gcc/libgcc/config/avr/libf7/libf7-asm.sx

2392 lines
54 KiB
Plaintext

;; Copyright (C) 2019-2024 Free Software Foundation, Inc.
;;
;; This file is part of LIBF7, which is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it under
;; the terms of the GNU General Public License as published by the Free
;; Software Foundation; either version 3, or (at your option) any later
;; version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
;; WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
;; for more details.
;;
;; Under Section 7 of GPL version 3, you are granted additional
;; permissions described in the GCC Runtime Library Exception, version
;; 3.1, as published by the Free Software Foundation.
;;
;; You should have received a copy of the GNU General Public License and
;; a copy of the GCC Runtime Library Exception along with this program;
;; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
;; <http://www.gnu.org/licenses/>. */
#ifndef __AVR_TINY__
#define ASM_DEFS_HAVE_DEFUN
#include "asm-defs.h"
#include "libf7.h"
#define ZERO __zero_reg__
#define TMP __tmp_reg__
#define F7(name) F7_(name##_asm)
.macro F7call name
.global F7(\name\())
XCALL F7(\name\())
.endm
.macro F7jmp name
.global F7(\name\())
XJMP F7(\name\())
.endm
;; Just for visibility in disassembly.
.macro LLL name
.global LLL.\name
LLL.\name:
nop
.endm
.macro DEFUN name
.section .text.libf7.asm.\name, "ax", @progbits
.global F7(\name\())
.func F7(\name\())
F7(\name\()) :
.endm
.macro ENDF name
.size F7(\name\()), . - F7(\name\())
.endfunc
.endm
.macro LABEL name
.global F7(\name\())
F7(\name\()) :
.endm
.macro _DEFUN name
.section .text.libf7.asm.\name, "ax", @progbits
.weak \name
.type \name, @function
\name :
.endm
.macro _ENDF name
.size \name, . - \name
.endm
.macro _LABEL name
.weak \name
.type \name, @function
\name :
.endm
#define F7_NAME(X) F7_(X)
;; Make a weak alias.
.macro ALIAS sym
.weak \sym
.type \sym, @function
\sym:
.endm
;; Make a weak alias if double is 64 bits wide.
.macro DALIAS sym
#if defined (WITH_LIBF7_MATH_SYMBOLS) && __SIZEOF_DOUBLE__ == 8
ALIAS \sym
#endif
.endm
;; Make a weak alias if long double is 64 bits wide.
.macro LALIAS sym
#if defined (WITH_LIBF7_MATH_SYMBOLS) && __SIZEOF_LONG_DOUBLE__ == 8
ALIAS \sym
#endif
.endm
#define Off 1
#define Expo (Off + F7_MANT_BYTES)
#ifdef F7MOD_classify_
;; r24 = classify (*Z)
;; NaN -> F7_FLAG_nan
;; INF -> F7_FLAG_inf [ | F7_FLAG_sign ]
;; ==0 -> F7_FLAG_zero
;; ... -> 0 [ | F7_FLAG_sign ]
;; Clobbers: None (no TMP, no T).
DEFUN classify
ld r24, Z
lsr r24
brne .Lnan_or_inf
ldd r24, Z+6+Off
tst r24
brpl 0f
sbc r24, r24
andi r24, F7_FLAG_sign
ret
0: ldi r24, F7_FLAG_zero
ret
.Lnan_or_inf:
rol r24
ret
ENDF classify
#endif /* F7MOD_classify_ */
#ifdef F7MOD_clr_
DEFUN clr
std Z+0, ZERO
std Z+0+Off, ZERO
std Z+1+Off, ZERO
std Z+2+Off, ZERO
std Z+3+Off, ZERO
std Z+4+Off, ZERO
std Z+5+Off, ZERO
std Z+6+Off, ZERO
std Z+0+Expo, ZERO
std Z+1+Expo, ZERO
ret
ENDF clr
#endif /* F7MOD_clr_ */
#ifdef F7MOD_clz_
;; The libcc CLZ implementations like __clzsi2 aka. __builtin_clzl are
;; not very well suited for out purpose, so implement our own.
#define ZBITS r26
.macro .test.byte reg
or ZERO, \reg
brne .Loop_bit
subi ZBITS, -8
.endm
;; R26 = CLZ (uint64_t R18); CLZ (0) = 64.
;; Unchanged: T
DEFUN clzdi2
clr ZBITS
;; Catch the common case of normalized .mant for speed-up.
tst r25
brmi 9f
.test.byte r25
.test.byte r24
.test.byte r23
.test.byte r22
.test.byte r21
.test.byte r20
.test.byte r19
.test.byte r18
.Ldone:
clr ZERO
9: ret
.Loop_bit:
lsl ZERO
brcs .Ldone
inc ZBITS
rjmp .Loop_bit
ENDF clzdi2
#undef ZBITS
#endif /* F7MOD_clz_ */
#ifdef F7MOD_cmp_mant_
DEFUN cmp_mant
adiw X, 6 + Off
ld r24, X $ ldd TMP, Z+6+Off $ SUB r24, TMP
brne .Lunequal
sbiw X, 6
ld r24, X+ $ ldd TMP, Z+0+Off $ SUB r24, TMP
ld r24, X+ $ ldd TMP, Z+1+Off $ sbc r24, TMP
ld r24, X+ $ ldd TMP, Z+2+Off $ sbc r24, TMP
ld r24, X+ $ ldd TMP, Z+3+Off $ sbc r24, TMP
ld r24, X+ $ ldd TMP, Z+4+Off $ sbc r24, TMP
ld r24, X+ $ ldd TMP, Z+5+Off $ sbc r24, TMP
;; MSBs are already known to be equal
breq 9f
.Lunequal:
sbc r24, r24
sbci r24, -1
9: sbiw X, 6 + Off
ret
ENDF cmp_mant
#endif /* F7MOD_cmp_mant_ */
#define CA 18
#define C0 CA+1
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
#define C4 C0+4
#define C5 C0+5
#define C6 C0+6
#define Carry r16
#define Flags 18
#ifdef F7MOD_store_
;; Z->flags = CA.
;; Z->mant = C[7].
DEFUN store_mant.with_flags
st Z, CA
;; Z->mant = C[7].
LABEL store_mant
std Z+0+Off, C0
std Z+1+Off, C1
std Z+2+Off, C2
std Z+3+Off, C3
std Z+4+Off, C4
std Z+5+Off, C5
std Z+6+Off, C6
ret
ENDF store_mant.with_flags
#endif /* F7MOD_store_ */
#ifdef F7MOD_load_
;; CA = Z->flags
;; C[7] = Z->mant
DEFUN load_mant.with_flags
ld CA, Z
skipnext
;; CA = 0
;; C[7] = Z->mant
LABEL load_mant.clr_CA
LABEL load_mant.clr_flags
clr CA ; May be skipped
;; C[7] = Z->mant
LABEL load_mant
ldd C0, Z+0+Off
ldd C1, Z+1+Off
ldd C2, Z+2+Off
ldd C3, Z+3+Off
ldd C4, Z+4+Off
ldd C5, Z+5+Off
ldd C6, Z+6+Off
ret
ENDF load_mant.with_flags
#endif /* F7MOD_load_ */
#ifdef F7MOD_copy_
DEFUN copy
cp XL, ZL
cpc XH, ZH
breq 9f
adiw XL, F7_SIZEOF
adiw ZL, F7_SIZEOF
set
bld ZERO, 1
bld ZERO, 3 ; ZERO = 0b1010 = 10.
.Loop:
ld TMP, -X
st -Z, TMP
dec ZERO
brne .Loop
9: ret
ENDF copy
#endif /* F7MOD_copy_ */
#ifdef F7MOD_copy_P_
DEFUN copy_P
set
bld ZERO, 1
bld ZERO, 3 ; ZERO = 0b1010 = 10.
