>, the new first control
 | |
|    * point at <code>pts[offset + 1]</code>, the new second control
 | |
|    * point at <code>pts[offset + 2]</code>, and the new end point
 | |
|    * at <code>pts[offset + 3]</code>.
 | |
|    *
 | |
|    * @param offset the offset of the start point in <code>pts</code>.
 | |
|    */
 | |
|   public void setCurve(Point2D[] pts, int offset)
 | |
|   {
 | |
|     setCurve(pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(),
 | |
|              pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
 | |
|              pts[offset].getX(), pts[offset++].getY());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Changes the curve geometry to that of another curve.
 | |
|    *
 | |
|    * @param c the curve whose coordinates will be copied.
 | |
|    */
 | |
|   public void setCurve(CubicCurve2D c)
 | |
|   {
 | |
|     setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
 | |
|              c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the squared flatness of a cubic curve, directly
 | |
|    * specifying each coordinate value. The flatness is the maximal
 | |
|    * distance of a control point to the line between start and end
 | |
|    * point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the square of the distance between C2 and the
 | |
|    * gray line, i.e. the squared length of the red line.
 | |
|    *
 | |
|    * @param x1 the <i>x</i> coordinate of the start point P1.
 | |
|    * @param y1 the <i>y</i> coordinate of the start point P1.
 | |
|    * @param cx1 the <i>x</i> coordinate of the first control point C1.
 | |
|    * @param cy1 the <i>y</i> coordinate of the first control point C1.
 | |
|    * @param cx2 the <i>x</i> coordinate of the second control point C2.
 | |
|    * @param cy2 the <i>y</i> coordinate of the second control point C2.
 | |
|    * @param x2 the <i>x</i> coordinate of the end point P2.
 | |
|    * @param y2 the <i>y</i> coordinate of the end point P2.
 | |
|    */
 | |
|   public static double getFlatnessSq(double x1, double y1, double cx1,
 | |
|                                      double cy1, double cx2, double cy2,
 | |
|                                      double x2, double y2)
 | |
|   {
 | |
|     return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
 | |
|                     Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the flatness of a cubic curve, directly specifying
 | |
|    * each coordinate value. The flatness is the maximal distance of a
 | |
|    * control point to the line between start and end point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the distance between C2 and the gray line,
 | |
|    * i.e. the length of the red line.
 | |
|    *
 | |
|    * @param x1 the <i>x</i> coordinate of the start point P1.
 | |
|    * @param y1 the <i>y</i> coordinate of the start point P1.
 | |
|    * @param cx1 the <i>x</i> coordinate of the first control point C1.
 | |
|    * @param cy1 the <i>y</i> coordinate of the first control point C1.
 | |
|    * @param cx2 the <i>x</i> coordinate of the second control point C2.
 | |
|    * @param cy2 the <i>y</i> coordinate of the second control point C2.
 | |
|    * @param x2 the <i>x</i> coordinate of the end point P2.
 | |
|    * @param y2 the <i>y</i> coordinate of the end point P2.
 | |
|    */
 | |
|   public static double getFlatness(double x1, double y1, double cx1,
 | |
|                                    double cy1, double cx2, double cy2,
 | |
|                                    double x2, double y2)
 | |
|   {
 | |
|     return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the squared flatness of a cubic curve, specifying the
 | |
|    * coordinate values in an array. The flatness is the maximal
 | |
|    * distance of a control point to the line between start and end
 | |
|    * point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the square of the distance between C2 and the
 | |
|    * gray line, i.e. the squared length of the red line.
 | |
|    *
 | |
|    * @param coords an array containing the coordinate values.  The
 | |
|    * <i>x</i> coordinate of the start point P1 is located at
 | |
|    * <code>coords[offset]</code>, its <i>y</i> coordinate at
 | |
|    * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
 | |
|    * first control point C1 is located at <code>coords[offset +
 | |
|    * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 3]</code>. The <i>x</i> coordinate of the second control point C2
 | |
|    * is located at <code>coords[offset + 4]</code>, its <i>y</i>
 | |
|    * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
 | |
|    * coordinate of the end point P2 is located at <code>coords[offset
 | |
|    * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 7]</code>.
 | |
|    *
 | |
|    * @param offset the offset of the first coordinate value in
 | |
|    * <code>coords</code>.
 | |
|    */
 | |
|   public static double getFlatnessSq(double[] coords, int offset)
 | |
|   {
 | |
|     return getFlatnessSq(coords[offset++], coords[offset++], coords[offset++],
 | |
|                          coords[offset++], coords[offset++], coords[offset++],
 | |
|                          coords[offset++], coords[offset++]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the flatness of a cubic curve, specifying the
 | |
|    * coordinate values in an array. The flatness is the maximal
 | |
|    * distance of a control point to the line between start and end
 | |
|    * point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the distance between C2 and the gray line,
 | |
|    * i.e. the length of the red line.
 | |
|    *
 | |
|    * @param coords an array containing the coordinate values.  The
 | |
|    * <i>x</i> coordinate of the start point P1 is located at
 | |
|    * <code>coords[offset]</code>, its <i>y</i> coordinate at
 | |
|    * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
 | |
|    * first control point C1 is located at <code>coords[offset +
 | |
|    * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 3]</code>. The <i>x</i> coordinate of the second control point C2
 | |
|    * is located at <code>coords[offset + 4]</code>, its <i>y</i>
 | |
|    * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
 | |
|    * coordinate of the end point P2 is located at <code>coords[offset
 | |
|    * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
 | |
|    * 7]</code>.
 | |
|    *
 | |
|    * @param offset the offset of the first coordinate value in
 | |
|    * <code>coords</code>.
