mirror of git://gcc.gnu.org/git/gcc.git
21795 lines
696 KiB
Ada
21795 lines
696 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- S E M _ U T I L --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Treepr; -- ???For debugging code below
|
|
|
|
with Aspects; use Aspects;
|
|
with Atree; use Atree;
|
|
with Casing; use Casing;
|
|
with Checks; use Checks;
|
|
with Debug; use Debug;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Exp_Ch11; use Exp_Ch11;
|
|
with Exp_Disp; use Exp_Disp;
|
|
with Exp_Util; use Exp_Util;
|
|
with Fname; use Fname;
|
|
with Freeze; use Freeze;
|
|
with Ghost; use Ghost;
|
|
with Lib; use Lib;
|
|
with Lib.Xref; use Lib.Xref;
|
|
with Namet.Sp; use Namet.Sp;
|
|
with Nlists; use Nlists;
|
|
with Nmake; use Nmake;
|
|
with Output; use Output;
|
|
with Restrict; use Restrict;
|
|
with Rident; use Rident;
|
|
with Rtsfind; use Rtsfind;
|
|
with Sem; use Sem;
|
|
with Sem_Aux; use Sem_Aux;
|
|
with Sem_Attr; use Sem_Attr;
|
|
with Sem_Ch6; use Sem_Ch6;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Ch13; use Sem_Ch13;
|
|
with Sem_Disp; use Sem_Disp;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Prag; use Sem_Prag;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Warn; use Sem_Warn;
|
|
with Sem_Type; use Sem_Type;
|
|
with Sinfo; use Sinfo;
|
|
with Sinput; use Sinput;
|
|
with Stand; use Stand;
|
|
with Style;
|
|
with Stringt; use Stringt;
|
|
with Targparm; use Targparm;
|
|
with Tbuild; use Tbuild;
|
|
with Ttypes; use Ttypes;
|
|
with Uname; use Uname;
|
|
|
|
with GNAT.HTable; use GNAT.HTable;
|
|
|
|
package body Sem_Util is
|
|
|
|
----------------------------------------
|
|
-- Global Variables for New_Copy_Tree --
|
|
----------------------------------------
|
|
|
|
-- These global variables are used by New_Copy_Tree. See description of the
|
|
-- body of this subprogram for details. Global variables can be safely used
|
|
-- by New_Copy_Tree, since there is no case of a recursive call from the
|
|
-- processing inside New_Copy_Tree.
|
|
|
|
NCT_Hash_Threshold : constant := 20;
|
|
-- If there are more than this number of pairs of entries in the map, then
|
|
-- Hash_Tables_Used will be set, and the hash tables will be initialized
|
|
-- and used for the searches.
|
|
|
|
NCT_Hash_Tables_Used : Boolean := False;
|
|
-- Set to True if hash tables are in use
|
|
|
|
NCT_Table_Entries : Nat := 0;
|
|
-- Count entries in table to see if threshold is reached
|
|
|
|
NCT_Hash_Table_Setup : Boolean := False;
|
|
-- Set to True if hash table contains data. We set this True if we setup
|
|
-- the hash table with data, and leave it set permanently from then on,
|
|
-- this is a signal that second and subsequent users of the hash table
|
|
-- must clear the old entries before reuse.
|
|
|
|
subtype NCT_Header_Num is Int range 0 .. 511;
|
|
-- Defines range of headers in hash tables (512 headers)
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Build_Component_Subtype
|
|
(C : List_Id;
|
|
Loc : Source_Ptr;
|
|
T : Entity_Id) return Node_Id;
|
|
-- This function builds the subtype for Build_Actual_Subtype_Of_Component
|
|
-- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
|
|
-- Loc is the source location, T is the original subtype.
|
|
|
|
function Has_Enabled_Property
|
|
(Item_Id : Entity_Id;
|
|
Property : Name_Id) return Boolean;
|
|
-- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
|
|
-- Determine whether an abstract state or a variable denoted by entity
|
|
-- Item_Id has enabled property Property.
|
|
|
|
function Has_Null_Extension (T : Entity_Id) return Boolean;
|
|
-- T is a derived tagged type. Check whether the type extension is null.
|
|
-- If the parent type is fully initialized, T can be treated as such.
|
|
|
|
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
|
|
-- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
|
|
-- with discriminants whose default values are static, examine only the
|
|
-- components in the selected variant to determine whether all of them
|
|
-- have a default.
|
|
|
|
------------------------------
|
|
-- Abstract_Interface_List --
|
|
------------------------------
|
|
|
|
function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
|
|
Nod : Node_Id;
|
|
|
|
begin
|
|
if Is_Concurrent_Type (Typ) then
|
|
|
|
-- If we are dealing with a synchronized subtype, go to the base
|
|
-- type, whose declaration has the interface list.
|
|
|
|
-- Shouldn't this be Declaration_Node???
|
|
|
|
Nod := Parent (Base_Type (Typ));
|
|
|
|
if Nkind (Nod) = N_Full_Type_Declaration then
|
|
return Empty_List;
|
|
end if;
|
|
|
|
elsif Ekind (Typ) = E_Record_Type_With_Private then
|
|
if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
|
|
Nod := Type_Definition (Parent (Typ));
|
|
|
|
elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
|
|
if Present (Full_View (Typ))
|
|
and then
|
|
Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
|
|
then
|
|
Nod := Type_Definition (Parent (Full_View (Typ)));
|
|
|
|
-- If the full-view is not available we cannot do anything else
|
|
-- here (the source has errors).
|
|
|
|
else
|
|
return Empty_List;
|
|
end if;
|
|
|
|
-- Support for generic formals with interfaces is still missing ???
|
|
|
|
elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
|
|
return Empty_List;
|
|
|
|
else
|
|
pragma Assert
|
|
(Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
|
|
Nod := Parent (Typ);
|
|
end if;
|
|
|
|
elsif Ekind (Typ) = E_Record_Subtype then
|
|
Nod := Type_Definition (Parent (Etype (Typ)));
|
|
|
|
elsif Ekind (Typ) = E_Record_Subtype_With_Private then
|
|
|
|
-- Recurse, because parent may still be a private extension. Also
|
|
-- note that the full view of the subtype or the full view of its
|
|
-- base type may (both) be unavailable.