.Loop:
#ifdef __AVR_HAVE_LPMX__
lpm TMP, Z+
#else
lpm
adiw Z, 1
#endif /* Have LPMx */
st X+, TMP
dec ZERO
brne .Loop
sbiw X, F7_SIZEOF
sbiw Z, F7_SIZEOF
ret
ENDF copy_P
#endif /* F7MOD_copy_P_ */
#ifdef F7MOD_copy_mant_
DEFUN copy_mant
cp XL, ZL
cpc XH, ZH
breq 9f
adiw XL, 1
adiw ZL, 1
set
bld ZERO, 3
dec ZERO ; ZERO = 7
.Loop:
ld TMP, X+
st Z+, TMP
dec ZERO
brne .Loop
sbiw XL, 8
sbiw ZL, 8
9: ret
ENDF copy_mant
#endif /* F7MOD_copy_mant_ */
#ifdef F7MOD_clr_mant_lsbs_
DEFUN clr_mant_lsbs
push r16
mov r16, r20
wmov XL, r24
wmov ZL, r22
F7call load_mant
F7call lshrdi3
clr CA
F7call ashldi3
pop r16
wmov ZL, XL
F7jmp store_mant
ENDF clr_mant_lsbs
#endif /* F7MOD_clr_mant_lsbs_ */
#ifdef F7MOD_normalize_with_carry_
;; Z = &f7_t
;; C[] = .mant may be not normalized
;; Carry === r16 = Addend to Z->expo in [-64, 128).
;; Normalize C[], set Flags, and adjust Z->expo.
;; Return CA (after normalization) in TMP.
;; Unchanged: T
#define Addend r17
#define Zbits r26
#define expL r26
#define expH r27
DEFUN normalize_with_carry
mov Addend, Carry
tst C6
brmi .Lshift.0
;; r26 = CLZ (uint64_t R18)
F7call clzdi2
cpi Zbits, 64
breq .Lclr
sub Addend, Zbits
mov r16, Zbits
F7call ashldi3
;; Assert (R25.7 == 1)
.Lshift.0:
mov TMP, CA
ld Flags, Z
;; .expo += Addend
ldd expL, Z+0+Expo
ldd expH, Z+1+Expo
;; Sign-extend Addend
clr r16
sbrc Addend, 7
com r16
;; exp += (int8_t) Addend, i.e. sign-extend Addend.
add expL, Addend
adc expH, r16
brvc .Lnormal
tst r16
brmi .Lclr
;; Overflow
#if F7_HAVE_Inf == 1
ori Flags, F7_FLAG_inf
#else
ldi Flags, F7_FLAG_nan
#endif /* Have Inf */
ret
.Lnormal:
std Z+0+Expo, expL
std Z+1+Expo, expH
ret
.Lclr:
;; Underflow or Zero.
clr TMP
.global __clr_8
XJMP __clr_8
LABEL normalize.store_with_flags
;; no rounding
set
skipnext
LABEL normalize.round.store_with_flags
;; with rounding
clt ; skipped ?
LABEL normalize.maybe_round.store_with_flags
F7call normalize_with_carry
;; We have:
;; Z = &f7_t
;; X = .expo
;; C[] = .mant
;; R18 = .flags
;; TMP = byte below .mant after normalization
;; T = 1 => no rounding.
brts .Lstore
lsl TMP
adc C0, ZERO
brcc .Lstore
adc C1, ZERO
adc C2, ZERO
adc C3, ZERO
adc C4, ZERO
adc C5, ZERO
adc C6, ZERO
brcc .Lstore
;; We only come here if C6 overflowed, i.e. C[] is 0 now.
;; .mant = 1.0 by restoring the MSbit.
ror C6
;; .expo += 1 and override the .expo stored during normalize.
adiw expL, 1
std Z+0+Expo, expL
std Z+1+Expo, expH
.Lstore:
F7call store_mant.with_flags
;; Return the byte below .mant after normalization.
;; This is only useful without rounding; the caller will know.
mov R24, TMP
ret
ENDF normalize_with_carry
#endif /* F7MOD_normalize_with_carry_ */
#ifdef F7MOD_normalize_
;; Using above functionality from C.
;; f7_t* normalize (f7_t *cc)
;; Adjusts cc->expo
;; Clears cc->flags
DEFUN normalize
push r17
push r16
wmov ZL, r24
F7call load_mant.clr_CA
clr Carry
st Z, ZERO
F7call normalize.store_with_flags
wmov r24, Z
pop r16
pop r17
ret
ENDF normalize
#endif /* F7MOD_normalize_ */
#ifdef F7MOD_store_expo_
#define Done r24
#define expLO r24
#define expHI r25
;; expo == INT16_MAX => *Z = Inf, return Done = true.
;; expo == INT16_MIN => *Z = 0x0, return Done = true.
;; else => Z->expo = expo, return Done = false.
DEFUN store_expo
cpi expHI, 0x80
cpc expLO, ZERO
breq .Ltiny
adiw expLO, 1
brvs .Lhuge
sbiw expLO, 1
std Z+0+Expo, expLO
std Z+1+Expo, expHI
ldi Done, 0
ret
.Lhuge:
#if F7_HAVE_Inf == 1
ld Done, Z
andi Done, F7_FLAG_sign
ori Done, F7_FLAG_inf
#else
ldi Done, F7_FLAG_nan
#endif /* Have Inf */
st Z, Done
ldi Done, 1
ret
.Ltiny:
ldi Done, 1
F7jmp clr
ENDF store_expo
#endif /* F7MOD_store_expo_ */
#ifdef F7MOD_set_u64_
DEFUN set_s64
set
skipnext
;; ...
LABEL set_u64
clt ; Skipped?
wmov Zl, r16
;; TMP holds .flags.
clr TMP
brtc .Lnot.negative
bst C6, 7
brtc .Lnot.negative
bld TMP, F7_FLAGNO_sign
.global __negdi2
XCALL __negdi2
.Lnot.negative:
st Z, TMP
std Z+0+Expo, ZERO
std Z+1+Expo, ZERO
ldi Carry, 63
F7call normalize.round.store_with_flags
wmov r24, Z
wmov r16, Z ; Unclobber r16.
ret
ENDF set_s64
#endif /* F7MOD_set_u64_ */
#ifdef F7MOD_to_integer_
#define Mask r26
DEFUN to_integer
wmov ZL, r24
mov Mask, r22
F7call load_mant.with_flags
sbrc Flags, F7_FLAGNO_nan
rjmp .Lset_0x8000
sbrc Flags, F7_FLAGNO_inf
rjmp .Lsaturate
sbrs C6, 7
rjmp .Lset_0x0000
bst Flags, F7_FLAGNO_sign
ldd r27, Z+0+Expo
;; Does .expo have bits outside Mask? ...
mov TMP, Mask
com TMP
and TMP, r27
ldd r27, Z+1+Expo
tst r27
brmi .Lset_0x0000 ; ...yes: .expo is < 0 => return 0
or TMP, r27
brne .Lsaturate.T ; ...yes: .expo > Mask => saturate
;; ...no: Shift right to meet .expo = 0.
PUSH r16
ldd r16, Z+0+Expo
eor r16, Mask
and r16, Mask
clr CA
F7call lshrdi3
POP r16
tst C6
brmi .Lsaturate.T ; > INTxx_MAX => saturate
brtc 9f ; >= 0 => return
sbrc Mask, 5
.global __negdi2
XJMP __negdi2
sbrc Mask, 4
.global __negsi2
XJMP __negsi2
neg C6
neg C5
sbci C6, 0
9: ret
.Lsaturate:
bst Flags, F7_FLAGNO_sign
.Lsaturate.T:
#if F7_HAVE_Inf
brts .Lset_0x8000
.Lset_0x7fff:
;; +Inf => return INTxx_MAX
sec
.global __sbc_8
XCALL __sbc_8
ldi C6, 0x7f
ret
#endif /* F7_HAVE_Inf */
.Lset_0x8000:
;; NaN or -Inf => return INTxx_MIN
.global __clr_8
XCALL __clr_8
ldi C6, 0x80
ret
.Lset_0x0000:
;; Small value => return 0x0
.global __clr_8
XJMP __clr_8
ENDF to_integer
#endif /* F7MOD_to_integer_ */
#ifdef F7MOD_to_unsigned_
#define Mask r26
DEFUN to_unsigned
wmov ZL, r24
mov Mask, r22
F7call load_mant.with_flags
sbrc Flags, F7_FLAGNO_nan
rjmp .Lset_0xffff
sbrc Flags, F7_FLAGNO_sign
rjmp .Lset_0x0000
sbrc Flags, F7_FLAGNO_inf
rjmp .Lset_0xffff
sbrs C6, 7
rjmp .Lset_0x0000
ldd r27, Z+0+Expo
;; Does .expo have bits outside Mask? ...
mov TMP, Mask
com TMP
and TMP, r27
ldd r27, Z+1+Expo
tst r27
brmi .Lset_0x0000 ; ...yes: .expo is < 0 => return 0
or TMP, r27
brne .Lset_0xffff ; ...yes: .expo > Mask => saturate
;; ...no: Shift right to meet .expo = 0.