 | |
|    */
 | |
|   public static double getFlatness(double[] coords, int offset)
 | |
|   {
 | |
|     return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
 | |
|                                    coords[offset++], coords[offset++],
 | |
|                                    coords[offset++], coords[offset++],
 | |
|                                    coords[offset++], coords[offset++]));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the squared flatness of this curve.  The flatness is
 | |
|    * the maximal distance of a control point to the line between start
 | |
|    * and end point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the square of the distance between C2 and the
 | |
|    * gray line, i.e. the squared length of the red line.
 | |
|    */
 | |
|   public double getFlatnessSq()
 | |
|   {
 | |
|     return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
 | |
|                          getCtrlX2(), getCtrlY2(), getX2(), getY2());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculates the flatness of this curve.  The flatness is the
 | |
|    * maximal distance of a control point to the line between start and
 | |
|    * end point.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
 | |
|    * alt="A drawing that illustrates the flatness" />
 | |
|    *
 | |
|    * <p>In the above drawing, the straight line connecting start point
 | |
|    * P1 and end point P2 is depicted in gray.  In comparison to C1,
 | |
|    * control point C2 is father away from the gray line. Therefore,
 | |
|    * the result will be the distance between C2 and the gray line,
 | |
|    * i.e. the length of the red line.
 | |
|    */
 | |
|   public double getFlatness()
 | |
|   {
 | |
|     return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
 | |
|                                    getCtrlX2(), getCtrlY2(), getX2(), getY2()));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Subdivides this curve into two halves.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
 | |
|    * height="180" alt="A drawing that illustrates the effects of
 | |
|    * subdividing a CubicCurve2D" />
 | |
|    *
 | |
|    * @param left a curve whose geometry will be set to the left half
 | |
|    * of this curve, or <code>null</code> if the caller is not
 | |
|    * interested in the left half.
 | |
|    *
 | |
|    * @param right a curve whose geometry will be set to the right half
 | |
|    * of this curve, or <code>null</code> if the caller is not
 | |
|    * interested in the right half.
 | |
|    */
 | |
|   public void subdivide(CubicCurve2D left, CubicCurve2D right)
 | |
|   {
 | |
|     // Use empty slots at end to share single array.
 | |
|     double[] d = new double[]
 | |
|                  {
 | |
|                    getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(),
 | |
|                    getCtrlY2(), getX2(), getY2(), 0, 0, 0, 0, 0, 0
 | |
|                  };
 | |
|     subdivide(d, 0, d, 0, d, 6);
 | |
|     if (left != null)
 | |
|       left.setCurve(d, 0);
 | |
|     if (right != null)
 | |
|       right.setCurve(d, 6);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Subdivides a cubic curve into two halves.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
 | |
|    * height="180" alt="A drawing that illustrates the effects of
 | |
|    * subdividing a CubicCurve2D" />
 | |
|    *
 | |
|    * @param src the curve to be subdivided.
 | |
|    *
 | |
|    * @param left a curve whose geometry will be set to the left half
 | |
|    * of <code>src</code>, or <code>null</code> if the caller is not
 | |
|    * interested in the left half.
 | |
|    *
 | |
|    * @param right a curve whose geometry will be set to the right half
 | |
|    * of <code>src</code>, or <code>null</code> if the caller is not
 | |
|    * interested in the right half.
 | |
|    */
 | |
|   public static void subdivide(CubicCurve2D src, CubicCurve2D left,
 | |
|                                CubicCurve2D right)
 | |
|   {
 | |
|     src.subdivide(left, right);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Subdivides a cubic curve into two halves, passing all coordinates
 | |
|    * in an array.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
 | |
|    * height="180" alt="A drawing that illustrates the effects of
 | |
|    * subdividing a CubicCurve2D" />
 | |
|    *
 | |
|    * <p>The left end point and the right start point will always be
 | |
|    * identical. Memory-concious programmers thus may want to pass the
 | |
|    * same array for both <code>left</code> and <code>right</code>, and
 | |
|    * set <code>rightOff</code> to <code>leftOff + 6</code>.
 | |
|    *
 | |
|    * @param src an array containing the coordinates of the curve to be
 | |
|    * subdivided.  The <i>x</i> coordinate of the start point P1 is
 | |
|    * located at <code>src[srcOff]</code>, its <i>y</i> at
 | |
|    * <code>src[srcOff + 1]</code>.  The <i>x</i> coordinate of the
 | |
|    * first control point C1 is located at <code>src[srcOff +
 | |
|    * 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>.  The
 | |
|    * <i>x</i> coordinate of the second control point C2 is located at
 | |
|    * <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
 | |
|    * 5]</code>. The <i>x</i> coordinate of the end point is located at
 | |
|    * <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
 | |
|    * 7]</code>.
 | |
|    *
 | |
|    * @param srcOff an offset into <code>src</code>, specifying
 | |
|    * the index of the start point’s <i>x</i> coordinate.
 | |
|    *
 | |
|    * @param left an array that will receive the coordinates of the
 | |
|    * left half of <code>src</code>. It is acceptable to pass
 | |
|    * <code>src</code>. A caller who is not interested in the left half
 | |
|    * can pass <code>null</code>.
 | |
|    *
 | |
|    * @param leftOff an offset into <code>left</code>, specifying the
 | |
|    * index where the start point’s <i>x</i> coordinate will be
 | |
|    * stored.
 | |
|    *
 | |
|    * @param right an array that will receive the coordinates of the
 | |
|    * right half of <code>src</code>. It is acceptable to pass
 | |
|    * <code>src</code> or <code>left</code>. A caller who is not
 | |
|    * interested in the right half can pass <code>null</code>.
 | |
|    *
 | |
|    * @param rightOff an offset into <code>right</code>, specifying the
 | |
|    * index where the start point’s <i>x</i> coordinate will be
 | |
|    * stored.
 | |
|    */
 | |
|   public static void subdivide(double[] src, int srcOff, double[] left,
 | |
|                                int leftOff, double[] right, int rightOff)
 | |
|   {
 | |
|     // To understand this code, please have a look at the image
 | |
|     // "CubicCurve2D-3.png" in the sub-directory "doc-files".
