mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			903 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			903 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* BasicStroke.java --
 | |
|    Copyright (C) 2002, 2003, 2004, 2005, 2006  Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.awt;
 | |
| 
 | |
| import gnu.java.awt.java2d.CubicSegment;
 | |
| import gnu.java.awt.java2d.LineSegment;
 | |
| import gnu.java.awt.java2d.QuadSegment;
 | |
| import gnu.java.awt.java2d.Segment;
 | |
| 
 | |
| import java.awt.geom.FlatteningPathIterator;
 | |
| import java.awt.geom.GeneralPath;
 | |
| import java.awt.geom.PathIterator;
 | |
| import java.awt.geom.Point2D;
 | |
| import java.util.Arrays;
 | |
| 
 | |
| /**
 | |
|  * A general purpose {@link Stroke} implementation that can represent a wide
 | |
|  * variety of line styles for use with subclasses of {@link Graphics2D}.
 | |
|  * <p>
 | |
|  * The line cap and join styles can be set using the options illustrated
 | |
|  * here:
 | |
|  * <p>
 | |
|  * <img src="doc-files/capjoin.png" width="350" height="180"
 | |
|  * alt="Illustration of line cap and join styles" />
 | |
|  * <p>
 | |
|  * A dash array can be used to specify lines with alternating opaque and
 | |
|  * transparent sections.
 | |
|  */
 | |
| public class BasicStroke implements Stroke
 | |
| {
 | |
|   /**
 | |
|    * Indicates a mitered line join style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int JOIN_MITER = 0;
 | |
| 
 | |
|   /**
 | |
|    * Indicates a rounded line join style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int JOIN_ROUND = 1;
 | |
| 
 | |
|   /**
 | |
|    * Indicates a bevelled line join style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int JOIN_BEVEL = 2;
 | |
| 
 | |
|   /**
 | |
|    * Indicates a flat line cap style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int CAP_BUTT = 0;
 | |
| 
 | |
|   /**
 | |
|    * Indicates a rounded line cap style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int CAP_ROUND = 1;
 | |
| 
 | |
|   /**
 | |
|    * Indicates a square line cap style. See the class overview for an
 | |
|    * illustration.
 | |
|    */
 | |
|   public static final int CAP_SQUARE = 2;
 | |
| 
 | |
|   /** The stroke width. */
 | |
|   private final float width;
 | |
| 
 | |
|   /** The line cap style. */
 | |
|   private final int cap;
 | |
| 
 | |
|   /** The line join style. */
 | |
|   private final int join;
 | |
| 
 | |
|   /** The miter limit. */
 | |
|   private final float limit;
 | |
| 
 | |
|   /** The dash array. */
 | |
|   private final float[] dash;
 | |
| 
 | |
|   /** The dash phase. */
 | |
|   private final float phase;
 | |
| 
 | |
|   // The inner and outer paths of the stroke
 | |
|   private Segment start, end;
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>BasicStroke</code> instance with the given attributes.
 | |
|    *
 | |
|    * @param width  the line width (>= 0.0f).
 | |
|    * @param cap  the line cap style (one of {@link #CAP_BUTT},
 | |
|    *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
 | |
|    * @param join  the line join style (one of {@link #JOIN_ROUND},
 | |
|    *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
 | |
|    * @param miterlimit  the limit to trim the miter join. The miterlimit must be
 | |
|    * greater than or equal to 1.0f.
 | |
|    * @param dash The array representing the dashing pattern. There must be at
 | |
|    * least one non-zero entry.
 | |
|    * @param dashPhase is negative and dash is not null.
 | |
|    *
 | |
|    * @throws IllegalArgumentException If one input parameter doesn't meet
 | |
|    * its needs.