|
|
|
|
return Abstract_Interface_List (Etype (Typ));
|
|
|
|
else pragma Assert ((Ekind (Typ)) = E_Record_Type);
|
|
if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
|
|
Nod := Formal_Type_Definition (Parent (Typ));
|
|
else
|
|
Nod := Type_Definition (Parent (Typ));
|
|
end if;
|
|
end if;
|
|
|
|
return Interface_List (Nod);
|
|
end Abstract_Interface_List;
|
|
|
|
--------------------------------
|
|
-- Add_Access_Type_To_Process --
|
|
--------------------------------
|
|
|
|
procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
|
|
L : Elist_Id;
|
|
|
|
begin
|
|
Ensure_Freeze_Node (E);
|
|
L := Access_Types_To_Process (Freeze_Node (E));
|
|
|
|
if No (L) then
|
|
L := New_Elmt_List;
|
|
Set_Access_Types_To_Process (Freeze_Node (E), L);
|
|
end if;
|
|
|
|
Append_Elmt (A, L);
|
|
end Add_Access_Type_To_Process;
|
|
|
|
--------------------------
|
|
-- Add_Block_Identifier --
|
|
--------------------------
|
|
|
|
procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
|
|
begin
|
|
pragma Assert (Nkind (N) = N_Block_Statement);
|
|
|
|
-- The block already has a label, return its entity
|
|
|
|
if Present (Identifier (N)) then
|
|
Id := Entity (Identifier (N));
|
|
|
|
-- Create a new block label and set its attributes
|
|
|
|
else
|
|
Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
|
|
Set_Etype (Id, Standard_Void_Type);
|
|
Set_Parent (Id, N);
|
|
|
|
Set_Identifier (N, New_Occurrence_Of (Id, Loc));
|
|
Set_Block_Node (Id, Identifier (N));
|
|
end if;
|
|
end Add_Block_Identifier;
|
|
|
|
----------------------------
|
|
-- Add_Global_Declaration --
|
|
----------------------------
|
|
|
|
procedure Add_Global_Declaration (N : Node_Id) is
|
|
Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
|
|
|
|
begin
|
|
if No (Declarations (Aux_Node)) then
|
|
Set_Declarations (Aux_Node, New_List);
|
|
end if;
|
|
|
|
Append_To (Declarations (Aux_Node), N);
|
|
Analyze (N);
|
|
end Add_Global_Declaration;
|
|
|
|
--------------------------------
|
|
-- Address_Integer_Convert_OK --
|
|
--------------------------------
|
|
|
|
function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
|
|
begin
|
|
if Allow_Integer_Address
|
|
and then ((Is_Descendant_Of_Address (T1)
|
|
and then Is_Private_Type (T1)
|
|
and then Is_Integer_Type (T2))
|
|
or else
|
|
(Is_Descendant_Of_Address (T2)
|
|
and then Is_Private_Type (T2)
|
|
and then Is_Integer_Type (T1)))
|
|
then
|
|
return True;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Address_Integer_Convert_OK;
|
|
|
|
-------------------
|
|
-- Address_Value --
|
|
-------------------
|
|
|
|
function Address_Value (N : Node_Id) return Node_Id is
|
|
Expr : Node_Id := N;
|
|
|
|
begin
|
|
loop
|
|
-- For constant, get constant expression
|
|
|
|
if Is_Entity_Name (Expr)
|
|
and then Ekind (Entity (Expr)) = E_Constant
|
|
then
|
|
Expr := Constant_Value (Entity (Expr));
|
|
|
|
-- For unchecked conversion, get result to convert
|
|
|
|
elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
|
|
Expr := Expression (Expr);
|
|
|
|
-- For (common case) of To_Address call, get argument
|
|
|
|
elsif Nkind (Expr) = N_Function_Call
|
|
and then Is_Entity_Name (Name (Expr))
|
|
and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
|
|
then
|
|
Expr := First (Parameter_Associations (Expr));
|
|
|
|
if Nkind (Expr) = N_Parameter_Association then
|
|
Expr := Explicit_Actual_Parameter (Expr);
|
|
end if;
|
|
|
|
-- We finally have the real expression
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
return Expr;
|
|
end Address_Value;
|
|
|
|
-----------------
|
|
-- Addressable --
|
|
-----------------
|
|
|
|
-- For now, just 8/16/32/64
|
|
|
|
function Addressable (V : Uint) return Boolean is
|
|
begin
|
|
return V = Uint_8 or else
|
|
V = Uint_16 or else
|
|
V = Uint_32 or else
|
|
V = Uint_64;
|
|
end Addressable;
|
|
|
|
function Addressable (V : Int) return Boolean is
|
|
begin
|
|
return V = 8 or else
|
|
V = 16 or else
|
|
V = 32 or else
|
|
V = 64;
|
|
end Addressable;
|
|
|
|
---------------------------------
|
|
-- Aggregate_Constraint_Checks --
|
|
---------------------------------
|
|
|
|
procedure Aggregate_Constraint_Checks
|
|
(Exp : Node_Id;
|
|
Check_Typ : Entity_Id)
|
|
is
|
|
Exp_Typ : constant Entity_Id := Etype (Exp);
|
|
|
|
begin
|
|
if Raises_Constraint_Error (Exp) then
|
|
return;
|
|
end if;
|
|
|
|
-- Ada 2005 (AI-230): Generate a conversion to an anonymous access
|
|
-- component's type to force the appropriate accessibility checks.
|
|
|
|
-- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
|
|
-- force the corresponding run-time check
|
|
|
|
if Is_Access_Type (Check_Typ)
|
|
and then Is_Local_Anonymous_Access (Check_Typ)
|
|
then
|
|
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
|
|
Analyze_And_Resolve (Exp, Check_Typ);
|
|
Check_Unset_Reference (Exp);
|
|
end if;
|
|
|
|
-- What follows is really expansion activity, so check that expansion
|
|
-- is on and is allowed. In GNATprove mode, we also want check flags to
|
|
-- be added in the tree, so that the formal verification can rely on
|
|
-- those to be present. In GNATprove mode for formal verification, some
|
|
-- treatment typically only done during expansion needs to be performed
|
|
-- on the tree, but it should not be applied inside generics. Otherwise,
|
|
-- this breaks the name resolution mechanism for generic instances.