PUSH r16
ldd r16, Z+0+Expo
eor r16, Mask
and r16, Mask
clr CA
F7call lshrdi3
POP r16
ret
.Lset_0xffff:
;; return UINTxx_MAX
sec
.global __sbc_8
XJMP __sbc_8
.Lset_0x0000:
;; Small value => return 0x0
.global __clr_8
XJMP __clr_8
ENDF to_unsigned
#endif /* F7MOD_to_unsigned_ */
#ifdef F7MOD_addsub_mant_scaled_
;; int8_t f7_addsub_mant_scaled_asm (f7_t *r24, const f7_t *r22, const f7_t 20*,
;; uint8_t r18);
;; R18.0 = 1 : ADD
;; R18.0 = 0 : SUB
;; R18[7..1] : Scale
;; Compute *R24 = *R22 + *R20 >> R18[7..1].
#define BA 10
#define B0 BA+1
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define B4 B0+4
#define B5 B0+5
#define B6 B0+6
DEFUN addsub_mant_scaled
do_prologue_saves 10
bst r18, 0 ;; ADD ?
lsr r18
mov r16, r18
wmov ZL, r20
wmov YL, r22
;; C[] = bb >> shift
wmov XL, r24
F7call load_mant.clr_CA
F7call lshrdi3
wmov BA, CA
wmov B1, C1
wmov B3, C3
wmov B5, C5
wmov ZL, YL
F7call load_mant.clr_CA
wmov ZL, XL
brts .Ladd
.global __subdi3
XCALL __subdi3
breq .Lzero
brcc .Lround
;; C = 1: Can underflow happen at all ?
.Lzero:
F7call clr
rjmp .Lepilogue
.Ladd:
.global __adddi3
XCALL __adddi3
brcc .Lround
ldi Carry, 1
.global __lshrdi3
XCALL __lshrdi3
ori C6, 1 << 7
skipnext
.Lround:
clr Carry ; skipped?
F7call normalize.round.store_with_flags
.Lepilogue:
do_epilogue_restores 10
ENDF addsub_mant_scaled
#if !defined (__AVR_HAVE_MOVW__) || !defined (__AVR_HAVE_JMP_CALL__)
DEFUN lshrdi3
.global __lshrdi3
XJMP __lshrdi3
ENDF lshrdi3
DEFUN ashldi3
.global __ashldi3
XJMP __ashldi3
ENDF ashldi3
#else
# Basically just a wrapper around libgcc's __lshrdi3.
DEFUN lshrdi3
;; Handle bit 5 of shift offset.
sbrs r16, 5
rjmp 4f
wmov CA, C3
wmov C1, C5
clr C6 $ clr C5 $ wmov C3, C5
4:
;; Handle bit 4 of shift offset.
sbrs r16, 4
rjmp 3f
wmov CA, C1
wmov C1, C3
wmov C3, C5
clr C6 $ clr C5
3:
;; Handle bits 3...0 of shift offset.
push r16
andi r16, 0xf
breq 0f
.global __lshrdi3
XCALL __lshrdi3
0:
pop r16
ret
ENDF lshrdi3
# Basically just a wrapper around libgcc's __ashldi3.
DEFUN ashldi3
;; Handle bit 5 of shift offset.
sbrs r16, 5
rjmp 4f
wmov C5, C1
wmov C3, CA
clr C2 $ clr C1 $ wmov CA, C1
4:
;; Handle bit 4 of shift offset.
sbrs r16, 4
rjmp 3f
wmov C5, C3
wmov C3, C1
wmov C1, CA
clr CA $ clr C0
3:
;; Handle bits 3...0 of shift offset.
push r16
andi r16, 0xf
breq 0f
.global __ashldi3
XCALL __ashldi3
0:
pop r16
ret
ENDF ashldi3
#endif /* Small device */
#endif /* F7MOD_addsub_mant_scaled_ */
#if defined F7MOD_mul_mant_ && defined (__AVR_HAVE_MUL__)
#define A0 11
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 A0+5
#define A6 A0+6
#define TT0 26
#define TT1 TT0+1
#define TT2 28
#define TT3 TT2+1
#define BB 10
;; R18.0 = 1: No rounding.
DEFUN mul_mant
;; 10 = Y, R17...R10
do_prologue_saves 10
;; T = R18.0: Skip rounding?
bst r18, 0
;; Save result address for later.
push r25
push r24
;; Load A's mantissa.
movw ZL, r22
LDD A0, Z+0+Off
LDD A1, Z+1+Off
LDD A2, Z+2+Off
LDD A3, Z+3+Off
LDD A4, Z+4+Off
LDD A5, Z+5+Off
LDD A6, Z+6+Off
movw ZL, r20
;; 6 * 6 -> 6:5
;; 4 * 6 -> 4:3
;; 2 * 6 -> 2:1
;; 0 * 6 -> 0:a
ldd BB, Z+6+Off
mul A6, BB $ movw C5, r0
mul A4, BB $ movw C3, r0
mul A2, BB $ movw C1, r0
mul A0, BB $ movw CA, r0
;; 5 * 6 -> 5:4
;; 3 * 6 -> 3:2
;; 1 * 6 -> 1:0
mul A5, BB $ movw TT2, r0
mul A3, BB $ movw TT0, r0
mul A1, BB
ADD C0, r0 $ adc C1, r1
adc C2, TT0 $ adc C3, TT1
adc C4, TT2 $ adc C5, TT3 $ clr ZERO
adc C6, ZERO
;; Done B6
;; 6 * 5 -> 5:4
;; 4 * 5 -> 3:2
;; 2 * 5 -> 1:0
;; 0 * 5 -> a:-
ldd BB, Z+5+Off
mul A0, BB
;; Done A0
#define Atmp A0
#define Null A0
mov Atmp, r1
mul A6, BB $ movw TT2, r0
mul A4, BB $ movw TT0, r0
mul A2, BB
ADD CA, Atmp
adc C0, r0 $ adc C1, r1
adc C2, TT0 $ adc C3, TT1
adc C4, TT2 $ adc C5, TT3 $ clr Null
adc C6, Null
;; 1 * 5 -> 0:a
;; 3 * 5 -> 2:1
;; 5 * 5 -> 4:3
mul A1, BB $ movw TT0, r0
mul A3, BB $ movw TT2, r0
mul A5, BB
ADD CA, TT0 $ adc C0, TT1
adc C1, TT2 $ adc C2, TT3
adc C3, r0 $ adc C4, r1
adc C5, Null $ adc C6, Null
;; Done B5
;; 2 * 4 -> 0:a
;; 4 * 4 -> 2:1
;; 6 * 4 -> 4:3
ldd BB, Z+4+Off
mul A2, BB $ movw TT0, r0
mul A4, BB $ movw TT2, r0
mul A6, BB
ADD CA, TT0 $ adc C0, TT1
adc C1, TT2 $ adc C2, TT3
adc C3, r0 $ adc C4, r1
adc C5, Null $ adc C6, Null
;; 1 * 4 -> a:-
;; 3 * 4 -> 1:0
;; 5 * 4 -> 3:2
mul A1, BB $ mov TT1, r1
mul A3, BB $ movw TT2, r0
mul A5, BB
;; Done A1
;; Done B4
ADD CA, TT1
adc C0, TT2 $ adc C1, TT3
adc C2, r0 $ adc C3, r1
;; Accumulate carry for C3 in TT1.