 | |
|    */
 | |
|   public BasicStroke(float width, int cap, int join, float miterlimit,
 | |
|                      float[] dash, float dashPhase)
 | |
|   {
 | |
|     if (width < 0.0f )
 | |
|       throw new IllegalArgumentException("width " + width + " < 0");
 | |
|     else if (cap < CAP_BUTT || cap > CAP_SQUARE)
 | |
|       throw new IllegalArgumentException("cap " + cap + " out of range ["
 | |
|                                          + CAP_BUTT + ".." + CAP_SQUARE + "]");
 | |
|     else if (miterlimit < 1.0f && join == JOIN_MITER)
 | |
|       throw new IllegalArgumentException("miterlimit " + miterlimit
 | |
|                                          + " < 1.0f while join == JOIN_MITER");
 | |
|     else if (join < JOIN_MITER || join > JOIN_BEVEL)
 | |
|       throw new IllegalArgumentException("join " + join + " out of range ["
 | |
|                                          + JOIN_MITER + ".." + JOIN_BEVEL
 | |
|                                          + "]");
 | |
|     else if (dashPhase < 0.0f && dash != null)
 | |
|       throw new IllegalArgumentException("dashPhase " + dashPhase
 | |
|                                          + " < 0.0f while dash != null");
 | |
|     else if (dash != null)
 | |
|       if (dash.length == 0)
 | |
|         throw new IllegalArgumentException("dash.length is 0");
 | |
|       else
 | |
|         {
 | |
|           boolean allZero = true;
 | |
| 
 | |
|           for ( int i = 0; i < dash.length; ++i)
 | |
|             {
 | |
|               if (dash[i] != 0.0f)
 | |
|                 {
 | |
|                   allZero = false;
 | |
|                   break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|           if (allZero)
 | |
|             throw new IllegalArgumentException("all dashes are 0.0f");
 | |
|         }
 | |
| 
 | |
|     this.width = width;
 | |
|     this.cap = cap;
 | |
|     this.join = join;
 | |
|     limit = miterlimit;
 | |
|     this.dash = dash == null ? null : (float[]) dash.clone();
 | |
|     phase = dashPhase;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>BasicStroke</code> instance with the given attributes.
 | |
|    *
 | |
|    * @param width  the line width (>= 0.0f).
 | |
|    * @param cap  the line cap style (one of {@link #CAP_BUTT},
 | |
|    *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
 | |
|    * @param join  the line join style (one of {@link #JOIN_ROUND},
 | |
|    *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
 | |
|    * @param miterlimit the limit to trim the miter join. The miterlimit must be
 | |
|    * greater than or equal to 1.0f.
 | |
|    *
 | |
|    * @throws IllegalArgumentException If one input parameter doesn't meet
 | |
|    * its needs.
 | |
|    */
 | |
|   public BasicStroke(float width, int cap, int join, float miterlimit)
 | |
|   {
 | |
|     this(width, cap, join, miterlimit, null, 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>BasicStroke</code> instance with the given attributes.
 | |
|    * The miter limit defaults to <code>10.0</code>.
 | |
|    *
 | |
|    * @param width  the line width (>= 0.0f).
 | |
|    * @param cap  the line cap style (one of {@link #CAP_BUTT},
 | |
|    *             {@link #CAP_ROUND} or {@link #CAP_SQUARE}).
 | |
|    * @param join  the line join style (one of {@link #JOIN_ROUND},
 | |
|    *              {@link #JOIN_BEVEL}, or {@link #JOIN_MITER}).
 | |
|    *
 | |
|    * @throws IllegalArgumentException If one input parameter doesn't meet
 | |
|    * its needs.
 | |
|    */
 | |
|   public BasicStroke(float width, int cap, int join)
 | |
|   {
 | |
|     this(width, cap, join, 10, null, 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>BasicStroke</code> instance with the given line
 | |
|    * width.  The default values are:
 | |
|    * <ul>
 | |
|    * <li>line cap style: {@link #CAP_SQUARE};</li>
 | |
|    * <li>line join style: {@link #JOIN_MITER};</li>
 | |
|    * <li>miter limit: <code>10.0f</code>.