 | |
|     double src_C1_x;
 | |
|     double src_C1_y;
 | |
|     double src_C2_x;
 | |
|     double src_C2_y;
 | |
|     double left_P1_x;
 | |
|     double left_P1_y;
 | |
|     double left_C1_x;
 | |
|     double left_C1_y;
 | |
|     double left_C2_x;
 | |
|     double left_C2_y;
 | |
|     double right_C1_x;
 | |
|     double right_C1_y;
 | |
|     double right_C2_x;
 | |
|     double right_C2_y;
 | |
|     double right_P2_x;
 | |
|     double right_P2_y;
 | |
|     double Mid_x; // Mid = left.P2 = right.P1
 | |
|     double Mid_y; // Mid = left.P2 = right.P1
 | |
| 
 | |
|     left_P1_x = src[srcOff];
 | |
|     left_P1_y = src[srcOff + 1];
 | |
|     src_C1_x = src[srcOff + 2];
 | |
|     src_C1_y = src[srcOff + 3];
 | |
|     src_C2_x = src[srcOff + 4];
 | |
|     src_C2_y = src[srcOff + 5];
 | |
|     right_P2_x = src[srcOff + 6];
 | |
|     right_P2_y = src[srcOff + 7];
 | |
| 
 | |
|     left_C1_x = (left_P1_x + src_C1_x) / 2;
 | |
|     left_C1_y = (left_P1_y + src_C1_y) / 2;
 | |
|     right_C2_x = (right_P2_x + src_C2_x) / 2;
 | |
|     right_C2_y = (right_P2_y + src_C2_y) / 2;
 | |
|     Mid_x = (src_C1_x + src_C2_x) / 2;
 | |
|     Mid_y = (src_C1_y + src_C2_y) / 2;
 | |
|     left_C2_x = (left_C1_x + Mid_x) / 2;
 | |
|     left_C2_y = (left_C1_y + Mid_y) / 2;
 | |
|     right_C1_x = (Mid_x + right_C2_x) / 2;
 | |
|     right_C1_y = (Mid_y + right_C2_y) / 2;
 | |
|     Mid_x = (left_C2_x + right_C1_x) / 2;
 | |
|     Mid_y = (left_C2_y + right_C1_y) / 2;
 | |
| 
 | |
|     if (left != null)
 | |
|       {
 | |
|         left[leftOff] = left_P1_x;
 | |
|         left[leftOff + 1] = left_P1_y;
 | |
|         left[leftOff + 2] = left_C1_x;
 | |
|         left[leftOff + 3] = left_C1_y;
 | |
|         left[leftOff + 4] = left_C2_x;
 | |
|         left[leftOff + 5] = left_C2_y;
 | |
|         left[leftOff + 6] = Mid_x;
 | |
|         left[leftOff + 7] = Mid_y;
 | |
|       }
 | |
| 
 | |
|     if (right != null)
 | |
|       {
 | |
|         right[rightOff] = Mid_x;
 | |
|         right[rightOff + 1] = Mid_y;
 | |
|         right[rightOff + 2] = right_C1_x;
 | |
|         right[rightOff + 3] = right_C1_y;
 | |
|         right[rightOff + 4] = right_C2_x;
 | |
|         right[rightOff + 5] = right_C2_y;
 | |
|         right[rightOff + 6] = right_P2_x;
 | |
|         right[rightOff + 7] = right_P2_y;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Finds the non-complex roots of a cubic equation, placing the
 | |
|    * results into the same array as the equation coefficients. The
 | |
|    * following equation is being solved:
 | |
|    *
 | |
|    * <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
 | |
|    * + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
 | |
|    * + <code>eqn[1]</code> · <i>x</i>
 | |
|    * + <code>eqn[0]</code>
 | |
|    * = 0
 | |
|    * </blockquote>
 | |
|    *
 | |
|    * <p>For some background about solving cubic equations, see the
 | |
|    * article <a
 | |
|    * href="http://planetmath.org/encyclopedia/CubicFormula.html"
 | |
|    * >“Cubic Formula”</a> in <a
 | |
|    * href="http://planetmath.org/" >PlanetMath</a>.  For an extensive
 | |
|    * library of numerical algorithms written in the C programming
 | |
|    * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
 | |
|    * Scientific Library</a>, from which this implementation was
 | |
|    * adapted.
 | |
|    *
 | |
|    * @param eqn an array with the coefficients of the equation. When
 | |
|    * this procedure has returned, <code>eqn</code> will contain the
 | |
|    * non-complex solutions of the equation, in no particular order.
 | |
|    *
 | |
|    * @return the number of non-complex solutions. A result of 0
 | |
|    * indicates that the equation has no non-complex solutions. A
 | |
|    * result of -1 indicates that the equation is constant (i.e.,
 | |
|    * always or never zero).
 | |
|    *
 | |
|    * @see #solveCubic(double[], double[])
 | |
|    * @see QuadCurve2D#solveQuadratic(double[],double[])
 | |
|    *
 | |
|    * @author Brian Gough (bjg@network-theory.com)
 | |
|    * (original C implementation in the <a href=
 | |
|    * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
 | |
|    *
 | |
|    * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|    * (adaptation to Java)
 | |
|    */
 | |
|   public static int solveCubic(double[] eqn)
 | |
|   {
 | |
|     return solveCubic(eqn, eqn);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Finds the non-complex roots of a cubic equation. The following
 | |
|    * equation is being solved:
 | |
|    *
 | |
|    * <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
 | |
|    * + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
 | |
|    * + <code>eqn[1]</code> · <i>x</i>
 | |
|    * + <code>eqn[0]</code>
 | |
|    * = 0
 | |
|    * </blockquote>
 | |
|    *
 | |
|    * <p>For some background about solving cubic equations, see the
 | |
|    * article <a
 | |
|    * href="http://planetmath.org/encyclopedia/CubicFormula.html"
 | |
|    * >“Cubic Formula”</a> in <a
 | |
|    * href="http://planetmath.org/" >PlanetMath</a>.  For an extensive
 | |
|    * library of numerical algorithms written in the C programming
 | |
|    * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
 | |
|    * Scientific Library</a>, from which this implementation was
 | |
|    * adapted.