;; Accumulate carry for C4 in A1.
#define Cry3 TT1
#define Cry4 A1
clr Cry3
clr Cry4
rol Cry4
;; 6 * 2 -> 2:1
;; 6 * 3 -> 3:2
;; 5 * 3 -> 2:1
ldd BB, Z+2+Off
mul A6, BB
add C1, r0
adc C2, r1
adc Cry3, Null
ldd BB, Z+3+Off
mul A6, BB
add C2, r0
adc C3, r1
adc Cry4, Null
mul A5, BB
add C1, r0
adc C2, r1
adc Cry3, Null
;; Perform the remaining 11 multiplications in 4 loopings:
;; 4 * 3 -> 1:0
;; 3 * 3 -> 0:a
;; 2 * 3 -> a:-
;;
;; 5 * 2 -> 1:0
;; 4 * 2 -> 0:a
;; 3 * 2 -> a:-
;;
;; 6 * 1 -> 1:0
;; 5 * 1 -> 0:a
;; 4 * 1 -> a:-
;;
;; . * 0 -> 1:0 (=0)
;; 6 * 0 -> 0:a
;; 5 * 0 -> a:-
;; BB already contains B3, hence let Z point one past B2 so that
;; the LD *, -Z below will pick up B2, B1, B0.
adiw r30, 1 + Off+2
;; Accumulate carry for C2 in TT2.
#define Cry2 TT2
clr Cry2
;; TT3 is the loop counter, iterate over B3...B0.
ldi TT3, 4
rjmp .Loop_start
.Loop:
;; We use A2...A4 below; so shift bytes of A into place.
mov A2, A3
mov A3, A4
mov A4, A5
mov A5, A6
clr A6
ld BB, -Z
.Loop_start:
mul A3, BB
ADD CA, r0 $ adc C0, r1 $ adc C1, Null $ adc Cry2, Null
MUL A2, BB
mov TT0, r1
MUL A4, BB
ADD CA, TT0 $ adc C0, r0 $ adc C1, r1 $ adc Cry2, Null
dec TT3
brne .Loop
clr ZERO
ADD C2, Cry2
adc C3, Cry3
adc C4, Cry4
adc C5, ZERO
adc C6, ZERO
;; Finally...
pop ZL
pop ZH
;; The high byte is at least 0x40 and at most 0xfe.
;; The result has to be left-shifted by one in order to scale it
;; correctly.
ldi Carry, 1
F7call normalize.maybe_round.store_with_flags
do_epilogue_restores 10
ENDF mul_mant
#endif /* F7MOD_mul_mant_ && MUL */
#if defined F7MOD_mul_mant_ && ! defined (__AVR_HAVE_MUL__)
#define AA TMP
#define A0 13
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 r26
#define A6 r27
#define BB ZERO
#define Bits r29
#define Bytes r28
DEFUN mul_mant
do_prologue_saves 7
bst r18, 0 ; T = 1: Don't round.
;; Save result address for later.
push r25
push r24
;; Load 1st operand mantissa.
wmov r30, r22
clr AA
LDD A0, Z+0+Off
LDD A1, Z+1+Off
LDD A2, Z+2+Off
LDD A3, Z+3+Off
LDD A4, Z+4+Off
LDD A5, Z+5+Off
LDD A6, Z+6+Off
;; Let Z point one past .mant of the 2nd input operand.
wmov r30, r20
adiw r30, Expo
;; Clear the result mantissa.
.global __clr_8
XCALL __clr_8
;; Loop over the bytes of B's mantissa from highest to lowest.
;; "+1" because we jump into the loop.
ldi Bytes, 1 + F7_MANT_BYTES
;; Divide one operand by 2 so that the result mantissa won't overflow.
;; This is accounted for by "Carry = 1" below.
ldi Bits, 1
rjmp .Loop_entry
.Loop_bytes:
ld BB, -Z
;; Loop over the bits of B's mantissa from highest to lowest.
ldi Bits, 8
.Loop_bits:
lsl BB
brcc .Lnext_bit
ADD CA, AA
adc C0, A0
adc C1, A1
adc C2, A2
adc C3, A3
adc C4, A4
adc C5, A5
adc C6, A6
.Lnext_bit:
.Loop_entry:
LSR A6
ror A5
ror A4
ror A3
ror A2
ror A1
ror A0
ror AA
dec Bits
brne .Loop_bits
dec Bytes
brne .Loop_bytes
;; Finally...
pop ZL
pop ZH
;; The result has to be left-shifted by one (multiplied by 2) in order
;; to undo the division by 2 of the 1st operand.
ldi Carry, 1
F7call normalize.maybe_round.store_with_flags
do_epilogue_restores 7
ENDF mul_mant
#endif /* F7MOD_mul_mant_ && ! MUL */
#if defined (F7MOD_div_)
;; Dividend is C[]
;; Divisor
#define A0 9
#define A1 10
#define A2 11
#define A3 12
#define A4 13
#define A5 14
#define A6 15
;; Quotient
#define Q0 0 /* === TMP */
#define Q1 Q0+1 /* === ZERO */
#define Q2 26
#define Q3 Q2+1
#define Q4 28
#define Q5 Q4+1
#define Q6 16
#define Q7 Q6+1
#define Cnt CA
#define QBits r8
DEFUN div
do_prologue_saves 12
;; Number of bits requested for the quotient.
;; This is usually 2 + F7_MANT_BITS.
mov QBits, r20
wmov ZL, r22
LDD A0, Z+0+Off
LDD A1, Z+1+Off
LDD A2, Z+2+Off
LDD A3, Z+3+Off
LDD A4, Z+4+Off
LDD A5, Z+5+Off
LDD A6, Z+6+Off
wmov ZL, r24
F7call load_mant
;; Clear quotient Q[].
clr Q0 ; === TMP
;clr Q1 ; === ZERO
wmov Q2, Q0
wmov Q4, Q0
wmov Q6, Q0
;; C[] and A[] are valid mantissae, i.e. their MSBit is set. Therefore,
;; quotient Q[] will be in [0x0.ff..., 0x0.40...] and to adjust Q[] we
;; need at most 1 left-shift. Compute F7_MANT_BITS + 2 bits of the
;; quotient: One bit is used for rounding, and one bit might be consumed
;; by the mentioned left-shift.
mov Cnt, QBits
rjmp .Loop_start
.Loop:
;; Shift dividend.
LSL C0
rol C1
rol C2
rol C3
rol C4
rol C5
rol C6
brcs .Lfits
;; Compare dividend against divisor.
.Loop_start:
CP C0, A0
cpc C1, A1
cpc C2, A2
cpc C3, A3
cpc C4, A4
cpc C5, A5
cpc C6, A6
;; Shift 0 into quotient.
brlo 1f
.Lfits:
;; Divisor fits into dividend.
SUB C0, A0
sbc C1, A1
sbc C2, A2
sbc C3, A3
sbc C4, A4
sbc C5, A5
sbc C6, A6
;; Shift 1 into quotient.
sec
rol Q0
skipnext
1: lsl Q0
rol Q1
rol Q2
rol Q3
rol Q4
rol Q5
rol Q6
rol Q7
dec Cnt
brne .Loop
wmov CA, Q0
wmov C1, Q2
wmov C3, Q4
wmov C5, Q6
clr ZERO
ldi Carry, 64
sub Carry, QBits
F7call normalize.round.store_with_flags
do_epilogue_restores 12
ENDF div
#endif /* F7MOD_div_ */
#ifdef F7MOD_sqrt_approx_
;; ReMainder
#define MX 16
#define M0 17
#define M1 26
#define M2 27
#define M3 14
#define M4 15
#define M5 TMP
#define M6 r29
#define AA ZERO
#define One r13
#define Bits r28
#define Bytes M6
;; Extend C[] by 0b01 at the low end.
#define CX (0b01 << 6)
;;; Compute square-root of const f7_t *R22 for a positive number.