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param width  the line width (>= 0.0f).
 | |
|    *
 | |
|    * @throws IllegalArgumentException If <code>width</code> is negative.
 | |
|    */
 | |
|   public BasicStroke(float width)
 | |
|   {
 | |
|     this(width, CAP_SQUARE, JOIN_MITER, 10, null, 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new <code>BasicStroke</code> instance.  The default values are:
 | |
|    * <ul>
 | |
|    * <li>line width: <code>1.0f</code>;</li>
 | |
|    * <li>line cap style: {@link #CAP_SQUARE};</li>
 | |
|    * <li>line join style: {@link #JOIN_MITER};</li>
 | |
|    * <li>miter limit: <code>10.0f</code>.
 | |
|    * </ul>
 | |
|    */
 | |
|   public BasicStroke()
 | |
|   {
 | |
|     this(1, CAP_SQUARE, JOIN_MITER, 10, null, 0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a shape representing the stroked outline of the given shape.
 | |
|    * THIS METHOD IS NOT YET IMPLEMENTED.
 | |
|    *
 | |
|    * @param s  the shape.
 | |
|    */
 | |
|   public Shape createStrokedShape(Shape s)
 | |
|   {
 | |
|     PathIterator pi = s.getPathIterator(null);
 | |
| 
 | |
|     if( dash == null )
 | |
|       return solidStroke( pi );
 | |
| 
 | |
|     return dashedStroke( pi );
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the line width.
 | |
|    *
 | |
|    * @return The line width.
 | |
|    */
 | |
|   public float getLineWidth()
 | |
|   {
 | |
|     return width;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a code indicating the line cap style (one of {@link #CAP_BUTT},
 | |
|    * {@link #CAP_ROUND}, {@link #CAP_SQUARE}).
 | |
|    *
 | |
|    * @return A code indicating the line cap style.
 | |
|    */
 | |
|   public int getEndCap()
 | |
|   {
 | |
|     return cap;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a code indicating the line join style (one of {@link #JOIN_BEVEL},
 | |
|    * {@link #JOIN_MITER} or {@link #JOIN_ROUND}).
 | |
|    *
 | |
|    * @return A code indicating the line join style.
 | |
|    */
 | |
|   public int getLineJoin()
 | |
|   {
 | |
|     return join;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the miter limit.
 | |
|    *
 | |
|    * @return The miter limit.
 | |
|    */
 | |
|   public float getMiterLimit()
 | |
|   {
 | |
|     return limit;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the dash array, which defines the length of alternate opaque and
 | |
|    * transparent sections in lines drawn with this stroke.  If
 | |
|    * <code>null</code>, a continuous line will be drawn.
 | |
|    *
 | |
|    * @return The dash array (possibly <code>null</code>).
 | |
|    */
 | |
|   public float[] getDashArray()
 | |
|   {
 | |
|     return dash;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the dash phase for the stroke.  This is the offset from the start
 | |
|    * of a path at which the pattern defined by {@link #getDashArray()} is
 | |
|    * rendered.
 | |
|    *
 | |
|    * @return The dash phase.
 | |
|    */
 | |
|   public float getDashPhase()
 | |
|   {
 | |
|     return phase;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the hash code for this object. The hash is calculated by
 | |
|    * xoring the hash, cap, join, limit, dash array and phase values
 | |
|    * (converted to <code>int</code> first with
 | |
|    * <code>Float.floatToIntBits()</code> if the value is a
 | |
|    * <code>float</code>).
 | |
|    *
 | |
|    * @return The hash code.
 | |
|    */
 | |
|   public int hashCode()
 | |
|   {
 | |
|     int hash = Float.floatToIntBits(width);
 | |
|     hash ^= cap;
 | |
|     hash ^= join;
 | |
|     hash ^= Float.floatToIntBits(limit);
 | |
| 
 | |
|     if (dash != null)
 | |
|       for (int i = 0; i < dash.length; i++)
 | |
|         hash ^=  Float.floatToIntBits(dash[i]);
 | |
| 
 | |
|     hash ^= Float.floatToIntBits(phase);
 | |
| 
 | |
|     return hash;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compares this <code>BasicStroke</code> for equality with an arbitrary
 | |
|    * object.  This method returns <code>true</code> if and only if:
 | |
|    * <ul>
 | |
|    * <li><code>o</code> is an instanceof <code>BasicStroke</code>;</li>
 | |
|    * <li>this object has the same width, line cap style, line join style,
 | |
|    * miter limit, dash array and dash phase as <code>o</code>.</li>
 | |
|    * </ul>
 | |
|    *
 | |
|    * @param o  the object (<code>null</code> permitted).
 | |
|    *
 | |
|    * @return <code>true</code> if this stroke is equal to <code>o</code> and
 | |
|    *         <code>false</code> otherwise.
