mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			152 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package syntax
 | |
| 
 | |
| // Simplify returns a regexp equivalent to re but without counted repetitions
 | |
| // and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
 | |
| // The resulting regexp will execute correctly but its string representation
 | |
| // will not produce the same parse tree, because capturing parentheses
 | |
| // may have been duplicated or removed. For example, the simplified form
 | |
| // for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
 | |
| // The returned regexp may share structure with or be the original.
 | |
| func (re *Regexp) Simplify() *Regexp {
 | |
| 	if re == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	switch re.Op {
 | |
| 	case OpCapture, OpConcat, OpAlternate:
 | |
| 		// Simplify children, building new Regexp if children change.
 | |
| 		nre := re
 | |
| 		for i, sub := range re.Sub {
 | |
| 			nsub := sub.Simplify()
 | |
| 			if nre == re && nsub != sub {
 | |
| 				// Start a copy.
 | |
| 				nre = new(Regexp)
 | |
| 				*nre = *re
 | |
| 				nre.Rune = nil
 | |
| 				nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
 | |
| 			}
 | |
| 			if nre != re {
 | |
| 				nre.Sub = append(nre.Sub, nsub)
 | |
| 			}
 | |
| 		}
 | |
| 		return nre
 | |
| 
 | |
| 	case OpStar, OpPlus, OpQuest:
 | |
| 		sub := re.Sub[0].Simplify()
 | |
| 		return simplify1(re.Op, re.Flags, sub, re)
 | |
| 
 | |
| 	case OpRepeat:
 | |
| 		// Special special case: x{0} matches the empty string
 | |
| 		// and doesn't even need to consider x.
 | |
| 		if re.Min == 0 && re.Max == 0 {
 | |
| 			return &Regexp{Op: OpEmptyMatch}
 | |
| 		}
 | |
| 
 | |
| 		// The fun begins.
 | |
| 		sub := re.Sub[0].Simplify()
 | |
| 
 | |
| 		// x{n,} means at least n matches of x.
 | |
| 		if re.Max == -1 {
 | |
| 			// Special case: x{0,} is x*.
 | |
| 			if re.Min == 0 {
 | |
| 				return simplify1(OpStar, re.Flags, sub, nil)
 | |
| 			}
 | |
| 
 | |
| 			// Special case: x{1,} is x+.
 | |
| 			if re.Min == 1 {
 | |
| 				return simplify1(OpPlus, re.Flags, sub, nil)
 | |
| 			}
 | |
| 
 | |
| 			// General case: x{4,} is xxxx+.
 | |
| 			nre := &Regexp{Op: OpConcat}
 | |
| 			nre.Sub = nre.Sub0[:0]
 | |
| 			for i := 0; i < re.Min-1; i++ {
 | |
| 				nre.Sub = append(nre.Sub, sub)
 | |
| 			}
 | |
| 			nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
 | |
| 			return nre
 | |
| 		}
 | |
| 
 | |
| 		// Special case x{0} handled above.
 | |
| 
 | |
| 		// Special case: x{1} is just x.
 | |
| 		if re.Min == 1 && re.Max == 1 {
 | |
| 			return sub
 | |
| 		}
 | |
| 
 | |
| 		// General case: x{n,m} means n copies of x and m copies of x?
 | |
| 		// The machine will do less work if we nest the final m copies,
 | |
| 		// so that x{2,5} = xx(x(x(x)?)?)?
 | |
| 
 | |
| 		// Build leading prefix: xx.
 | |
| 		var prefix *Regexp
 | |
| 		if re.Min > 0 {
 | |
| 			prefix = &Regexp{Op: OpConcat}
 | |
| 			prefix.Sub = prefix.Sub0[:0]
 | |
| 			for i := 0; i < re.Min; i++ {
 | |
| 				prefix.Sub = append(prefix.Sub, sub)
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Build and attach suffix: (x(x(x)?)?)?
 | |
| 		if re.Max > re.Min {
 | |
| 			suffix := simplify1(OpQuest, re.Flags, sub, nil)
 | |
| 			for i := re.Min + 1; i < re.Max; i++ {
 | |
| 				nre2 := &Regexp{Op: OpConcat}
 | |
| 				nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
 | |
| 				suffix = simplify1(OpQuest, re.Flags, nre2, nil)
 | |
| 			}
 | |
| 			if prefix == nil {
 | |
| 				return suffix
 | |
| 			}
 | |
| 			prefix.Sub = append(prefix.Sub, suffix)
 | |
| 		}
 | |
| 		if prefix != nil {
 | |
| 			return prefix
 | |
| 		}
 | |
| 
 | |
| 		// Some degenerate case like min > max or min < max < 0.
 | |
| 		// Handle as impossible match.
 | |
| 		return &Regexp{Op: OpNoMatch}
 | |
| 	}
 | |
| 
 | |
| 	return re
 | |
| }
 | |
| 
 | |
| // simplify1 implements Simplify for the unary OpStar,
 | |
| // OpPlus, and OpQuest operators. It returns the simple regexp
 | |
| // equivalent to
 | |
| //
 | |
| //	Regexp{Op: op, Flags: flags, Sub: {sub}}
 | |
| //
 | |
| // under the assumption that sub is already simple, and
 | |
| // without first allocating that structure. If the regexp
 | |
| // to be returned turns out to be equivalent to re, simplify1
 | |
| // returns re instead.
 | |
| //
 | |
| // simplify1 is factored out of Simplify because the implementation
 | |
| // for other operators generates these unary expressions.
 | |
| // Letting them call simplify1 makes sure the expressions they
 | |
| // generate are simple.
 | |
| func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
 | |
| 	// Special case: repeat the empty string as much as
 | |
| 	// you want, but it's still the empty string.
 | |
| 	if sub.Op == OpEmptyMatch {
 | |
| 		return sub
 | |
| 	}
 | |
| 	// The operators are idempotent if the flags match.
 | |
| 	if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
 | |
| 		return sub
 | |
| 	}
 | |
| 	if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
 | |
| 		return re
 | |
| 	}
 | |
| 
 | |
| 	re = &Regexp{Op: op, Flags: flags}
 | |
| 	re.Sub = append(re.Sub0[:0], sub)
 | |
| 	return re
 | |
| }
 |