|
|
|
|
if not Expander_Active
|
|
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
if Is_Access_Type (Check_Typ)
|
|
and then Can_Never_Be_Null (Check_Typ)
|
|
and then not Can_Never_Be_Null (Exp_Typ)
|
|
then
|
|
Install_Null_Excluding_Check (Exp);
|
|
end if;
|
|
|
|
-- First check if we have to insert discriminant checks
|
|
|
|
if Has_Discriminants (Exp_Typ) then
|
|
Apply_Discriminant_Check (Exp, Check_Typ);
|
|
|
|
-- Next emit length checks for array aggregates
|
|
|
|
elsif Is_Array_Type (Exp_Typ) then
|
|
Apply_Length_Check (Exp, Check_Typ);
|
|
|
|
-- Finally emit scalar and string checks. If we are dealing with a
|
|
-- scalar literal we need to check by hand because the Etype of
|
|
-- literals is not necessarily correct.
|
|
|
|
elsif Is_Scalar_Type (Exp_Typ)
|
|
and then Compile_Time_Known_Value (Exp)
|
|
then
|
|
if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
|
|
Apply_Compile_Time_Constraint_Error
|
|
(Exp, "value not in range of}??", CE_Range_Check_Failed,
|
|
Ent => Base_Type (Check_Typ),
|
|
Typ => Base_Type (Check_Typ));
|
|
|
|
elsif Is_Out_Of_Range (Exp, Check_Typ) then
|
|
Apply_Compile_Time_Constraint_Error
|
|
(Exp, "value not in range of}??", CE_Range_Check_Failed,
|
|
Ent => Check_Typ,
|
|
Typ => Check_Typ);
|
|
|
|
elsif not Range_Checks_Suppressed (Check_Typ) then
|
|
Apply_Scalar_Range_Check (Exp, Check_Typ);
|
|
end if;
|
|
|
|
-- Verify that target type is also scalar, to prevent view anomalies
|
|
-- in instantiations.
|
|
|
|
elsif (Is_Scalar_Type (Exp_Typ)
|
|
or else Nkind (Exp) = N_String_Literal)
|
|
and then Is_Scalar_Type (Check_Typ)
|
|
and then Exp_Typ /= Check_Typ
|
|
then
|
|
if Is_Entity_Name (Exp)
|
|
and then Ekind (Entity (Exp)) = E_Constant
|
|
then
|
|
-- If expression is a constant, it is worthwhile checking whether
|
|
-- it is a bound of the type.
|
|
|
|
if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
|
|
and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
|
|
or else
|
|
(Is_Entity_Name (Type_High_Bound (Check_Typ))
|
|
and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
|
|
then
|
|
return;
|
|
|
|
else
|
|
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
|
|
Analyze_And_Resolve (Exp, Check_Typ);
|
|
Check_Unset_Reference (Exp);
|
|
end if;
|
|
|
|
-- Could use a comment on this case ???
|
|
|
|
else
|
|
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
|
|
Analyze_And_Resolve (Exp, Check_Typ);
|
|
Check_Unset_Reference (Exp);
|
|
end if;
|
|
|
|
end if;
|
|
end Aggregate_Constraint_Checks;
|
|
|
|
-----------------------
|
|
-- Alignment_In_Bits --
|
|
-----------------------
|
|
|
|
function Alignment_In_Bits (E : Entity_Id) return Uint is
|
|
begin
|
|
return Alignment (E) * System_Storage_Unit;
|
|
end Alignment_In_Bits;
|
|
|
|
--------------------------------------
|
|
-- All_Composite_Constraints_Static --
|
|
--------------------------------------
|
|
|
|
function All_Composite_Constraints_Static
|
|
(Constr : Node_Id) return Boolean
|
|
is
|
|
begin
|
|
if No (Constr) or else Error_Posted (Constr) then
|
|
return True;
|
|
end if;
|
|
|
|
case Nkind (Constr) is
|
|
when N_Subexpr =>
|
|
if Nkind (Constr) in N_Has_Entity
|
|
and then Present (Entity (Constr))
|
|
then
|
|
if Is_Type (Entity (Constr)) then
|
|
return
|
|
not Is_Discrete_Type (Entity (Constr))
|
|
or else Is_OK_Static_Subtype (Entity (Constr));
|
|
end if;
|
|
|
|
elsif Nkind (Constr) = N_Range then
|
|
return
|
|
Is_OK_Static_Expression (Low_Bound (Constr))
|
|
and then
|
|
Is_OK_Static_Expression (High_Bound (Constr));
|
|
|
|
elsif Nkind (Constr) = N_Attribute_Reference
|
|
and then Attribute_Name (Constr) = Name_Range
|
|
then
|
|
return
|
|
Is_OK_Static_Expression
|
|
(Type_Low_Bound (Etype (Prefix (Constr))))
|
|
and then
|
|
Is_OK_Static_Expression
|
|
(Type_High_Bound (Etype (Prefix (Constr))));
|
|
end if;
|
|
|
|
return
|
|
not Present (Etype (Constr)) -- previous error
|
|
or else not Is_Discrete_Type (Etype (Constr))
|
|
or else Is_OK_Static_Expression (Constr);
|
|
|
|
when N_Discriminant_Association =>
|
|
return All_Composite_Constraints_Static (Expression (Constr));
|
|
|
|
when N_Range_Constraint =>
|
|
return
|
|
All_Composite_Constraints_Static (Range_Expression (Constr));
|
|
|
|
when N_Index_Or_Discriminant_Constraint =>
|
|
declare
|
|
One_Cstr : Entity_Id;
|
|
begin
|
|
One_Cstr := First (Constraints (Constr));
|
|
while Present (One_Cstr) loop
|
|
if not All_Composite_Constraints_Static (One_Cstr) then
|
|
return False;
|
|
end if;
|
|
|
|
Next (One_Cstr);
|
|
end loop;
|
|
end;
|
|
|
|
return True;
|
|
|
|
when N_Subtype_Indication =>
|
|
return
|
|
All_Composite_Constraints_Static (Subtype_Mark (Constr))
|
|
and then
|
|
All_Composite_Constraints_Static (Constraint (Constr));
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
end All_Composite_Constraints_Static;
|
|
|
|
---------------------------------
|
|
-- Append_Inherited_Subprogram --
|
|
---------------------------------
|
|
|
|
procedure Append_Inherited_Subprogram (S : Entity_Id) is
|
|
Par : constant Entity_Id := Alias (S);
|
|
-- The parent subprogram
|
|
|
|
Scop : constant Entity_Id := Scope (Par);
|
|
-- The scope of definition of the parent subprogram
|
|
|
|
Typ : constant Entity_Id := Defining_Entity (Parent (S));
|
|
-- The derived type of which S is a primitive operation
|
|
|
|
Decl : Node_Id;
|
|
Next_E : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Current_Scope) = E_Package
|
|
and then In_Private_Part (Current_Scope)
|
|
and then Has_Private_Declaration (Typ)
|
|
and then Is_Tagged_Type (Typ)
|
|
and then Scop = Current_Scope
|
|
then
|
|
-- The inherited operation is available at the earliest place after
|
|
-- the derived type declaration ( RM 7.3.1 (6/1)). This is only
|
|
-- relevant for type extensions. If the parent operation appears
|
|
-- after the type extension, the operation is not visible.