 | |
|    *
 | |
|    * @see QuadCurve2D#solveQuadratic(double[],double[])
 | |
|    *
 | |
|    * @param eqn an array with the coefficients of the equation.
 | |
|    *
 | |
|    * @param res an array into which the non-complex roots will be
 | |
|    * stored.  The results may be in an arbitrary order. It is safe to
 | |
|    * pass the same array object reference for both <code>eqn</code>
 | |
|    * and <code>res</code>.
 | |
|    *
 | |
|    * @return the number of non-complex solutions. A result of 0
 | |
|    * indicates that the equation has no non-complex solutions. A
 | |
|    * result of -1 indicates that the equation is constant (i.e.,
 | |
|    * always or never zero).
 | |
|    *
 | |
|    * @author Brian Gough (bjg@network-theory.com)
 | |
|    * (original C implementation in the <a href=
 | |
|    * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
 | |
|    *
 | |
|    * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|    * (adaptation to Java)
 | |
|    */
 | |
|   public static int solveCubic(double[] eqn, double[] res)
 | |
|   {
 | |
|     // Adapted from poly/solve_cubic.c in the GNU Scientific Library
 | |
|     // (GSL), revision 1.7 of 2003-07-26. For the original source, see
 | |
|     // http://www.gnu.org/software/gsl/
 | |
|     //
 | |
|     // Brian Gough, the author of that code, has granted the
 | |
|     // permission to use it in GNU Classpath under the GNU Classpath
 | |
|     // license, and has assigned the copyright to the Free Software
 | |
|     // Foundation.
 | |
|     //
 | |
|     // The Java implementation is very similar to the GSL code, but
 | |
|     // not a strict one-to-one copy. For example, GSL would sort the
 | |
|     // result.
 | |
| 
 | |
|     double a;
 | |
|     double b;
 | |
|     double c;
 | |
|     double q;
 | |
|     double r;
 | |
|     double Q;
 | |
|     double R;
 | |
|     double c3;
 | |
|     double Q3;
 | |
|     double R2;
 | |
|     double CR2;
 | |
|     double CQ3;
 | |
| 
 | |
|     // If the cubic coefficient is zero, we have a quadratic equation.
 | |
|     c3 = eqn[3];
 | |
|     if (c3 == 0)
 | |
|       return QuadCurve2D.solveQuadratic(eqn, res);
 | |
| 
 | |
|     // Divide the equation by the cubic coefficient.
 | |
|     c = eqn[0] / c3;
 | |
|     b = eqn[1] / c3;
 | |
|     a = eqn[2] / c3;
 | |
| 
 | |
|     // We now need to solve x^3 + ax^2 + bx + c = 0.
 | |
|     q = a * a - 3 * b;
 | |
|     r = 2 * a * a * a - 9 * a * b + 27 * c;
 | |
| 
 | |
|     Q = q / 9;
 | |
|     R = r / 54;
 | |
| 
 | |
|     Q3 = Q * Q * Q;
 | |
|     R2 = R * R;
 | |
| 
 | |
|     CR2 = 729 * r * r;
 | |
|     CQ3 = 2916 * q * q * q;
 | |
| 
 | |
|     if (R == 0 && Q == 0)
 | |
|       {
 | |
|         // The GNU Scientific Library would return three identical
 | |
|         // solutions in this case.
 | |
|         res[0] = -a / 3;
 | |
|         return 1;
 | |
|       }
 | |
| 
 | |
|     if (CR2 == CQ3)
 | |
|       {
 | |
|         /* this test is actually R2 == Q3, written in a form suitable
 | |
|            for exact computation with integers */
 | |
|         /* Due to finite precision some double roots may be missed, and
 | |
|            considered to be a pair of complex roots z = x +/- epsilon i
 | |
|            close to the real axis. */
 | |
|         double sqrtQ = Math.sqrt(Q);
 | |
| 
 | |
|         if (R > 0)
 | |
|           {
 | |
|             res[0] = -2 * sqrtQ - a / 3;
 | |
|             res[1] = sqrtQ - a / 3;
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             res[0] = -sqrtQ - a / 3;
 | |
|             res[1] = 2 * sqrtQ - a / 3;
 | |
|           }
 | |
|         return 2;
 | |
|       }
 | |
| 
 | |
|     if (CR2 < CQ3) /* equivalent to R2 < Q3 */
 | |
|       {
 | |
|         double sqrtQ = Math.sqrt(Q);
 | |
|         double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
 | |
|         double theta = Math.acos(R / sqrtQ3);
 | |
|         double norm = -2 * sqrtQ;
 | |
|         res[0] = norm * Math.cos(theta / 3) - a / 3;
 | |
|         res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a / 3;
 | |
|         res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a / 3;
 | |
| 
 | |
|         // The GNU Scientific Library sorts the results. We don't.
 | |
|         return 3;
 | |
|       }
 | |
| 
 | |
|     double sgnR = (R >= 0 ? 1 : -1);
 | |
|     double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
 | |
|     double B = Q / A;
 | |
|     res[0] = A + B - a / 3;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines whether a position lies inside the area bounded
 | |
|    * by the curve and the straight line connecting its end points.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
 | |
|    * alt="A drawing of the area spanned by the curve" />
 | |
|    *
 | |
|    * <p>The above drawing illustrates in which area points are
 | |
|    * considered “inside” a CubicCurve2D.