 | |
|    */
 | |
|   public boolean equals(Object o)
 | |
|   {
 | |
|     if (! (o instanceof BasicStroke))
 | |
|       return false;
 | |
|     BasicStroke s = (BasicStroke) o;
 | |
|     return width == s.width && cap == s.cap && join == s.join
 | |
|       && limit == s.limit && Arrays.equals(dash, s.dash) && phase == s.phase;
 | |
|   }
 | |
| 
 | |
|   private Shape solidStroke(PathIterator pi)
 | |
|   {
 | |
|     double[] coords = new double[6];
 | |
|     double x, y, x0, y0;
 | |
|     boolean pathOpen = false;
 | |
|     GeneralPath output = new GeneralPath( );
 | |
|     Segment[] p;
 | |
|     x = x0 = y = y0 = 0;
 | |
| 
 | |
|     while( !pi.isDone() )
 | |
|       {
 | |
|         switch( pi.currentSegment(coords) )
 | |
|           {
 | |
|           case PathIterator.SEG_MOVETO:
 | |
|             x0 = x = coords[0];
 | |
|             y0 = y = coords[1];
 | |
|             if( pathOpen )
 | |
|               {
 | |
|                 capEnds();
 | |
|                 convertPath(output, start);
 | |
|                 start = end = null;
 | |
|                 pathOpen = false;
 | |
|               }
 | |
|             break;
 | |
| 
 | |
|           case PathIterator.SEG_LINETO:
 | |
|             p = (new LineSegment(x, y, coords[0], coords[1])).
 | |
|               getDisplacedSegments(width/2.0);
 | |
|             if( !pathOpen )
 | |
|               {
 | |
|                 start = p[0];
 | |
|                 end = p[1];
 | |
|                 pathOpen = true;
 | |
|               }
 | |
|             else
 | |
|               addSegments(p);
 | |
| 
 | |
|             x = coords[0];
 | |
|             y = coords[1];
 | |
|             break;
 | |
| 
 | |
|           case PathIterator.SEG_QUADTO:
 | |
|             p = (new QuadSegment(x, y, coords[0], coords[1], coords[2],
 | |
|                                  coords[3])).getDisplacedSegments(width/2.0);
 | |
|             if( !pathOpen )
 | |
|               {
 | |
|                 start = p[0];
 | |
|                 end = p[1];
 | |
|                 pathOpen = true;
 | |
|               }
 | |
|             else
 | |
|               addSegments(p);
 | |
| 
 | |
|             x = coords[2];
 | |
|             y = coords[3];
 | |
|             break;
 | |
| 
 | |
|           case PathIterator.SEG_CUBICTO:
 | |
|             p = new CubicSegment(x, y, coords[0], coords[1],
 | |
|                                  coords[2], coords[3],
 | |
|                                  coords[4], coords[5]).getDisplacedSegments(width/2.0);
 | |
|             if( !pathOpen )
 | |
|               {
 | |
|                 start = p[0];
 | |
|                 end = p[1];
 | |
|                 pathOpen = true;
 | |
|               }
 | |
|             else
 | |
|               addSegments(p);
 | |
| 
 | |
|             x = coords[4];
 | |
|             y = coords[5];
 | |
|             break;
 | |
| 
 | |
|           case PathIterator.SEG_CLOSE:
 | |
|             if (x == x0 && y == y0)
 | |
|               {
 | |
|                 joinSegments(new Segment[] { start.first, end.first });
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 p = (new LineSegment(x, y, x0, y0)).getDisplacedSegments(width / 2.0);
 | |
|                 addSegments(p);
 | |
|               }
 | |
|             convertPath(output, start);
 | |
|             convertPath(output, end);
 | |
|             start = end = null;
 | |
|             pathOpen = false;
 | |
|             output.setWindingRule(GeneralPath.WIND_EVEN_ODD);
 | |
|             break;
 | |
|           }
 | |
|         pi.next();
 | |
|       }
 | |
| 
 | |
|     if( pathOpen )
 | |
|       {
 | |
|         capEnds();
 | |
|         convertPath(output, start);
 | |
|       }
 | |
|     return output;
 | |
|   }
 | |
| 
 | |
|   private Shape dashedStroke(PathIterator pi)
 | |
|   {
 | |
|     // The choice of (flatnessSq == width / 3) is made to be consistent with
 | |
|     // the flattening in CubicSegment.getDisplacedSegments
 | |
|     FlatteningPathIterator flat = new FlatteningPathIterator(pi,
 | |
|                                                              Math.sqrt(width / 3));
 | |
| 
 | |
|     // Holds the endpoint of the current segment (or piece of a segment)
 | |
|     double[] coords = new double[2];
 | |
| 
 | |
|     // Holds end of the last segment
 | |