DEFUN sqrt_approx
;; 7 = Y, R17...R13
do_prologue_saves 7
wmov ZL, r22 ; Input const f7_t*
wmov YL, r24 ; Output f7_t*
F7call load_mant
ldi CA, 0xff
;; The paper-pencil method for the mantissa consumes bits in pairs and
;; expects the input as Q-format 2.*, but mant is in 1.*. This means
;; we have to shift one to the right. If expo is odd, then we shift
;; one to the left and subtract one from expo in order to compensate
;; and to get an even exponent.
;; Divide expo by 2 because we are doing sqrt.
ldd XH, Z+Expo+1
ldd XL, Z+Expo+0
asr XH
ror XL
;; Store expo to result.
wmov ZL, YL
std Z+Expo+0, XL
std Z+Expo+1, XH
brcs 1f
;; Expo was even. Do >>=1 in order to get Q2.* as explained above.
LSR C6 $ ror C5 $ ror C4 $ ror C3
ror C2 $ ror C1 $ ror C0 $ ror CA
1:
;; For odd expo, >>=1 to get Q2.* and <<=1 to get an even expo cancel out.
;; And the right-shift of the exponent implicitly subtracted 1 from it
;; as needed.
F7call store_mant.with_flags
;; Let Z point one past the mantissa's MSB.
adiw ZL, Off + F7_MANT_BYTES
;; Clear the result mantissa.
.global __clr_8
XCALL __clr_8
;; Clear ReMainder. M6 === Bytes will be zero when Bytes is down to 0.
clr M5
wmov M3, C3
wmov M1, C1
wmov MX, CA
clr One
inc One
;; "+1" because .flags extends the mantissa at the low end.
ldi Bytes, 1 + F7_MANT_BYTES
.Loop_bytes:
ld AA, -Z
ldi Bits, 8
.Loop_bits:
;; Shift top 2 bits of MX into M[].
LSL MX $ rol M0 $ rol M1 $ rol M2 $ rol M3
LSL MX $ rol M0 $ rol M1 $ rol M2 $ rol M3
;; "Take down" 2 bits from A[] to MX.7 and MX.6
mov MX, AA
andi MX, 0xc0
lsl AA
lsl AA
;; Compare remainder against current result extended by 0b01.
CPI MX, CX
cpc M0, C0
cpc M1, C1
cpc M2, C2
cpc M3, C3
brcs 1f
;; If the extended result fits, subtract it from M and set the
;; next result bit to 1.
SUBI MX, CX
sbc M0, C0
sbc M1, C1
sbc M2, C2
sbc M3, C3
1:
;; If it doesn't fit, set the next result bit to 0 (and don't subtract).
rol C0
eor C0, One
rol C1
rol C2
rol C3
subi Bits, 2
brne .Loop_bits
;; AA (=== ZERO) is zero again.
dec Bytes
brne .Loop_bytes
;; B6 (=== Bytes) is zero now.
;; Now we consumed all the 64 bits of the extended mantissa, but we
;; only expanded 64 / 2 = 32 bits of the result, which is currently
;; held in C3 ... C0. Do the same like above, but on all bytes.
;; Shift in 00's because the mantissa is exhausted.
;; "-1" because flags is part of the mantissa, which is already consumed.
ldi Bits, 8 * (F7_MANT_BYTES - 1)
.Loop2_bits:
;; Shift top 2 bits of MX into M[].
.Ltwice:
LSL MX
rol M0
rol M1
rol M2
rol M3
rol M4
rol M5
rol M6
subi Bits, 0x80
brmi .Ltwice
;; "Take down" two 0's to MX.7 and MX.6
; clr MX ;; MX is already zero.
;; Compare remainder against current result extended by 0b01.
CPI MX, CX
cpc M0, C0
cpc M1, C1
cpc M2, C2
cpc M3, C3
cpc M4, C4
cpc M5, C5
cpc M6, C6
brcs 1f
;; If the extended result fits, subtract it from M and set the
;; next result bit to 1.
SUBI MX, CX
sbc M0, C0
sbc M1, C1
sbc M2, C2
sbc M3, C3
sbc M4, C4
sbc M5, C5
sbc M6, C6
1:
;; If it doesn't fit, set the next result bit to 0 (and don't subtract).
rol C0
eor C0, One
rol C1
rol C2
rol C3
rol C4
rol C5
rol C6
subi Bits, 2
brne .Loop2_bits
;; Set flags.
st Z, ZERO
F7call store_mant
do_epilogue_restores 7
ENDF sqrt_approx
#endif /* F7MOD_sqrt_approx_ */
#if defined (F7MOD_sqrt16_) && defined (__AVR_HAVE_MUL__)
#define Mask C6
#define Q0 C3 /* = R22 */
#define Q1 C4 /* = R23 */
;; uint16_t R24 = sqrt16_XXX (uint16_t R24);
;; Clobbers: R22, R23, TMP.
;;
;; XXX = floor: Return integral part of square-root of R25:R24 with R25 = 0.
;; Error is in [0, -1 LSB).
;; XXX = round: Return quare-root of R25:R24 rounded to nearest integer.
;; R25 = (Q[] >= 65281) = (Q > 0xff00), i.e. if Q[] is not
;; bigger than 0xff00, then the result fits in 8 bits.
;; Return C = 0 if the result is the same as for XXX = floor,
;; error in [0, -1/2 LSB)
;; Return C = 1 if the result is one higher than for XXX = floor,
;; error in [1/2 LSB, 0).
DEFUN sqrt16_round
set
skipnext
;; ...
LABEL sqrt16_floor
clt ; Skipped?
movw Q0, r24
clr C5
ldi Mask, 1 << 7
.Loop_mask:
add C5, Mask
mul C5, C5
cp Q0, R0
cpc Q1, R1
brsh 1f
sub C5, Mask
1: lsr Mask
brne .Loop_mask
brtc .Ldone ; No rounding => C6 will be 0.
;; Rounding: (X + 1/2)^2 = X^2 + X + 1/4, thus probing
;; for bit -1 is testing Q[] against C5^2 + C5.
mul C5, C5
add R0, C5
adc R1, C6 ; Exploit C6 === Mask = 0.
cp R0, Q0
cpc R1, Q1
brcc .Ldone
;; If C5^2 + C5 + 1/4 fits into Q[], then round up and C = 1.
adiw C5, 1 ; Exploit C6 === Mask = 0.
sec
.Ldone:
clr __zero_reg__
ret
ENDF sqrt16_round
#undef Mask
#undef Q0
#undef Q1
#endif /* F7MOD_sqrt16_ && MUL */
#undef CA
#undef C0
#undef C1
#undef C2
#undef C3
#undef C4
#undef C5
#undef C6
#undef Carry
#ifdef F7MOD_D_fma_
_DEFUN __fma
DALIAS fma
LALIAS fmal
#define n_pushed 4
#define n_frame (2 * F7_SIZEOF)
do_prologue_saves n_pushed, n_frame
;; Y = FramePointer + 1
adiw Y, 1
;; FP + 1 = (f7_t) arg1
wmov r16, Y
;; The double argument arg1 is already in R18[].
XCALL F7_NAME (set_double_impl)
;; The double argument arg2 is in R10[]. Move it to R18[].
wmov r18, r10
wmov r20, r12
wmov r22, r14
;; R16, R17 are clobbered. Fetch them from where prologue_saves put them.
ldd r24, Y + n_frame + 3 ; Saved R16
ldd r25, Y + n_frame + 2 ; Saved R17
;; FP + 1 + 10 = (f7_t) arg2
subi r16, lo8 (-F7_SIZEOF)
sbci r17, hi8 (-F7_SIZEOF)
XCALL F7_NAME (set_double_impl)
wmov r24, Y ; &arg1
wmov r22, r16 ; &arg2
XCALL F7_NAME (Imul) ; arg1 *= arg2
;; The 3rd double argument arg3 was passed on the stack. Move it to R18[],
;; Don't use f7_set_pdouble() because that function is unused (for now).