 | |
|    */
 | |
|   public boolean contains(double x, double y)
 | |
|   {
 | |
|     if (! getBounds2D().contains(x, y))
 | |
|       return false;
 | |
| 
 | |
|     return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines whether a point lies inside the area bounded
 | |
|    * by the curve and the straight line connecting its end points.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
 | |
|    * alt="A drawing of the area spanned by the curve" />
 | |
|    *
 | |
|    * <p>The above drawing illustrates in which area points are
 | |
|    * considered “inside” a CubicCurve2D.
 | |
|    */
 | |
|   public boolean contains(Point2D p)
 | |
|   {
 | |
|     return contains(p.getX(), p.getY());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines whether any part of a rectangle is inside the area bounded
 | |
|    * by the curve and the straight line connecting its end points.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
 | |
|    * alt="A drawing of the area spanned by the curve" />
 | |
|    *
 | |
|    * <p>The above drawing illustrates in which area points are
 | |
|    * considered “inside” in a CubicCurve2D.
 | |
|    * @see #contains(double, double)
 | |
|    */
 | |
|   public boolean intersects(double x, double y, double w, double h)
 | |
|   {
 | |
|     if (! getBounds2D().contains(x, y, w, h))
 | |
|       return false;
 | |
| 
 | |
|     /* Does any edge intersect? */
 | |
|     if (getAxisIntersections(x, y, true, w) != 0 /* top */
 | |
|         || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
 | |
|         || getAxisIntersections(x + w, y, false, h) != 0 /* right */
 | |
|         || getAxisIntersections(x, y, false, h) != 0) /* left */
 | |
|       return true;
 | |
| 
 | |
|     /* No intersections, is any point inside? */
 | |
|     if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines whether any part of a Rectangle2D is inside the area bounded
 | |
|    * by the curve and the straight line connecting its end points.
 | |
|    * @see #intersects(double, double, double, double)
 | |
|    */
 | |
|   public boolean intersects(Rectangle2D r)
 | |
|   {
 | |
|     return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determine whether a rectangle is entirely inside the area that is bounded
 | |
|    * by the curve and the straight line connecting its end points.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
 | |
|    * alt="A drawing of the area spanned by the curve" />
 | |
|    *
 | |
|    * <p>The above drawing illustrates in which area points are
 | |
|    * considered “inside” a CubicCurve2D.
 | |
|    * @see #contains(double, double)
 | |
|    */
 | |
|   public boolean contains(double x, double y, double w, double h)
 | |
|   {
 | |
|     if (! getBounds2D().intersects(x, y, w, h))
 | |
|       return false;
 | |
| 
 | |
|     /* Does any edge intersect? */
 | |
|     if (getAxisIntersections(x, y, true, w) != 0 /* top */
 | |
|         || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
 | |
|         || getAxisIntersections(x + w, y, false, h) != 0 /* right */
 | |
|         || getAxisIntersections(x, y, false, h) != 0) /* left */
 | |
|       return false;
 | |
| 
 | |
|     /* No intersections, is any point inside? */
 | |
|     if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determine whether a Rectangle2D is entirely inside the area that is
 | |
|    * bounded by the curve and the straight line connecting its end points.
 | |
|    *
 | |
|    * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
 | |
|    * alt="A drawing of the area spanned by the curve" />
 | |
|    *
 | |
|    * <p>The above drawing illustrates in which area points are
 | |
|    * considered “inside” a CubicCurve2D.
 | |
|    * @see #contains(double, double)
 | |
|    */
 | |
|   public boolean contains(Rectangle2D r)
 | |
|   {
 | |
|     return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Determines the smallest rectangle that encloses the
 | |
|    * curve’s start, end and control points.
 | |
|    */
 | |
|   public Rectangle getBounds()
 | |
|   {
 | |
|     return getBounds2D().getBounds();
 | |
|   }
 | |
| 
 | |
|   public PathIterator getPathIterator(final AffineTransform at)
 | |
|   {
 | |
|     return new PathIterator()
 | |
|       {
 | |
|         /** Current coordinate. */
 | |
|         private int current = 0;
 | |
| 
 | |
|         public int getWindingRule()
 | |
|         {
 | |
|           return WIND_NON_ZERO;
 | |
|         }
 | |
| 
 | |
|         public boolean isDone()
 | |
|         {
 | |
|           return current >= 2;
 | |
|         }
 | |
| 
 | |
|         public void next()
 | |
|         {
 | |
|           current++;
 | |
|         }
 | |
| 
 | |
|         public int currentSegment(float[] coords)
 | |
|         {
 | |
|           int result;
 | |
|           switch (current)
 | |
|             {
 | |
|             case 0:
 | |
|               coords[0] = (float) getX1();
 | |
|               coords[1] = (float) getY1();
 | |
|               result = SEG_MOVETO;
 | |
|               break;
 | |
|             case 1:
 | |
|               coords[0] = (float) getCtrlX1();
 | |
|               coords[1] = (float) getCtrlY1();
 | |
|               coords[2] = (float) getCtrlX2();
 | |
|               coords[3] = (float) getCtrlY2();
 | |
|               coords[4] = (float) getX2();
 | |
|               coords[5] = (float) getY2();
 | |
|               result = SEG_CUBICTO;
 | |
|               break;
 | |
|             default:
 | |
|               throw new NoSuchElementException("cubic iterator out of bounds");
 | |
|             }
 | |
|           if (at != null)
 | |
|             at.transform(coords, 0, coords, 0, 3);
 | |
|           return result;
 | |
|         }
 | |
| 
 | |
|         public int currentSegment(double[] coords)
 | |
|         {
 | |
|           int result;
 | |
|           switch (current)
 | |
|             {
 | |
|             case 0:
 | |
|               coords[0] = getX1();
 | |
|               coords[1] = getY1();
 | |
|               result = SEG_MOVETO;
 | |
|               break;
 | |
|             case 1:
 | |
|               coords[0] = getCtrlX1();
 | |
|               coords[1] = getCtrlY1();
 | |
|               coords[2] = getCtrlX2();
 | |
|               coords[3] = getCtrlY2();
 | |
|               coords[4] = getX2();
 | |
|               coords[5] = getY2();
 | |
|               result = SEG_CUBICTO;
 | |
|               break;
 | |
|             default:
 | |
|               throw new NoSuchElementException("cubic iterator out of bounds");
 | |
|             }
 | |
|           if (at != null)
 | |
|             at.transform(coords, 0, coords, 0, 3);
 | |
|           return result;
 | |
|         }
 | |
|       };
 | |
|   }
 | |
| 
 | |
|   public PathIterator getPathIterator(AffineTransform at, double flatness)
 | |
|   {
 | |
|     return new FlatteningPathIterator(getPathIterator(at), flatness);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new curve with the same contents as this one.