|     double x, y, x0, y0;
 | |
|     x = x0 = y = y0 = 0;
 | |
| 
 | |
|     // Various useful flags
 | |
|     boolean pathOpen = false;
 | |
|     boolean dashOn = true;
 | |
|     boolean offsetting = (phase != 0);
 | |
| 
 | |
|     // How far we are into the current dash
 | |
|     double distance = 0;
 | |
|     int dashIndex = 0;
 | |
| 
 | |
|     // And variables to hold the final output
 | |
|     GeneralPath output = new GeneralPath();
 | |
|     Segment[] p;
 | |
| 
 | |
|     // Iterate over the FlatteningPathIterator
 | |
|     while (! flat.isDone())
 | |
|       {
 | |
|         switch (flat.currentSegment(coords))
 | |
|           {
 | |
|           case PathIterator.SEG_MOVETO:
 | |
|             x0 = x = coords[0];
 | |
|             y0 = y = coords[1];
 | |
| 
 | |
|             if (pathOpen)
 | |
|               {
 | |
|                 capEnds();
 | |
|                 convertPath(output, start);
 | |
|                 start = end = null;
 | |
|                 pathOpen = false;
 | |
|               }
 | |
| 
 | |
|             break;
 | |
| 
 | |
|           case PathIterator.SEG_LINETO:
 | |
|             boolean segmentConsumed = false;
 | |
| 
 | |
|             while (! segmentConsumed)
 | |
|               {
 | |
|                 // Find the total remaining length of this segment
 | |
|                 double segLength = Math.sqrt((x - coords[0]) * (x - coords[0])
 | |
|                                              + (y - coords[1])
 | |
|                                              * (y - coords[1]));
 | |
|                 boolean spanBoundary = true;
 | |
|                 double[] segmentEnd = null;
 | |
| 
 | |
|                 // The current segment fits entirely inside the current dash
 | |
|                 if ((offsetting && distance + segLength <= phase)
 | |
|                     || distance + segLength <= dash[dashIndex])
 | |
|                   {
 | |
|                     spanBoundary = false;
 | |
|                   }
 | |
| 
 | |
|                 // Otherwise, we need to split the segment in two, as this
 | |
|                 // segment spans a dash boundry
 | |
|                 else
 | |
|                   {
 | |
|                     segmentEnd = (double[]) coords.clone();
 | |
| 
 | |
|                     // Calculate the remaining distance in this dash,
 | |
|                     // and coordinates of the dash boundary
 | |
|                     double reqLength;
 | |
|                     if (offsetting)
 | |
|                       reqLength = phase - distance;
 | |
|                     else
 | |
|                       reqLength = dash[dashIndex] - distance;
 | |
| 
 | |
|                     coords[0] = x + ((coords[0] - x) * reqLength / segLength);
 | |
|                     coords[1] = y + ((coords[1] - y) * reqLength / segLength);
 | |
|                   }
 | |
| 
 | |
|                 if (offsetting || ! dashOn)
 | |
|                   {
 | |
|                     // Dash is off, or we are in offset - treat this as a
 | |
|                     // moveTo
 | |
|                     x0 = x = coords[0];
 | |
|                     y0 = y = coords[1];
 | |
| 
 | |
|                     if (pathOpen)
 | |
|                       {
 | |
|                         capEnds();
 | |
|                         convertPath(output, start);
 | |
|                         start = end = null;
 | |
|                         pathOpen = false;
 | |
|                       }
 | |
|                   }
 | |
|                 else
 | |
|                   {
 | |
|                     // Dash is on - treat this as a lineTo
 | |
|                     p = (new LineSegment(x, y, coords[0], coords[1])).getDisplacedSegments(width / 2.0);
 | |
| 
 | |
|                     if (! pathOpen)
 | |
|                       {
 | |
|                         start = p[0];
 | |
|                         end = p[1];
 | |
|                         pathOpen = true;
 | |
|                       }
 | |
|                     else
 | |
|                       addSegments(p);
 | |
| 
 | |
|                     x = coords[0];
 | |
|                     y = coords[1];
 | |
|                   }
 | |
| 
 | |
|                 // Update variables depending on whether we spanned a
 | |
|                 // dash boundary or not
 | |
|                 if (! spanBoundary)
 | |