.irp n, 0, 1, 2, 3, 4, 5, 6, 7
ldd 18+\n, Y + n_frame + n_pushed + PC_SIZE + \n
.endr
XCALL F7_NAME (set_double_impl)
wmov r24, Y ; &arg1
wmov r22, r16 ; &arg2
XCALL F7_NAME (Iadd) ; arg1 += arg2
wmov r24, Y ; &arg1
XCALL F7_NAME (get_double)
do_epilogue_restores n_pushed, n_frame
_ENDF __fma
#endif /* F7MOD_D_fma_ */
#ifdef F7MOD_D_fabs_
_DEFUN __fabs
DALIAS fabs
LALIAS fabsl
andi R25, 0b01111111
ret
_ENDF __fabs
#endif /* F7MOD_D_fabs_ */
#ifdef F7MOD_D_neg_
_DEFUN __neg
_LABEL __negdf2
subi R25, 0b10000000
ret
_ENDF __neg
#endif /* F7MOD_D_neg_ */
#ifdef F7MOD_D_signbit_
_DEFUN __signbit
DALIAS signbit
LALIAS signbitl
bst R25, 7
clr R25
clr R24
bld R24, 0
ret
_ENDF __signbit
#endif /* F7MOD_D_signbit_ */
#ifdef F7MOD_D_copysign_
_DEFUN __copysign
DALIAS copysign
LALIAS copysignl
bst R17, 7
bld R25, 7
ret
_ENDF __copysign
#endif /* F7MOD_D_copysign_ */
#ifdef F7MOD_D_isinf_
;;; +Inf -> +1
;;; -Inf -> -1
_DEFUN __isinf
DALIAS isinf
LALIAS isinfl
;; Save sign for later
push R25
F7call class_D
pop TMP
ldi R24, 0
ldi R25, 0
;; Inf: T = Z = 1.
brtc 0f ; ordinary number
brne 0f ; Nan
ldi R24, 1
sbrc TMP, 7
sbiw R24, 2
0: ret
_ENDF __isinf
#endif /* F7MOD_D_isinf_ */
#ifdef F7MOD_D_isnan_
_DEFUN __isnan
DALIAS isnan
LALIAS isnanl
F7call class_D
;; NaN: T = 1, Z = 0.
brtc 0f
ldi R24, 1
brne 1f
0:
clr R24
1:
clr R25
ret
_ENDF __isnan
#endif /* F7MOD_D_isnan_ */
#ifdef F7MOD_D_isfinite_
_DEFUN __isfinite
DALIAS isfinite
LALIAS isfinitel
F7call class_D
;; Number <=> T = 0.
bld R24, 0
com R24
andi R24, 1
clr R25
ret
_ENDF __isfinite
#endif /* F7MOD_D_isfinite_ */
#ifdef F7MOD_D_class_
;; The encoded exponent has 11 Bits.
#define MAX_BIASED_EXPO 0b0111111111110000
;; Classify a double in R18[]
;; Number: T-Flag = 0.
;; +-Inf : T-Flag = 1, Z-Flag = 1.
;; NaN : T-Flag = 1, Z-Flag = 0.
DEFUN class_D
wmov R26, R24
andi R26, lo8 (MAX_BIASED_EXPO)
andi R27, hi8 (MAX_BIASED_EXPO)
subi R26, lo8 (MAX_BIASED_EXPO)
sbci R27, hi8 (MAX_BIASED_EXPO)
clt
brne .L.number
set
;; Set sign and expo to 0.
clr R25
andi R24, lo8 (~MAX_BIASED_EXPO)
;; What remains is the mantissa.
;; Mantissa == 0 => +/-Inf.
;; Mantissa != 0 => NaN.
;; Compare R18[] against sign_extend(R26) with R26 = 0.
.global __cmpdi2_s8
XJMP __cmpdi2_s8
.L.number:
ret
ENDF class_D
#endif /* F7MOD_D_class_ */
#ifdef F7MOD_D_cmp_
#define A0 18
#define A1 A0 + 1
#define A2 A0 + 2
#define A3 A0 + 3
#define A4 A0 + 4
#define A5 A0 + 5
#define A6 A0 + 6
#define A7 A0 + 7
#define B0 10
#define B1 B0 + 1
#define B2 B0 + 2
#define B3 B0 + 3
#define B4 B0 + 4
#define B5 B0 + 5
#define B6 B0 + 6
#define B7 B0 + 7
#define AA5 XH
#define AA6 ZL
#define AA7 ZH
#define BB0 A0
#define BB1 A1
#define BB2 A2
#define BB3 A3
#define BB4 A4
#define BB5 A5
#define BB6 A6
#define BB7 A7
;;; Helper for __<cmp>df2 and __unorddf2.
;;; T = 1: Comparison is unordered.
;;; T = 0: Comparison is ordered, and Z, N, C, S flags are set according
;;; to compare (double A, double B) as if set by a signed int comparison.
;;; Note that f(+0) = f(-0) = 0.
;;; In any case:
;;; - return R24 = 1.
;;; - return R25.0 = isNaN (A)
;;; - return R25.1 = isNaN (B)
DEFUN D_cmp
rcall D_cmp.map_i64
bld __tmp_reg__, 0
push __tmp_reg__
;; Save A somewhere else...
wmov AA6, A6
mov AA5, A5
push A4
push A3
push A2
push A1
mov r0, A0
;; ... so that we can use D_cmp.map_i64 on B.
wmov BB6, B6
wmov BB4, B4
wmov BB2, B2
wmov BB0, B0
rcall D_cmp.map_i64
;; Run the following code even when B is NaN (T=1) so as to pop the regs.
;; In the non-NaN case, AA and BB can be compared like int64_t for the
;; sake of comparing A and B as double.
CP r0, BB0 $ pop r0
cpc r0, BB1 $ pop r0
cpc r0, BB2 $ pop r0
cpc r0, BB3 $ pop r0
cpc r0, BB4
cpc AA5, BB5
cpc AA6, BB6
cpc AA7, BB7
pop r25
;; R25.0 <=> A is NaN
;; R25.1 <=> B is NaN
;; T <=> comparison is unordered
bld r25, 1
sbrc r25, 0
set
ldi r24, 1
ret
;;; A is NaN: Set T=1.
;;; A is not a NaN: Set T=0, and map double A to int64_t such that
;;; f(A) <cmp> f(B) iff A <cmp> B, i.e. we can treat the result
;;; as int64_t for the matter of double comparison.
;;; Clobbers: XL.
D_cmp.map_i64:
bst A7, 7
cbr A7, 0x80
;; If Inf < |A|, then we have a NaN.
CP __zero_reg__, A0
cpc __zero_reg__, A1
cpc __zero_reg__, A2
cpc __zero_reg__, A3
cpc __zero_reg__, A4
cpc __zero_reg__, A5
ldi XL, lo8(0x7ff0) $ cpc XL, A6
ldi XL, hi8(0x7ff0) $ cpc XL, A7
brlo .Lunord
brtc 9f
clt
.global __negdi2
XJMP __negdi2
.Lunord:
set
9: ret
ENDF D_cmp
#endif /* F7MOD_D_cmp_ */
;; bool __ledf2 (double, double);
#ifdef F7MOD_D_le_
_DEFUN __ledf2
F7call D_cmp
brts 0f
breq 1f
brlt 1f
0: ldi r24, 0
1: ret
_ENDF __ledf2
#endif /* F7MOD_D_le_ */
;; bool __ltdf2 (double, double);
#ifdef F7MOD_D_lt_
_DEFUN __ltdf2
F7call D_cmp
brts 0f
brlt 1f
0: ldi r24, 0
1: ret
_ENDF __ltdf2
#endif /* F7MOD_D_lt_ */
;; bool __gedf2 (double, double);
#ifdef F7MOD_D_ge_
_DEFUN __gedf2
F7call D_cmp
brts 0f
brge 1f
0: ldi r24, 0
1: ret
_ENDF __gedf2
#endif /* F7MOD_D_ge_ */
;; bool __gtdf2 (double, double);
#ifdef F7MOD_D_gt_
_DEFUN __gtdf2
F7call D_cmp
brts 0f
breq 0f
brge 1f
0: ldi r24, 0
1: ret
_ENDF __gtdf2
#endif /* F7MOD_D_gt_ */
;; bool __nedf2 (double, double);
#ifdef F7MOD_D_ne_
_DEFUN __nedf2
F7call D_cmp
brts 0f
brne 1f
0: ldi r24, 0
1: ret
_ENDF __nedf2
#endif /* F7MOD_D_ne_ */
;; bool __eqdf2 (double, double);
#ifdef F7MOD_D_eq_
_DEFUN __eqdf2
F7call D_cmp
brts 0f
breq 1f
0: ldi r24, 0
1: ret
_ENDF __eqdf2
#endif /* F7MOD_D_eq_ */
;; bool __unorddf2 (double, double);
#ifdef F7MOD_D_unord_
_DEFUN __unorddf2
F7call D_cmp
bld r24, 0
ret
_ENDF __unorddf2
#endif /* F7MOD_D_unord_ */
#ifdef F7MOD_D_fminfmax_
_DEFUN __fmin
DALIAS fmin
LALIAS fminl
inc __zero_reg__
_LABEL __fmax
DALIAS fmax
LALIAS fmaxl
;; Push A[].