 | |
|    *
 | |
|    * @return the clone.
 | |
|    */
 | |
|   public Object clone()
 | |
|   {
 | |
|     try
 | |
|       {
 | |
|         return super.clone();
 | |
|       }
 | |
|     catch (CloneNotSupportedException e)
 | |
|       {
 | |
|         throw (Error) new InternalError().initCause(e); // Impossible
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Helper method used by contains() and intersects() methods, that
 | |
|    * returns the number of curve/line intersections on a given axis
 | |
|    * extending from a certain point.
 | |
|    *
 | |
|    * @param x x coordinate of the origin point
 | |
|    * @param y y coordinate of the origin point
 | |
|    * @param useYaxis axis used, if true the positive Y axis is used,
 | |
|    * false uses the positive X axis.
 | |
|    *
 | |
|    * This is an implementation of the line-crossings algorithm,
 | |
|    * Detailed in an article on Eric Haines' page:
 | |
|    * http://www.acm.org/tog/editors/erich/ptinpoly/
 | |
|    *
 | |
|    * A special-case not adressed in this code is self-intersections
 | |
|    * of the curve, e.g. if the axis intersects the self-itersection,
 | |
|    * the degenerate roots of the polynomial will erroneously count as
 | |
|    * a single intersection of the curve, and not two.
 | |
|    */
 | |
|   private int getAxisIntersections(double x, double y, boolean useYaxis,
 | |
|                                    double distance)
 | |
|   {
 | |
|     int nCrossings = 0;
 | |
|     double a0;
 | |
|     double a1;
 | |
|     double a2;
 | |
|     double a3;
 | |
|     double b0;
 | |
|     double b1;
 | |
|     double b2;
 | |
|     double b3;
 | |
|     double[] r = new double[4];
 | |
|     int nRoots;
 | |
| 
 | |
|     a0 = a3 = 0.0;
 | |
| 
 | |
|     if (useYaxis)
 | |
|       {
 | |
|         a0 = getY1() - y;
 | |
|         a1 = getCtrlY1() - y;
 | |
|         a2 = getCtrlY2() - y;
 | |
|         a3 = getY2() - y;
 | |
|         b0 = getX1() - x;
 | |
|         b1 = getCtrlX1() - x;
 | |
|         b2 = getCtrlX2() - x;
 | |
|         b3 = getX2() - x;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         a0 = getX1() - x;
 | |
|         a1 = getCtrlX1() - x;
 | |
|         a2 = getCtrlX2() - x;
 | |
|         a3 = getX2() - x;
 | |
|         b0 = getY1() - y;
 | |
|         b1 = getCtrlY1() - y;
 | |
|         b2 = getCtrlY2() - y;
 | |
|         b3 = getY2() - y;
 | |
|       }
 | |
| 
 | |
|     /* If the axis intersects a start/endpoint, shift it up by some small
 | |
|        amount to guarantee the line is 'inside'
 | |
|        If this is not done, bad behaviour may result for points on that axis.*/
 | |
|     if (a0 == 0.0 || a3 == 0.0)
 | |
|       {
 | |
|         double small = getFlatness() * EPSILON;
 | |
|         if (a0 == 0.0)
 | |
|           a0 -= small;
 | |
|         if (a3 == 0.0)
 | |
|           a3 -= small;
 | |
|       }
 | |
| 
 | |
|     if (useYaxis)
 | |
|       {
 | |
|         if (Line2D.linesIntersect(b0, a0, b3, a3, EPSILON, 0.0, distance, 0.0))
 | |
|           nCrossings++;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         if (Line2D.linesIntersect(a0, b0, a3, b3, 0.0, EPSILON, 0.0, distance))
 | |
|           nCrossings++;
 | |
|       }
 | |
| 
 | |
|     r[0] = a0;
 | |
|     r[1] = 3 * (a1 - a0);
 | |
|     r[2] = 3 * (a2 + a0 - 2 * a1);
 | |
|     r[3] = a3 - 3 * a2 + 3 * a1 - a0;
 | |
| 
 | |
|     if ((nRoots = solveCubic(r)) != 0)
 | |
|       for (int i = 0; i < nRoots; i++)
 | |
|         {
 | |
|           double t = r[i];
 | |
|           if (t >= 0.0 && t <= 1.0)
 | |
|             {
 | |
|               double crossing = -(t * t * t) * (b0 - 3 * b1 + 3 * b2 - b3)
 | |
|                                 + 3 * t * t * (b0 - 2 * b1 + b2)
 | |
|                                 + 3 * t * (b1 - b0) + b0;
 | |
|               if (crossing > 0.0 && crossing <= distance)
 | |
|                 nCrossings++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     return (nCrossings);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A two-dimensional curve that is parameterized with a cubic
 | |
|    * function and stores coordinate values in double-precision
 | |
|    * floating-point format.
 | |
|    *
 | |
|    * @see CubicCurve2D.Float
 | |
|    *
 | |
|    * @author Eric Blake (ebb9@email.byu.edu)
 | |
|    * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|    */
 | |
|   public static class Double extends CubicCurve2D
 | |
|   {
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s start point.