|                   {
 | |
|                     distance += segLength;
 | |
|                     segmentConsumed = true;
 | |
|                   }
 | |
|                 else
 | |
|                   {
 | |
|                     if (offsetting)
 | |
|                       offsetting = false;
 | |
|                     dashOn = ! dashOn;
 | |
|                     distance = 0;
 | |
|                     coords = segmentEnd;
 | |
| 
 | |
|                     if (dashIndex + 1 == dash.length)
 | |
|                       dashIndex = 0;
 | |
|                     else
 | |
|                       dashIndex++;
 | |
| 
 | |
|                     // Since the value of segmentConsumed is still false,
 | |
|                     // the next run of the while loop will complete the segment
 | |
|                   }
 | |
|               }
 | |
|             break;
 | |
| 
 | |
|           // This is a flattened path, so we don't need to deal with curves
 | |
|           }
 | |
|         flat.next();
 | |
|       }
 | |
| 
 | |
|     if (pathOpen)
 | |
|       {
 | |
|         capEnds();
 | |
|         convertPath(output, start);
 | |
|       }
 | |
|     return output;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Cap the ends of the path (joining the start and end list of segments)
 | |
|    */
 | |
|   private void capEnds()
 | |
|   {
 | |
|     Segment returnPath = end.last;
 | |
| 
 | |
|     end.reverseAll(); // reverse the path.
 | |
|     end = null;
 | |
|     capEnd(start, returnPath);
 | |
|     start.last = returnPath.last;
 | |
|     end = null;
 | |
| 
 | |
|     capEnd(start, start);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Append the Segments in s to the GeneralPath p
 | |
|    */
 | |
|   private void convertPath(GeneralPath p, Segment s)
 | |
|   {
 | |
|     Segment v = s;
 | |
|     p.moveTo((float)s.P1.getX(), (float)s.P1.getY());
 | |
| 
 | |
|     do
 | |
|       {
 | |
|         if(v instanceof LineSegment)
 | |
|           p.lineTo((float)v.P2.getX(), (float)v.P2.getY());
 | |
|         else if(v instanceof QuadSegment)
 | |
|           p.quadTo((float)((QuadSegment)v).cp.getX(),
 | |
|                    (float)((QuadSegment)v).cp.getY(),
 | |
|                    (float)v.P2.getX(),
 | |
|                    (float)v.P2.getY());
 | |
|         else if(v instanceof CubicSegment)
 | |
|           p.curveTo((float)((CubicSegment)v).cp1.getX(),
 | |
|                     (float)((CubicSegment)v).cp1.getY(),
 | |
|                     (float)((CubicSegment)v).cp2.getX(),
 | |
|                     (float)((CubicSegment)v).cp2.getY(),
 | |
|                     (float)v.P2.getX(),
 | |
|                     (float)v.P2.getY());
 | |
|         v = v.next;
 | |
|       } while(v != s && v != null);
 | |
| 
 | |
|     p.closePath();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Add the segments to start and end (the inner and outer edges of the stroke)
 | |
|    */
 | |
|   private void addSegments(Segment[] segments)
 | |
|   {
 | |
|     joinSegments(segments);
 | |
|     start.add(segments[0]);
 | |
|     end.add(segments[1]);
 | |
|   }
 | |
| 
 | |
|   private void joinSegments(Segment[] segments)
 | |
|   {
 | |
|     double[] p0 = start.last.cp2();
 | |
|     double[] p1 = new double[]{start.last.P2.getX(), start.last.P2.getY()};
 | |
|     double[] p2 = new double[]{segments[0].first.P1.getX(), segments[0].first.P1.getY()};
 | |
|     double[] p3 = segments[0].cp1();
 | |
|     Point2D p;
 | |
| 
 | |
|     p = lineIntersection(p0[0],p0[1],p1[0],p1[1],
 | |
|                                  p2[0],p2[1],p3[0],p3[1], false);
 | |
| 
 | |
|     double det = (p1[0] - p0[0])*(p3[1] - p2[1]) -
 | |
|       (p3[0] - p2[0])*(p1[1] - p0[1]);
 | |
| 
 | |
|     if( det > 0 )
 | |
|       {
 | |
|         // start and segment[0] form the 'inner' part of a join,
 | |
|         // connect the overlapping segments
 | |
|         joinInnerSegments(start, segments[0], p);
 | |
|         joinOuterSegments(end, segments[1], p);
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // end and segment[1] form the 'inner' part
 | |
|         joinInnerSegments(end, segments[1], p);
 | |
|         joinOuterSegments(start, segments[0], p);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Make a cap between a and b segments,
 | |
|    * where a-->b is the direction of iteration.