push r25
push r24
push r23
push r22
push r21
push r20
push r19
push r18
;; fmin or fmax
push __zero_reg__
clr __zero_reg__
XCALL __gedf2
pop __tmp_reg__
andi r25, 0x3 ; NaNs?
brne .Lnan
;; No NaNs involved.
eor __tmp_reg__, r24 ; (f == fmin) ^ (A >= B)
brne 1f
2:
;; Return B since the cases are:
;; fmax && A < B
;; fmin && A >= B
#ifdef __AVR_XMEGA__
in XL, __SP_L__
in XH, __SP_H__
adiw XL, 8
out __SP_L__, XL
out __SP_H__, XH
#else
pop r0 $ pop r0 $ pop r0 $ pop r0
pop r0 $ pop r0 $ pop r0 $ pop r0
#endif
wmov r24, r16
wmov r22, r14
wmov r20, r12
wmov r18, r10
ret
1:
;; Return A since the cases are:
;; fmax && A >= B
;; fmin && A < B
pop r18
pop r19
pop r20
pop r21
pop r22
pop r23
pop r24
pop r25
ret
.Lnan:
;; There are NaNs.
;; When only the 1st argument is a NaN, then return the 2nd argument
cpi r25, 0x1
breq 2b
;; When the 2nd argument is a NaN, then return the 1st argument.
;; When both arguments are NaNs, then return NaN (e.g. the 1st argument).
rjmp 1b
_ENDF __fmax
#endif /* F7MOD_D_fminfmax_ */
#ifdef F7MOD_D_sincos_
;;; void sincos (double R18, double *R16, double *R14);
_DEFUN __sincos
DALIAS sincos
LALIAS sincosl
#define n_pushed 4
#define n_frame (2 * F7_SIZEOF)
do_prologue_saves n_pushed, n_frame
;; Y = FramePointer + 1
adiw Y, 1
;; R16 = frame-arg 1
wmov r16, Y
;; The double argument is in R18[].
XCALL F7_NAME (set_double_impl)
;; void f7_sincos (f7_t *ss, f7_t *cc, const f7_t *aa)
;; Note that aa may equal ss or cc.
wmov r20, r16 ; aa
wmov r24, r16 ; ss = FP + 1
subi r16, lo8(-F7_SIZEOF)
sbci r17, hi8(-F7_SIZEOF)
wmov r22, r16 ; cc = FP + 1 + F7_SIZEOF
XCALL F7_NAME (sincos)
;; double R18 = get_double (cc)
wmov r24, r16
XCALL F7_NAME (get_double)
wmov XL, r14 ; double *pcos
rcall store.r18.X ; *pcos = R18
;; double R18 = get_double (ss)
wmov r24, Y
XCALL F7_NAME (get_double)
ldd XL, Y + n_frame + 3 ; Saved R16
ldd XH, Y + n_frame + 2 ; Saved R17
rcall store.r18.X ; *psin = R18
do_epilogue_restores n_pushed, n_frame
store.r18.X:
st X+, r18
st X+, r19
st X+, r20
st X+, r21
st X+, r22
st X+, r23
st X+, r24
st X+, r25
ret
_ENDF __sincos
#endif /* F7MOD_D_sincos_ */
#ifdef F7MOD_call_dd_
;; Provide double wrappers for functions that operate on f7_t and get f7_t*.
;;
;; We set up a frame of sizeof(f7_t), convert the input double in R18[] to
;; f7_t in that frame location, then call *Z and finally convert the result f7_t
;; to double R18[] if that's requested.
;;
;; call_dd: double func (double A)
;; void (*Z) (f7_t *aa, const f7_t *aa)
;;
;; call_dx: double func (type_t A) , sizeof(type_t) <= 4
;; void (*Z) (f7_t *aa, type_t)
;;
;; call_xd: type_t func (double A)
;; type_t (*Z) (const f7_t *aa)
;;
;; call_ddx: double func (double A, word_t) , sizeof (word_t) <= 2
;; void (*Z) (f7_t *aa, const f7_t *aa, word_t)
#define WHAT R13
DEFUN call_dd ; WHAT = R13 = 3
inc ZERO
LABEL call_xd ; WHAT = R13 = 2
inc ZERO
LABEL call_ddx ; WHAT = R13 = 1
inc ZERO
LABEL call_dx ; WHAT = R13 = 0
push WHAT
mov WHAT, ZERO
clr ZERO
;; R14/R15 hold Z, the address of the f7_worker function, until we need it.
push r14
push r15
wmov r14, Z
#define n_pushed 4
#define n_frame F7_SIZEOF
do_prologue_saves n_pushed, n_frame
;; Y = FramePointer + 1
adiw Y, 1
dec WHAT
brmi .Ldx ; WHAT was initially 0.
;; FP + 1 = (f7_t) arg1
wmov r16, Y
;; The double argument is in R18[].
XCALL F7_NAME (set_double_impl)
tst WHAT
brne .Lno.ddx ; WHAT was initially != 1.
;; call_ddx: Set R20/21 to the 2-byte scalar / pointer argument.
;; Fetch it from where prologue_saves put it.
ldd r20, Y + n_frame + 3 ; Saved R16
ldd r21, Y + n_frame + 2 ; Saved R17
.Lno.ddx:
wmov r22, Y ; &arg1 (input)
.Ldo.dx:
wmov r24, Y ; &arg1 (output)
wmov Z, r14
XICALL
dec WHAT
breq .Lepilogue ; WHAT was initially 2: Return non-double.
wmov r24, Y ; &arg1
XCALL F7_NAME (get_double)
.Lepilogue:
;; + 3 to account for R13...R15 pushed prior to do_prologue_saves.
do_epilogue_restores n_pushed + 3, n_frame
.Ldx:
;; call_dx: Copy the 4-byte input scalar from R22[4] to R20[4].
wmov r20, r22
wmov r22, r24
rjmp .Ldo.dx
ENDF call_dd
#endif /* F7MOD_call_dd_ */
#ifdef F7MOD_call_ddd_
;; Provide double wrappers for functions that operate on f7_t and get f7_t*.
;;
;; We set up a frame of 2 * sizeof(f7_t), convert the input doubles in R18[]
;; and R10[] to f7_t in these frame locations, then call *Z and finally
;; convert the result f7_t to double R18[] if that's requested.
;;
;; call_ddd: double func (double A, double B)
;; void (*Z) (f7_t *aa, const f7_t *aa, const f7_t *bb)
;;
;; call_xdd: type_t func (double A, double B)
;; type_t (*Z) (const f7_t *aa, const f7_t *bb)
DEFUN call_ddd
inc ZERO
LABEL call_xdd
;; R8/R9 hold Z, the address of the f7_worker function, until we need it.
push r9
push r8
wmov r8, Z
;; This is an argument to call.2 and will be accessed by the arg pointer.
push ZERO
clr ZERO
rcall call.2
pop TMP
pop r8
pop r9
ret
#define n_pushed 4
#define n_frame (2 * F7_SIZEOF)
call.2:
do_prologue_saves n_pushed, n_frame
;; Y = FramePointer + 1
adiw Y, 1
;; FP + 1 = (f7_t) arg1
wmov r16, Y
;; First double argument is already in R18[].