 | |
|      */
 | |
|     public double x1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s start point.
 | |
|      */
 | |
|     public double y1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s first control point.
 | |
|      */
 | |
|     public double ctrlx1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s first control point.
 | |
|      */
 | |
|     public double ctrly1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s second control point.
 | |
|      */
 | |
|     public double ctrlx2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s second control point.
 | |
|      */
 | |
|     public double ctrly2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s end point.
 | |
|      */
 | |
|     public double x2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s end point.
 | |
|      */
 | |
|     public double y2;
 | |
| 
 | |
|     /**
 | |
|      * Constructs a new CubicCurve2D that stores its coordinate values
 | |
|      * in double-precision floating-point format. All points are
 | |
|      * initially at position (0, 0).
 | |
|      */
 | |
|     public Double()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Constructs a new CubicCurve2D that stores its coordinate values
 | |
|      * in double-precision floating-point format, specifying the
 | |
|      * initial position of each point.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|      * alt="A drawing of a CubicCurve2D" />
 | |
|      *
 | |
|      * @param x1 the <i>x</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      *
 | |
|      * @param y1 the <i>y</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      *
 | |
|      * @param cx1 the <i>x</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cy1 the <i>y</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cx2 the <i>x</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cy2 the <i>y</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      *
 | |
|      * @param x2 the <i>x</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      *
 | |
|      * @param y2 the <i>y</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public Double(double x1, double y1, double cx1, double cy1, double cx2,
 | |
|                   double cy2, double x2, double y2)
 | |
|     {
 | |
|       this.x1 = x1;
 | |
|       this.y1 = y1;
 | |
|       ctrlx1 = cx1;
 | |
|       ctrly1 = cy1;
 | |
|       ctrlx2 = cx2;
 | |
|       ctrly2 = cy2;
 | |
|       this.x2 = x2;
 | |
|       this.y2 = y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      */
 | |
|     public double getX1()
 | |
|     {
 | |
|       return x1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      */
 | |
|     public double getY1()
 | |
|     {
 | |
|       return y1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s start point.
 | |
|      */
 | |
|     public Point2D getP1()
 | |
|     {
 | |
|       return new Point2D.Double(x1, y1);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlX1()
 | |
|     {
 | |
|       return ctrlx1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlY1()
 | |
|     {
 | |
|       return ctrly1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s first control point.
 | |
|      */
 | |
|     public Point2D getCtrlP1()
 | |
|     {
 | |
|       return new Point2D.Double(ctrlx1, ctrly1);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlX2()
 | |
|     {
 | |
|       return ctrlx2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlY2()
 | |
|     {
 | |
|       return ctrly2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s second control point.
 | |
|      */
 | |
|     public Point2D getCtrlP2()
 | |
|     {
 | |
|       return new Point2D.Double(ctrlx2, ctrly2);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public double getX2()
 | |
|     {
 | |
|       return x2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public double getY2()
 | |
|     {
 | |
|       return y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s end point.
 | |
|      */
 | |
|     public Point2D getP2()
 | |
|     {
 | |
|       return new Point2D.Double(x2, y2);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Changes the curve geometry, separately specifying each coordinate
 | |
|      * value.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|      * alt="A drawing of a CubicCurve2D" />
 | |
|      *
 | |
|      * @param x1 the <i>x</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param y1 the <i>y</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param cx1 the <i>x</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cy1 the <i>y</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cx2 the <i>x</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param cy2 the <i>y</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param x2 the <i>x</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      *
 | |
|      * @param y2 the <i>y</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      */
 | |
|     public void setCurve(double x1, double y1, double cx1, double cy1,
 | |
|                          double cx2, double cy2, double x2, double y2)
 | |
|     {
 | |
|       this.x1 = x1;
 | |
|       this.y1 = y1;
 | |
|       ctrlx1 = cx1;
 | |
|       ctrly1 = cy1;
 | |
|       ctrlx2 = cx2;
 | |
|       ctrly2 = cy2;
 | |
|       this.x2 = x2;
 | |
|       this.y2 = y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines the smallest rectangle that encloses the
 | |
|      * curve’s start, end and control points. As the
 | |
|      * illustration below shows, the invisible control points may cause
 | |
|      * the bounds to be much larger than the area that is actually
 | |
|      * covered by the curve.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
 | |
|      * alt="An illustration of the bounds of a CubicCurve2D" />
 | |
|      */
 | |
|     public Rectangle2D getBounds2D()
 | |
|     {
 | |
|       double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
 | |
|       double ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
 | |
|       double nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
 | |
|       double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
 | |
|       return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A two-dimensional curve that is parameterized with a cubic
 | |
|    * function and stores coordinate values in single-precision
 | |
|    * floating-point format.
 | |
|    *
 | |
|    * @see CubicCurve2D.Float
 | |
|    *
 | |
|    * @author Eric Blake (ebb9@email.byu.edu)
 | |
|    * @author Sascha Brawer (brawer@dandelis.ch)
 | |
|    */
 | |
|   public static class Float extends CubicCurve2D
 | |
|   {
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s start point.
 | |
|      */
 | |
|     public float x1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s start point.
 | |
|      */
 | |
|     public float y1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s first control point.
 | |
|      */
 | |
|     public float ctrlx1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s first control point.
 | |
|      */
 | |
|     public float ctrly1;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s second control point.
 | |
|      */
 | |
|     public float ctrlx2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s second control point.
 | |
|      */
 | |
|     public float ctrly2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>x</i> coordinate of the curve’s end point.
 | |
|      */
 | |
|     public float x2;
 | |
| 
 | |
|     /**
 | |
|      * The <i>y</i> coordinate of the curve’s end point.