|
|
|
|
Decl := First
|
|
(Visible_Declarations
|
|
(Package_Specification (Current_Scope)));
|
|
while Present (Decl) loop
|
|
if Nkind (Decl) = N_Private_Extension_Declaration
|
|
and then Defining_Entity (Decl) = Typ
|
|
then
|
|
if Sloc (Decl) > Sloc (Par) then
|
|
Next_E := Next_Entity (Par);
|
|
Set_Next_Entity (Par, S);
|
|
Set_Next_Entity (S, Next_E);
|
|
return;
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end if;
|
|
|
|
-- If partial view is not a type extension, or it appears before the
|
|
-- subprogram declaration, insert normally at end of entity list.
|
|
|
|
Append_Entity (S, Current_Scope);
|
|
end Append_Inherited_Subprogram;
|
|
|
|
-----------------------------------------
|
|
-- Apply_Compile_Time_Constraint_Error --
|
|
-----------------------------------------
|
|
|
|
procedure Apply_Compile_Time_Constraint_Error
|
|
(N : Node_Id;
|
|
Msg : String;
|
|
Reason : RT_Exception_Code;
|
|
Ent : Entity_Id := Empty;
|
|
Typ : Entity_Id := Empty;
|
|
Loc : Source_Ptr := No_Location;
|
|
Rep : Boolean := True;
|
|
Warn : Boolean := False)
|
|
is
|
|
Stat : constant Boolean := Is_Static_Expression (N);
|
|
R_Stat : constant Node_Id :=
|
|
Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
|
|
Rtyp : Entity_Id;
|
|
|
|
begin
|
|
if No (Typ) then
|
|
Rtyp := Etype (N);
|
|
else
|
|
Rtyp := Typ;
|
|
end if;
|
|
|
|
Discard_Node
|
|
(Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
|
|
|
|
-- In GNATprove mode, do not replace the node with an exception raised.
|
|
-- In such a case, either the call to Compile_Time_Constraint_Error
|
|
-- issues an error which stops analysis, or it issues a warning in
|
|
-- a few cases where a suitable check flag is set for GNATprove to
|
|
-- generate a check message.
|
|
|
|
if not Rep or GNATprove_Mode then
|
|
return;
|
|
end if;
|
|
|
|
-- Now we replace the node by an N_Raise_Constraint_Error node
|
|
-- This does not need reanalyzing, so set it as analyzed now.
|
|
|
|
Rewrite (N, R_Stat);
|
|
Set_Analyzed (N, True);
|
|
|
|
Set_Etype (N, Rtyp);
|
|
Set_Raises_Constraint_Error (N);
|
|
|
|
-- Now deal with possible local raise handling
|
|
|
|
Possible_Local_Raise (N, Standard_Constraint_Error);
|
|
|
|
-- If the original expression was marked as static, the result is
|
|
-- still marked as static, but the Raises_Constraint_Error flag is
|
|
-- always set so that further static evaluation is not attempted.
|
|
|
|
if Stat then
|
|
Set_Is_Static_Expression (N);
|
|
end if;
|
|
end Apply_Compile_Time_Constraint_Error;
|
|
|
|
---------------------------
|
|
-- Async_Readers_Enabled --
|
|
---------------------------
|
|
|
|
function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return Has_Enabled_Property (Id, Name_Async_Readers);
|
|
end Async_Readers_Enabled;
|
|
|
|
---------------------------
|
|
-- Async_Writers_Enabled --
|
|
---------------------------
|
|
|
|
function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return Has_Enabled_Property (Id, Name_Async_Writers);
|
|
end Async_Writers_Enabled;
|
|
|
|
--------------------------------------
|
|
-- Available_Full_View_Of_Component --
|
|
--------------------------------------
|
|
|
|
function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
|
|
ST : constant Entity_Id := Scope (T);
|
|
SCT : constant Entity_Id := Scope (Component_Type (T));
|
|
begin
|
|
return In_Open_Scopes (ST)
|
|
and then In_Open_Scopes (SCT)
|
|
and then Scope_Depth (ST) >= Scope_Depth (SCT);
|
|
end Available_Full_View_Of_Component;
|
|
|
|
-------------------
|
|
-- Bad_Attribute --
|
|
-------------------
|
|
|
|
procedure Bad_Attribute
|
|
(N : Node_Id;
|
|
Nam : Name_Id;
|
|
Warn : Boolean := False)
|
|
is
|
|
begin
|
|
Error_Msg_Warn := Warn;
|
|
Error_Msg_N ("unrecognized attribute&<<", N);
|
|
|
|
-- Check for possible misspelling
|
|
|
|
Error_Msg_Name_1 := First_Attribute_Name;
|
|
while Error_Msg_Name_1 <= Last_Attribute_Name loop
|
|
if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
|
|
Error_Msg_N -- CODEFIX
|
|
("\possible misspelling of %<<", N);
|
|
exit;
|
|
end if;
|
|
|
|
Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
|
|
end loop;
|
|
end Bad_Attribute;
|
|
|
|
--------------------------------
|
|
-- Bad_Predicated_Subtype_Use --
|
|
--------------------------------
|
|
|
|
procedure Bad_Predicated_Subtype_Use
|
|
(Msg : String;
|
|
N : Node_Id;
|
|
Typ : Entity_Id;
|
|
Suggest_Static : Boolean := False)
|
|
is
|
|
Gen : Entity_Id;
|
|
|
|
begin
|
|
-- Avoid cascaded errors
|
|
|
|
if Error_Posted (N) then
|
|
return;
|
|
end if;
|
|
|
|
if Inside_A_Generic then
|
|
Gen := Current_Scope;
|
|
while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
|
|
Gen := Scope (Gen);
|
|
end loop;
|
|
|
|
if No (Gen) then
|
|
return;
|
|
end if;
|
|
|
|
if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
|
|
Set_No_Predicate_On_Actual (Typ);
|
|
end if;
|
|
|
|
elsif Has_Predicates (Typ) then
|
|
if Is_Generic_Actual_Type (Typ) then
|
|
|
|
-- The restriction on loop parameters is only that the type
|
|
-- should have no dynamic predicates.