 | |
|    */
 | |
|   private void capEnd(Segment a, Segment b)
 | |
|   {
 | |
|     double[] p0, p1;
 | |
|     double dx, dy, l;
 | |
|     Point2D c1,c2;
 | |
| 
 | |
|     switch( cap )
 | |
|       {
 | |
|       case CAP_BUTT:
 | |
|         a.add(new LineSegment(a.last.P2, b.P1));
 | |
|         break;
 | |
| 
 | |
|       case CAP_SQUARE:
 | |
|         p0 = a.last.cp2();
 | |
|         p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
 | |
|         dx = p1[0] - p0[0];
 | |
|         dy = p1[1] - p0[1];
 | |
|         l = Math.sqrt(dx * dx + dy * dy);
 | |
|         dx = 0.5*width*dx/l;
 | |
|         dy = 0.5*width*dy/l;
 | |
|         c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);
 | |
|         c2 = new Point2D.Double(b.P1.getX() + dx, b.P1.getY() + dy);
 | |
|         a.add(new LineSegment(a.last.P2, c1));
 | |
|         a.add(new LineSegment(c1, c2));
 | |
|         a.add(new LineSegment(c2, b.P1));
 | |
|         break;
 | |
| 
 | |
|       case CAP_ROUND:
 | |
|         p0 = a.last.cp2();
 | |
|         p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
 | |
|         dx = p1[0] - p0[0];
 | |
|         dy = p1[1] - p0[1];
 | |
|         if (dx != 0 && dy != 0)
 | |
|           {
 | |
|             l = Math.sqrt(dx * dx + dy * dy);
 | |
|             dx = (2.0/3.0)*width*dx/l;
 | |
|             dy = (2.0/3.0)*width*dy/l;
 | |
|           }
 | |
| 
 | |
|         c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);
 | |
|         c2 = new Point2D.Double(b.P1.getX() + dx, b.P1.getY() + dy);
 | |
|         a.add(new CubicSegment(a.last.P2, c1, c2, b.P1));
 | |
|         break;
 | |
|       }
 | |
|     a.add(b);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the intersection of two lines, or null if there isn't one.
 | |
|    * @param infinite - true if the lines should be regarded as infinite, false
 | |
|    * if the intersection must be within the given segments.
 | |
|    * @return a Point2D or null.
 | |
|    */
 | |
|   private Point2D lineIntersection(double X1, double Y1,
 | |
|                                    double X2, double Y2,
 | |
|                                    double X3, double Y3,
 | |
|                                    double X4, double Y4,
 | |
|                                    boolean infinite)
 | |
|   {
 | |
|     double x1 = X1;
 | |
|     double y1 = Y1;
 | |
|     double rx = X2 - x1;
 | |
|     double ry = Y2 - y1;
 | |
| 
 | |
|     double x2 = X3;
 | |
|     double y2 = Y3;
 | |
|     double sx = X4 - x2;
 | |
|     double sy = Y4 - y2;
 | |
| 
 | |
|     double determinant = sx * ry - sy * rx;
 | |
|     double nom = (sx * (y2 - y1) + sy * (x1 - x2));
 | |
| 
 | |
|     // lines can be considered parallel.