 | |
|      */
 | |
|     public float y2;
 | |
| 
 | |
|     /**
 | |
|      * Constructs a new CubicCurve2D that stores its coordinate values
 | |
|      * in single-precision floating-point format. All points are
 | |
|      * initially at position (0, 0).
 | |
|      */
 | |
|     public Float()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Constructs a new CubicCurve2D that stores its coordinate values
 | |
|      * in single-precision floating-point format, specifying the
 | |
|      * initial position of each point.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|      * alt="A drawing of a CubicCurve2D" />
 | |
|      *
 | |
|      * @param x1 the <i>x</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      *
 | |
|      * @param y1 the <i>y</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      *
 | |
|      * @param cx1 the <i>x</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cy1 the <i>y</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cx2 the <i>x</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      *
 | |
|      * @param cy2 the <i>y</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      *
 | |
|      * @param x2 the <i>x</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      *
 | |
|      * @param y2 the <i>y</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public Float(float x1, float y1, float cx1, float cy1, float cx2,
 | |
|                  float cy2, float x2, float y2)
 | |
|     {
 | |
|       this.x1 = x1;
 | |
|       this.y1 = y1;
 | |
|       ctrlx1 = cx1;
 | |
|       ctrly1 = cy1;
 | |
|       ctrlx2 = cx2;
 | |
|       ctrly2 = cy2;
 | |
|       this.x2 = x2;
 | |
|       this.y2 = y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      */
 | |
|     public double getX1()
 | |
|     {
 | |
|       return x1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s start
 | |
|      * point.
 | |
|      */
 | |
|     public double getY1()
 | |
|     {
 | |
|       return y1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s start point.
 | |
|      */
 | |
|     public Point2D getP1()
 | |
|     {
 | |
|       return new Point2D.Float(x1, y1);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlX1()
 | |
|     {
 | |
|       return ctrlx1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s first
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlY1()
 | |
|     {
 | |
|       return ctrly1;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s first control point.
 | |
|      */
 | |
|     public Point2D getCtrlP1()
 | |
|     {
 | |
|       return new Point2D.Float(ctrlx1, ctrly1);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>s</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlX2()
 | |
|     {
 | |
|       return ctrlx2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s second
 | |
|      * control point.
 | |
|      */
 | |
|     public double getCtrlY2()
 | |
|     {
 | |
|       return ctrly2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s second control point.
 | |
|      */
 | |
|     public Point2D getCtrlP2()
 | |
|     {
 | |
|       return new Point2D.Float(ctrlx2, ctrly2);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>x</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public double getX2()
 | |
|     {
 | |
|       return x2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the <i>y</i> coordinate of the curve’s end
 | |
|      * point.
 | |
|      */
 | |
|     public double getY2()
 | |
|     {
 | |
|       return y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the curve’s end point.
 | |
|      */
 | |
|     public Point2D getP2()
 | |
|     {
 | |
|       return new Point2D.Float(x2, y2);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Changes the curve geometry, separately specifying each coordinate
 | |
|      * value as a double-precision floating-point number.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|      * alt="A drawing of a CubicCurve2D" />
 | |
|      *
 | |
|      * @param x1 the <i>x</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param y1 the <i>y</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param cx1 the <i>x</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cy1 the <i>y</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cx2 the <i>x</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param cy2 the <i>y</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param x2 the <i>x</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      *
 | |
|      * @param y2 the <i>y</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      */
 | |
|     public void setCurve(double x1, double y1, double cx1, double cy1,
 | |
|                          double cx2, double cy2, double x2, double y2)
 | |
|     {
 | |
|       this.x1 = (float) x1;
 | |
|       this.y1 = (float) y1;
 | |
|       ctrlx1 = (float) cx1;
 | |
|       ctrly1 = (float) cy1;
 | |
|       ctrlx2 = (float) cx2;
 | |
|       ctrly2 = (float) cy2;
 | |
|       this.x2 = (float) x2;
 | |
|       this.y2 = (float) y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Changes the curve geometry, separately specifying each coordinate
 | |
|      * value as a single-precision floating-point number.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
 | |
|      * alt="A drawing of a CubicCurve2D" />
 | |
|      *
 | |
|      * @param x1 the <i>x</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param y1 the <i>y</i> coordinate of the curve’s new start
 | |
|      * point.
 | |
|      *
 | |
|      * @param cx1 the <i>x</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cy1 the <i>y</i> coordinate of the curve’s new
 | |
|      * first control point.
 | |
|      *
 | |
|      * @param cx2 the <i>x</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param cy2 the <i>y</i> coordinate of the curve’s new
 | |
|      * second control point.
 | |
|      *
 | |
|      * @param x2 the <i>x</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      *
 | |
|      * @param y2 the <i>y</i> coordinate of the curve’s new end
 | |
|      * point.
 | |
|      */
 | |
|     public void setCurve(float x1, float y1, float cx1, float cy1, float cx2,
 | |
|                          float cy2, float x2, float y2)
 | |
|     {
 | |
|       this.x1 = x1;
 | |
|       this.y1 = y1;
 | |
|       ctrlx1 = cx1;
 | |
|       ctrly1 = cy1;
 | |
|       ctrlx2 = cx2;
 | |
|       ctrly2 = cy2;
 | |
|       this.x2 = x2;
 | |
|       this.y2 = y2;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Determines the smallest rectangle that encloses the
 | |
|      * curve’s start, end and control points. As the
 | |
|      * illustration below shows, the invisible control points may cause
 | |
|      * the bounds to be much larger than the area that is actually
 | |
|      * covered by the curve.
 | |
|      *
 | |
|      * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
 | |
|      * alt="An illustration of the bounds of a CubicCurve2D" />
 | |
|      */
 | |
|     public Rectangle2D getBounds2D()
 | |
|     {
 | |
|       float nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
 | |
|       float ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
 | |
|       float nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
 | |
|       float ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
 | |
|       return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
 | |
|     }
 | |
|   }
 | |
| }
 |