|
|
|
|
if Nkind (Parent (N)) = N_Loop_Parameter_Specification
|
|
and then not Has_Dynamic_Predicate_Aspect (Typ)
|
|
and then Is_OK_Static_Subtype (Typ)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
Gen := Current_Scope;
|
|
while not Is_Generic_Instance (Gen) loop
|
|
Gen := Scope (Gen);
|
|
end loop;
|
|
|
|
pragma Assert (Present (Gen));
|
|
|
|
if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
|
|
Error_Msg_Warn := SPARK_Mode /= On;
|
|
Error_Msg_FE (Msg & "<<", N, Typ);
|
|
Error_Msg_F ("\Program_Error [<<", N);
|
|
|
|
Insert_Action (N,
|
|
Make_Raise_Program_Error (Sloc (N),
|
|
Reason => PE_Bad_Predicated_Generic_Type));
|
|
|
|
else
|
|
Error_Msg_FE (Msg & "<<", N, Typ);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg_FE (Msg, N, Typ);
|
|
end if;
|
|
|
|
-- Emit an optional suggestion on how to remedy the error if the
|
|
-- context warrants it.
|
|
|
|
if Suggest_Static and then Has_Static_Predicate (Typ) then
|
|
Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
|
|
end if;
|
|
end if;
|
|
end Bad_Predicated_Subtype_Use;
|
|
|
|
-----------------------------------------
|
|
-- Bad_Unordered_Enumeration_Reference --
|
|
-----------------------------------------
|
|
|
|
function Bad_Unordered_Enumeration_Reference
|
|
(N : Node_Id;
|
|
T : Entity_Id) return Boolean
|
|
is
|
|
begin
|
|
return Is_Enumeration_Type (T)
|
|
and then Warn_On_Unordered_Enumeration_Type
|
|
and then not Is_Generic_Type (T)
|
|
and then Comes_From_Source (N)
|
|
and then not Has_Pragma_Ordered (T)
|
|
and then not In_Same_Extended_Unit (N, T);
|
|
end Bad_Unordered_Enumeration_Reference;
|
|
|
|
--------------------------
|
|
-- Build_Actual_Subtype --
|
|
--------------------------
|
|
|
|
function Build_Actual_Subtype
|
|
(T : Entity_Id;
|
|
N : Node_Or_Entity_Id) return Node_Id
|
|
is
|
|
Loc : Source_Ptr;
|
|
-- Normally Sloc (N), but may point to corresponding body in some cases
|
|
|
|
Constraints : List_Id;
|
|
Decl : Node_Id;
|
|
Discr : Entity_Id;
|
|
Hi : Node_Id;
|
|
Lo : Node_Id;
|
|
Subt : Entity_Id;
|
|
Disc_Type : Entity_Id;
|
|
Obj : Node_Id;
|
|
|
|
begin
|
|
Loc := Sloc (N);
|
|
|
|
if Nkind (N) = N_Defining_Identifier then
|
|
Obj := New_Occurrence_Of (N, Loc);
|
|
|
|
-- If this is a formal parameter of a subprogram declaration, and
|
|
-- we are compiling the body, we want the declaration for the
|
|
-- actual subtype to carry the source position of the body, to
|
|
-- prevent anomalies in gdb when stepping through the code.
|
|
|
|
if Is_Formal (N) then
|
|
declare
|
|
Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
|
|
begin
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
|
and then Present (Corresponding_Body (Decl))
|
|
then
|
|
Loc := Sloc (Corresponding_Body (Decl));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
else
|
|
Obj := N;
|
|
end if;
|
|
|
|
if Is_Array_Type (T) then
|
|
Constraints := New_List;
|
|
for J in 1 .. Number_Dimensions (T) loop
|
|
|
|
-- Build an array subtype declaration with the nominal subtype and
|
|
-- the bounds of the actual. Add the declaration in front of the
|
|
-- local declarations for the subprogram, for analysis before any
|
|
-- reference to the formal in the body.
|
|
|
|
Lo :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
|
|
Attribute_Name => Name_First,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, J)));
|
|
|
|
Hi :=
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
|
|
Attribute_Name => Name_Last,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, J)));
|
|
|
|
Append (Make_Range (Loc, Lo, Hi), Constraints);
|
|
end loop;
|
|
|
|
-- If the type has unknown discriminants there is no constrained
|
|
-- subtype to build. This is never called for a formal or for a
|
|
-- lhs, so returning the type is ok ???
|
|
|
|
elsif Has_Unknown_Discriminants (T) then
|
|
return T;
|
|
|
|
else
|
|
Constraints := New_List;
|
|
|
|
-- Type T is a generic derived type, inherit the discriminants from
|
|
-- the parent type.
|
|
|
|
if Is_Private_Type (T)
|
|
and then No (Full_View (T))
|
|
|
|
-- T was flagged as an error if it was declared as a formal
|
|
-- derived type with known discriminants. In this case there
|
|
-- is no need to look at the parent type since T already carries
|
|
-- its own discriminants.
|
|
|
|
and then not Error_Posted (T)
|
|
then
|
|
Disc_Type := Etype (Base_Type (T));
|
|
else
|
|
Disc_Type := T;
|
|
end if;
|
|
|
|
Discr := First_Discriminant (Disc_Type);
|
|
while Present (Discr) loop
|
|
Append_To (Constraints,
|
|
Make_Selected_Component (Loc,
|
|
Prefix =>
|
|
Duplicate_Subexpr_No_Checks (Obj),
|
|
Selector_Name => New_Occurrence_Of (Discr, Loc)));
|
|
Next_Discriminant (Discr);
|
|
end loop;
|
|
end if;
|
|
|
|
Subt := Make_Temporary (Loc, 'S', Related_Node => N);
|
|
Set_Is_Internal (Subt);
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Subt,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (T, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => Constraints)));
|
|
|
|
Mark_Rewrite_Insertion (Decl);
|
|
return Decl;
|
|
end Build_Actual_Subtype;
|
|
|
|
---------------------------------------
|
|
-- Build_Actual_Subtype_Of_Component --
|
|
---------------------------------------
|
|
|
|
function Build_Actual_Subtype_Of_Component
|
|
(T : Entity_Id;
|
|
N : Node_Id) return Node_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
P : constant Node_Id := Prefix (N);
|
|
D : Elmt_Id;
|
|
Id : Node_Id;
|
|
Index_Typ : Entity_Id;
|
|
|
|
Desig_Typ : Entity_Id;
|
|
-- This is either a copy of T, or if T is an access type, then it is
|
|
-- the directly designated type of this access type.