 | |
|     if (Math.abs(determinant) < 1E-6)
 | |
|       return null;
 | |
| 
 | |
|     nom = nom / determinant;
 | |
| 
 | |
|     // check if lines are within the bounds
 | |
|     if(!infinite && (nom > 1.0 || nom < 0.0))
 | |
|       return null;
 | |
| 
 | |
|     return new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Join a and b segments, where a-->b is the direction of iteration.
 | |
|    *
 | |
|    * insideP is the inside intersection point of the join, needed for
 | |
|    * calculating miter lengths.
 | |
|    */
 | |
|   private void joinOuterSegments(Segment a, Segment b, Point2D insideP)
 | |
|   {
 | |
|     double[] p0, p1;
 | |
|     double dx, dy, l;
 | |
|     Point2D c1,c2;
 | |
| 
 | |
|     switch( join )
 | |
|       {
 | |
|       case JOIN_MITER:
 | |
|         p0 = a.last.cp2();
 | |
|         p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
 | |
|         double[] p2 = new double[]{b.P1.getX(), b.P1.getY()};
 | |
|         double[] p3 = b.cp1();
 | |
|         Point2D p = lineIntersection(p0[0],p0[1],p1[0],p1[1],p2[0],p2[1],p3[0],p3[1], true);
 | |
|         if( p == null || insideP == null )
 | |
|           a.add(new LineSegment(a.last.P2, b.P1));
 | |
|         else if((p.distance(insideP)/width) < limit)
 | |
|           {
 | |
|             a.add(new LineSegment(a.last.P2, p));
 | |
|             a.add(new LineSegment(p, b.P1));
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             // outside miter limit, do a bevel join.
 | |
|             a.add(new LineSegment(a.last.P2, b.P1));
 | |
|           }
 | |
|         break;
 | |
| 
 | |
|       case JOIN_ROUND:
 | |
|         p0 = a.last.cp2();
 | |
|         p1 = new double[]{a.last.P2.getX(), a.last.P2.getY()};
 | |
|         dx = p1[0] - p0[0];
 | |
|         dy = p1[1] - p0[1];
 | |
|         l = Math.sqrt(dx * dx + dy * dy);
 | |
|         dx = 0.5*width*dx/l;
 | |
|         dy = 0.5*width*dy/l;
 | |
|         c1 = new Point2D.Double(p1[0] + dx, p1[1] + dy);
 | |
| 
 | |
|         p0 = new double[]{b.P1.getX(), b.P1.getY()};
 | |
|         p1 = b.cp1();
 | |
| 
 | |
|         dx = p0[0] - p1[0]; // backwards direction.
 | |
|         dy = p0[1] - p1[1];
 | |
|         l = Math.sqrt(dx * dx + dy * dy);
 | |
|         dx = 0.5*width*dx/l;
 | |
|         dy = 0.5*width*dy/l;
 | |
|         c2 = new Point2D.Double(p0[0] + dx, p0[1] + dy);
 | |
|         a.add(new CubicSegment(a.last.P2, c1, c2, b.P1));
 | |
|         break;
 | |
| 
 | |
|       case JOIN_BEVEL:
 | |
|         a.add(new LineSegment(a.last.P2, b.P1));
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Join a and b segments, removing any overlap
 | |
|    */
 | |
|   private void joinInnerSegments(Segment a, Segment b, Point2D p)
 | |
|   {
 | |
|     double[] p0 = a.last.cp2();
 | |
|     double[] p1 = new double[] { a.last.P2.getX(), a.last.P2.getY() };
 | |
|     double[] p2 = new double[] { b.P1.getX(), b.P1.getY() };
 | |
|     double[] p3 = b.cp1();
 | |
| 
 | |
|     if (p == null)
 | |
|       {
 | |
|         // Dodgy.
 | |
|         a.add(new LineSegment(a.last.P2, b.P1));
 | |
|         p = new Point2D.Double((b.P1.getX() + a.last.P2.getX()) / 2.0,
 | |
|                                (b.P1.getY() + a.last.P2.getY()) / 2.0);
 | |
|       }
 | |
|     else
 | |
|       // This assumes segments a and b are single segments, which is
 | |
|       // incorrect - if they are a linked list of segments (ie, passed in
 | |
|       // from a flattening operation), this produces strange results!!
 | |
|       a.last.P2 = b.P1 = p;
 | |
|   }
 | |
| }
 |