XCALL F7_NAME (set_double_impl)
;; FP + 11 = (f7_t) arg2
subi r16, lo8 (-F7_SIZEOF)
sbci r17, hi8 (-F7_SIZEOF)
;; Move second double argument to R18[].
wmov r18, r10
wmov r20, r12
wmov r22, r14
;; Get high word of arg2 from where prologue_saves put it.
ldd r24, Y + n_frame + 3 ; Saved R16
ldd r25, Y + n_frame + 2 ; Saved R17
XCALL F7_NAME (set_double_impl)
;; Z (f7_t *arg1, const f7_t *arg1, const f7_t *arg2)
wmov Z, r8
wmov r24, Y ; &arg1
;; WHAT == 0 => call_xdd
;; WHAT != 0 => call_ddd
ldd TMP, Y + n_frame + n_pushed + PC_SIZE
tst TMP
breq .Lxdd
wmov r22, Y ; &arg1
wmov r20, r16 ; &arg2
XICALL
wmov r24, Y ; &arg1
XCALL F7_NAME (get_double)
.Lepilogue:
do_epilogue_restores n_pushed, n_frame
.Lxdd:
wmov r22, r16 ; &arg2
XICALL
rjmp .Lepilogue
ENDF call_ddd
#endif /* F7MOD_call_ddd_ */
#include "f7-wraps.h"
;;; Some additional, singular wraps that don't match any pattern.
;; double __powidf2 (double, int) ; __builtin_powi
#ifdef F7MOD_D_powi_
_DEFUN __powidf2
.global F7_NAME(powi)
ldi ZH, hi8(gs(F7_NAME(powi)))
ldi ZL, lo8(gs(F7_NAME(powi)))
F7jmp call_ddx
_ENDF __powidf2
#endif /* F7MOD_D_powi_ */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Fixed-point -> double conversions.
;;; The double exponent starts at bit 52 since the encoded mantissa has 52 bits.
;;; Note that when X is a multiple of 16, then dex_lo(x) evaluates to 0.
#define dex_lo(x) hlo8((x) << (52 - 32))
#define dex_hi(x) hhi8((x) << (52 - 32))
#ifdef F7MOD_usa2D_
_DEFUN __fractusadf
;; Convert USI to DF.
XCALL __floatunsidf
;; The MSB indicates a value of 0.
cpse r25, __zero_reg__
;; Divide non-zero values by 2^16 in order to adjust for FBIT = 16.
subi r25, dex_hi (16)
ret
_ENDF __fractusadf
#endif /* F7MOD_usa2D_ */
#ifdef F7MOD_sa2D_
_DEFUN __fractsadf
;; Convert SI to DF.
XCALL __floatsidf
;; The MSB indicates a value of 0.
tst r25
breq 0f
;; Divide non-zero values by 2^15 in order to adjust for FBIT = 15.
subi r24, dex_lo (15)
sbci r25, dex_hi (15)
0: ret
_ENDF __fractsadf
#endif /* F7MOD_sa2D_ */
#ifdef F7MOD_uha2D_
_DEFUN __fractuhadf
;; Extend UHA to USA.
clr r22
mov r23, r24
mov r24, r25
clr r25
XJMP __fractusadf
_ENDF __fractuhadf
#endif /* F7MOD_uha2D_ */
#ifdef F7MOD_ha2D_
_DEFUN __fracthadf
;; Extend HA to SA.
clr r22
mov r23, r24
mov r24, r25
lsl r25
sbc r25, r25
XJMP __fractsadf
_ENDF __fracthadf
#endif /* F7MOD_ha2D_ */
#ifdef F7MOD_usq2D_
_DEFUN __fractusqdf
;; Convert USI to DF.
XCALL __floatunsidf
;; The MSB indicates a value of 0.
cpse r25, __zero_reg__
;; Divide non-zero values by 2^32 in order to adjust for FBIT = 32.
subi r25, dex_hi (32)
ret
_ENDF __fractusqdf
#endif /* F7MOD_usq2D_ */
#ifdef F7MOD_sq2D_
_DEFUN __fractsqdf
;; Convert SI to DF.
XCALL __floatsidf
;; The MSB indicates a value of 0.
tst r25
breq 0f
;; Divide non-zero values by 2^31 in order to adjust for FBIT = 31.
subi r24, dex_lo (31)
sbci r25, dex_hi (31)
0: ret
_ENDF __fractsqdf
#endif /* F7MOD_sq2D_ */
#ifdef F7MOD_uqq2D_
_DEFUN __fractuqqdf
;; Extend UQQ to UHQ.
mov r25, r24
clr r24
_LABEL __fractuhqdf
;; Extend UHQ to USQ.
clr r23
clr r22
XJMP __fractusqdf
_ENDF __fractuqqdf
#endif /* F7MOD_uqq2D_ */
#ifdef F7MOD_qq2D_
_DEFUN __fractqqdf
;; Extend QQ to HQ.
mov r25, r24
clr r24
_LABEL __fracthqdf
;; Extend HQ to SQ.
clr r23
clr r22
XJMP __fractsqdf
_ENDF __fractqqdf
#endif /* F7MOD_qq2D_ */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Fixed-point -> double conversions.
#ifdef F7MOD_D2qq_
_DEFUN __fractdfqq
;; Multiply with 2^{24+7} to get a QQ result in r25.
subi r24, dex_lo (-31)
sbci r25, dex_hi (-31)
XCALL __fixdfsi
mov r24, r25
ret
_ENDF __fractdfqq
#endif /* F7MOD_D2qq_ */
#ifdef F7MOD_D2uqq_
_DEFUN __fractdfuqq
;; Multiply with 2^{24+8} to get a UQQ result in r25.
subi r25, dex_hi (-32)
XCALL __fixunsdfsi
mov r24, r25
ret
_ENDF __fractdfuqq
#endif /* F7MOD_D2uqq_ */
#ifdef F7MOD_D2ha_
_DEFUN __fractdfha
;; Multiply with 2^{16+7} to get a HA result in r25:r24
subi r24, dex_lo (-23)
sbci r25, dex_hi (-23)
XJMP __fixdfsi
_ENDF __fractdfha
#endif /* F7MOD_D2ha_ */
#ifdef F7MOD_D2uha_
_DEFUN __fractdfuha
;; Multiply with 2^24 to get a UHA result in r25:r24.
subi r24, dex_lo (-24)
sbci r25, dex_hi (-24)
XJMP __fixunsdfsi
_ENDF __fractdfuha
#endif /* F7MOD_D2uha_ */
#ifdef F7MOD_D2hq_
_DEFUN __fractdfhq
;; Multiply with 2^{16+15} to get a HQ result in r25:r24
;; resp. with 2^31 to get a SQ result in r25:r22.
_LABEL __fractdfsq
subi r24, dex_lo (-31)
sbci r25, dex_hi (-31)
XJMP __fixdfsi
_ENDF __fractdfhq
#endif /* F7MOD_D2hq_ */
#ifdef F7MOD_D2uhq_
_DEFUN __fractdfuhq
;; Multiply with 2^{16+16} to get a UHQ result in r25:r24
;; resp. with 2^32 to get a USQ result in r25:r22.
_LABEL __fractdfusq
subi r25, dex_hi (-32)
XJMP __fixunsdfsi
_ENDF __fractdfuhq
#endif /* F7MOD_D2uhq_ */
#ifdef F7MOD_D2sa_
_DEFUN __fractdfsa
;; Multiply with 2^15 to get a SA result in r25:r22.
subi r24, dex_lo (-15)
sbci r25, dex_hi (-15)
XJMP __fixdfsi
_ENDF __fractdfsa
#endif /* F7MOD_D2sa_ */
#ifdef F7MOD_D2usa_
_DEFUN __fractdfusa
;; Multiply with 2^16 to get a USA result in r25:r22.
subi r25, dex_hi (-16)
XJMP __fixunsdfsi
_ENDF __fractdfusa
#endif /* F7MOD_D2usa_ */
#endif /* !AVR_TINY */