|
|
|
|
function Build_Actual_Array_Constraint return List_Id;
|
|
-- If one or more of the bounds of the component depends on
|
|
-- discriminants, build actual constraint using the discriminants
|
|
-- of the prefix.
|
|
|
|
function Build_Actual_Record_Constraint return List_Id;
|
|
-- Similar to previous one, for discriminated components constrained
|
|
-- by the discriminant of the enclosing object.
|
|
|
|
-----------------------------------
|
|
-- Build_Actual_Array_Constraint --
|
|
-----------------------------------
|
|
|
|
function Build_Actual_Array_Constraint return List_Id is
|
|
Constraints : constant List_Id := New_List;
|
|
Indx : Node_Id;
|
|
Hi : Node_Id;
|
|
Lo : Node_Id;
|
|
Old_Hi : Node_Id;
|
|
Old_Lo : Node_Id;
|
|
|
|
begin
|
|
Indx := First_Index (Desig_Typ);
|
|
while Present (Indx) loop
|
|
Old_Lo := Type_Low_Bound (Etype (Indx));
|
|
Old_Hi := Type_High_Bound (Etype (Indx));
|
|
|
|
if Denotes_Discriminant (Old_Lo) then
|
|
Lo :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Copy_Tree (P),
|
|
Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
|
|
|
|
else
|
|
Lo := New_Copy_Tree (Old_Lo);
|
|
|
|
-- The new bound will be reanalyzed in the enclosing
|
|
-- declaration. For literal bounds that come from a type
|
|
-- declaration, the type of the context must be imposed, so
|
|
-- insure that analysis will take place. For non-universal
|
|
-- types this is not strictly necessary.
|
|
|
|
Set_Analyzed (Lo, False);
|
|
end if;
|
|
|
|
if Denotes_Discriminant (Old_Hi) then
|
|
Hi :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Copy_Tree (P),
|
|
Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
|
|
|
|
else
|
|
Hi := New_Copy_Tree (Old_Hi);
|
|
Set_Analyzed (Hi, False);
|
|
end if;
|
|
|
|
Append (Make_Range (Loc, Lo, Hi), Constraints);
|
|
Next_Index (Indx);
|
|
end loop;
|
|
|
|
return Constraints;
|
|
end Build_Actual_Array_Constraint;
|
|
|
|
------------------------------------
|
|
-- Build_Actual_Record_Constraint --
|
|
------------------------------------
|
|
|
|
function Build_Actual_Record_Constraint return List_Id is
|
|
Constraints : constant List_Id := New_List;
|
|
D : Elmt_Id;
|
|
D_Val : Node_Id;
|
|
|
|
begin
|
|
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
|
|
while Present (D) loop
|
|
if Denotes_Discriminant (Node (D)) then
|
|
D_Val := Make_Selected_Component (Loc,
|
|
Prefix => New_Copy_Tree (P),
|
|
Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
|
|
|
|
else
|
|
D_Val := New_Copy_Tree (Node (D));
|
|
end if;
|
|
|
|
Append (D_Val, Constraints);
|
|
Next_Elmt (D);
|
|
end loop;
|
|
|
|
return Constraints;
|
|
end Build_Actual_Record_Constraint;
|
|
|
|
-- Start of processing for Build_Actual_Subtype_Of_Component
|
|
|
|
begin
|
|
-- Why the test for Spec_Expression mode here???
|
|
|
|
if In_Spec_Expression then
|
|
return Empty;
|
|
|
|
-- More comments for the rest of this body would be good ???
|
|
|
|
elsif Nkind (N) = N_Explicit_Dereference then
|
|
if Is_Composite_Type (T)
|
|
and then not Is_Constrained (T)
|
|
and then not (Is_Class_Wide_Type (T)
|
|
and then Is_Constrained (Root_Type (T)))
|
|
and then not Has_Unknown_Discriminants (T)
|
|
then
|
|
-- If the type of the dereference is already constrained, it is an
|
|
-- actual subtype.
|
|
|
|
if Is_Array_Type (Etype (N))
|
|
and then Is_Constrained (Etype (N))
|
|
then
|
|
return Empty;
|
|
else
|
|
Remove_Side_Effects (P);
|
|
return Build_Actual_Subtype (T, N);
|
|
end if;
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end if;
|
|
|
|
if Ekind (T) = E_Access_Subtype then
|
|
Desig_Typ := Designated_Type (T);
|
|
else
|
|
Desig_Typ := T;
|
|
end if;
|
|
|
|
if Ekind (Desig_Typ) = E_Array_Subtype then
|
|
Id := First_Index (Desig_Typ);
|
|
while Present (Id) loop
|
|
Index_Typ := Underlying_Type (Etype (Id));
|
|
|
|
if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
|
|
or else
|
|
Denotes_Discriminant (Type_High_Bound (Index_Typ))
|
|
then
|
|
Remove_Side_Effects (P);
|
|
return
|
|
Build_Component_Subtype
|
|
(Build_Actual_Array_Constraint, Loc, Base_Type (T));
|
|
end if;
|
|
|
|
Next_Index (Id);
|
|
end loop;
|
|
|
|
elsif Is_Composite_Type (Desig_Typ)
|
|
and then Has_Discriminants (Desig_Typ)
|
|
and then not Has_Unknown_Discriminants (Desig_Typ)
|
|
then
|
|
if Is_Private_Type (Desig_Typ)
|
|
and then No (Discriminant_Constraint (Desig_Typ))
|
|
then
|
|
Desig_Typ := Full_View (Desig_Typ);
|
|
end if;
|
|
|
|
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
|
|
while Present (D) loop
|
|
if Denotes_Discriminant (Node (D)) then
|
|
Remove_Side_Effects (P);
|
|
return
|
|
Build_Component_Subtype (
|
|
Build_Actual_Record_Constraint, Loc, Base_Type (T));
|
|
end if;
|
|
|
|
Next_Elmt (D);
|
|
end loop;
|
|
end if;
|
|
|
|
-- If none of the above, the actual and nominal subtypes are the same
|
|
|
|
return Empty;
|
|
end Build_Actual_Subtype_Of_Component;
|
|
|
|
-----------------------------
|
|
-- Build_Component_Subtype --
|
|
-----------------------------
|
|
|
|
function Build_Component_Subtype
|
|
(C : List_Id;
|
|
Loc : Source_Ptr;
|
|
T : Entity_Id) return Node_Id
|
|
is
|
|
Subt : Entity_Id;
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
-- Unchecked_Union components do not require component subtypes
|
|
|
|
if Is_Unchecked_Union (T) then
|
|
return Empty;
|
|
end if;
|
|
|
|
Subt := Make_Temporary (Loc, 'S');
|
|
Set_Is_Internal (Subt);
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Subt,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => C)));
|
|
|
|
Mark_Rewrite_Insertion (Decl);
|
|
return Decl;
|
|
end Build_Component_Subtype;
|
|
|
|
----------------------------------
|
|
-- Build_Default_Init_Cond_Call --
|
|
----------------------------------
|
|
|
|
function Build_Default_Init_Cond_Call
|
|
(Loc : Source_Ptr;
|
|
Obj_Id : Entity_Id;
|
|
Typ : Entity_Id) return Node_Id
|
|
is
|
|
Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
|
|
Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
|
|
|
|
begin
|
|
return
|
|
Make_Procedure_Call_Statement (Loc,
|
|
Name => New_Occurrence_Of (Proc_Id, Loc),
|
|
Parameter_Associations => New_List (
|
|
Make_Unchecked_Type_Conversion (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
|
|
Expression => New_Occurrence_Of (Obj_Id, Loc))));
|
|
end Build_Default_Init_Cond_Call;
|
|
|
|
----------------------------------------------
|
|
-- Build_Default_Init_Cond_Procedure_Bodies --
|
|
----------------------------------------------
|
|
|
|
procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id) is
|
|
procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id);
|
|
-- If type Typ is subject to pragma Default_Initial_Condition, build the
|
|
-- body of the procedure which verifies the assumption of the pragma at
|
|
-- run time. The generated body is added after the type declaration.
|
|
|
|
--------------------------------------------
|
|
-- Build_Default_Init_Cond_Procedure_Body --
|
|
--------------------------------------------
|
|
|
|
procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id) is
|
|
Param_Id : Entity_Id;
|
|
-- The entity of the sole formal parameter of the default initial
|
|
-- condition procedure.
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id);
|
|
-- Replace a single reference to type Typ with a reference to formal
|
|
-- parameter Param_Id.
|
|
|
|
----------------------------
|
|
-- Replace_Type_Reference --
|
|
----------------------------
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id) is
|
|
begin
|
|
Rewrite (N, New_Occurrence_Of (Param_Id, Sloc (N)));
|
|
end Replace_Type_Reference;
|
|
|
|
procedure Replace_Type_References is
|
|
new Replace_Type_References_Generic (Replace_Type_Reference);
|
|
|
|
-- Local variables
|
|
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Prag : constant Node_Id :=
|
|
Get_Pragma (Typ, Pragma_Default_Initial_Condition);
|
|
Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
|
|
Body_Decl : Node_Id;
|
|
Expr : Node_Id;
|
|
Spec_Decl : Node_Id;
|
|
Stmt : Node_Id;
|
|
|
|
Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
|
|
|
|
-- Start of processing for Build_Default_Init_Cond_Procedure_Body
|
|
|
|
begin
|
|
-- The procedure should be generated only for [sub]types subject to
|
|
-- pragma Default_Initial_Condition. Types that inherit the pragma do
|
|
-- not get this specialized procedure.
|
|
|
|
pragma Assert (Has_Default_Init_Cond (Typ));
|
|
pragma Assert (Present (Prag));
|
|
|
|
-- Nothing to do if the spec was not built. This occurs when the
|
|
-- expression of the Default_Initial_Condition is missing or is
|
|
-- null.
|
|
|
|
if No (Proc_Id) then
|
|
return;
|
|
|
|
-- Nothing to do if the body was already built
|
|
|
|
elsif Present (Corresponding_Body (Unit_Declaration_Node (Proc_Id)))
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- The related type may be subject to pragma Ghost. Set the mode now
|
|
-- to ensure that the analysis and expansion produce Ghost nodes.
|
|
|
|
Set_Ghost_Mode_From_Entity (Typ);
|
|
|
|
Param_Id := First_Formal (Proc_Id);
|
|
|
|
-- The pragma has an argument. Note that the argument is analyzed
|
|
-- after all references to the current instance of the type are
|
|
-- replaced.
|
|
|
|
if Present (Pragma_Argument_Associations (Prag)) then
|
|
Expr :=
|
|
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
|
|
|
|
if Nkind (Expr) = N_Null then
|
|
Stmt := Make_Null_Statement (Loc);
|
|
|
|
-- Preserve the original argument of the pragma by replicating it.
|
|
-- Replace all references to the current instance of the type with
|
|
-- references to the formal parameter.
|
|
|
|
else
|
|
Expr := New_Copy_Tree (Expr);
|
|
Replace_Type_References (Expr, Typ);
|
|
|
|
-- Generate:
|
|
-- pragma Check (Default_Initial_Condition, <Expr>);
|
|
|
|
Stmt :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Loc, Name_Check),
|
|
|
|
Pragma_Argument_Associations => New_List (
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression =>
|
|
Make_Identifier (Loc,
|
|
Chars => Name_Default_Initial_Condition)),
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression => Expr)));
|
|
end if;
|
|
|
|
-- Otherwise the pragma appears without an argument
|
|
|
|
else
|
|
Stmt := Make_Null_Statement (Loc);
|
|
end if;
|
|
|
|
-- Generate:
|
|
-- procedure <Typ>Default_Init_Cond (I : <Typ>) is
|
|
-- begin
|
|
-- <Stmt>;
|
|
-- end <Typ>Default_Init_Cond;
|
|
|
|
Spec_Decl := Unit_Declaration_Node (Proc_Id);
|
|
Body_Decl :=
|
|
Make_Subprogram_Body (Loc,
|
|
Specification =>
|
|
Copy_Separate_Tree (Specification (Spec_Decl)),
|
|
Declarations => Empty_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => New_List (Stmt)));
|
|
|
|
-- Link the spec and body of the default initial condition procedure
|
|
-- to prevent the generation of a duplicate body.
|
|
|
|
Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
|
|
Set_Corresponding_Spec (Body_Decl, Proc_Id);
|
|
|
|
Insert_After_And_Analyze (Declaration_Node (Typ), Body_Decl);
|
|
Ghost_Mode := Save_Ghost_Mode;
|
|
end Build_Default_Init_Cond_Procedure_Body;
|
|
|
|
-- Local variables
|
|
|
|
Decl : Node_Id;
|
|
Typ : Entity_Id;
|
|
|
|
-- Start of processing for Build_Default_Init_Cond_Procedure_Bodies
|
|
|
|
begin
|
|
-- Inspect the private declarations looking for [sub]type declarations
|
|
|
|
Decl := First (Priv_Decls);
|
|
while Present (Decl) loop
|
|
if Nkind_In (Decl, N_Full_Type_Declaration,
|
|
N_Subtype_Declaration)
|
|
then
|
|
Typ := Defining_Entity (Decl);
|
|
|
|
-- Guard against partially decorate types due to previous errors
|
|
|
|
if Is_Type (Typ) then
|
|
|
|
-- If the type is subject to pragma Default_Initial_Condition,
|
|
-- generate the body of the internal procedure which verifies
|
|
-- the assertion of the pragma at run time.
|
|
|
|
if Has_Default_Init_Cond (Typ) then
|
|
Build_Default_Init_Cond_Procedure_Body (Typ);
|
|
|
|
-- A derived type inherits the default initial condition
|
|
-- procedure from its parent type.
|
|
|
|
elsif Has_Inherited_Default_Init_Cond (Typ) then
|
|
Inherit_Default_Init_Cond_Procedure (Typ);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end Build_Default_Init_Cond_Procedure_Bodies;
|
|
|
|
---------------------------------------------------
|
|
-- Build_Default_Init_Cond_Procedure_Declaration --
|
|
---------------------------------------------------
|
|
|
|
procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id) is
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Prag : constant Node_Id :=
|
|
Get_Pragma (Typ, Pragma_Default_Initial_Condition);
|
|
|
|
Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
|
|
|
|
Args : List_Id;
|
|
Proc_Id : Entity_Id;
|
|
|
|
begin
|
|
-- The procedure should be generated only for types subject to pragma
|
|
-- Default_Initial_Condition. Types that inherit the pragma do not get
|
|
-- this specialized procedure.
|
|
|
|
pragma Assert (Has_Default_Init_Cond (Typ));
|
|
pragma Assert (Present (Prag));
|
|
|
|
Args := Pragma_Argument_Associations (Prag);
|
|
|
|
-- Nothing to do if default initial condition procedure already built
|
|
|
|
if Present (Default_Init_Cond_Procedure (Typ)) then
|
|
return;
|
|
|
|
-- Nothing to do if the default initial condition appears without an
|
|
-- expression.
|
|
|
|
elsif No (Args) then
|
|
return;
|
|
|
|
-- Nothing to do if the expression of the default initial condition is
|
|
-- null.
|
|
|
|
elsif Nkind (Get_Pragma_Arg (First (Args))) = N_Null then
|
|
return;
|
|
end if;
|
|
|
|
-- The related type may be subject to pragma Ghost. Set the mode now to
|
|
-- ensure that the analysis and expansion produce Ghost nodes.
|
|
|
|
Set_Ghost_Mode_From_Entity (Typ);
|
|
|
|
Proc_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (Typ), "Default_Init_Cond"));
|
|
|
|
-- Associate default initial condition procedure with the private type
|
|
|
|
Set_Ekind (Proc_Id, E_Procedure);
|
|
Set_Is_Default_Init_Cond_Procedure (Proc_Id);
|
|
Set_Default_Init_Cond_Procedure (Typ, Proc_Id);
|
|
|
|
-- Mark the default initial condition procedure explicitly as Ghost
|
|
-- because it does not come from source.
|
|
|
|
if Ghost_Mode > None then
|
|
Set_Is_Ghost_Entity (Proc_Id);
|
|
end if;
|
|
|
|
-- Generate:
|
|
-- procedure <Typ>Default_Init_Cond (Inn : <Typ>);
|
|
|
|
Insert_After_And_Analyze (Prag,
|
|
Make_Subprogram_Declaration (Loc,
|
|
Specification =>
|
|
Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => Proc_Id,
|
|
Parameter_Specifications => New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Make_Temporary (Loc, 'I'),
|
|
Parameter_Type => New_Occurrence_Of (Typ, Loc))))));
|
|
|
|
Ghost_Mode := Save_Ghost_Mode;
|
|
end Build_Default_Init_Cond_Procedure_Declaration;
|
|
|
|
---------------------------
|
|
-- Build_Default_Subtype --
|
|
---------------------------
|
|
|
|
function Build_Default_Subtype
|
|
(T : Entity_Id;
|
|
N : Node_Id) return Entity_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Disc : Entity_Id;
|
|
|
|
Bas : Entity_Id;
|
|
-- The base type that is to be constrained by the defaults
|
|
|
|
begin
|
|
if not Has_Discriminants (T) or else Is_Constrained (T) then
|
|
return T;
|
|
end if;
|
|
|
|
Bas := Base_Type (T);
|
|
|
|
-- If T is non-private but its base type is private, this is the
|
|
-- completion of a subtype declaration whose parent type is private
|
|
-- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
|
|
-- are to be found in the full view of the base. Check that the private
|
|
-- status of T and its base differ.
|
|
|
|
if Is_Private_Type (Bas)
|
|
and then not Is_Private_Type (T)
|
|
and then Present (Full_View (Bas))
|
|
then
|
|
Bas := Full_View (Bas);
|
|
end if;
|
|
|
|
Disc := First_Discriminant (T);
|
|
|
|
if No (Discriminant_Default_Value (Disc)) then
|
|
return T;
|
|
end if;
|
|
|
|
declare
|
|
Act : constant Entity_Id := Make_Temporary (Loc, 'S');
|
|
Constraints : constant List_Id := New_List;
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
while Present (Disc) loop
|
|
Append_To (Constraints,
|
|
New_Copy_Tree (Discriminant_Default_Value (Disc)));
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Act,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Bas, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => Constraints)));
|
|
|
|
Insert_Action (N, Decl);
|
|
|
|
-- If the context is a component declaration the subtype declaration
|
|
-- will be analyzed when the enclosing type is frozen, otherwise do
|
|
-- it now.
|
|
|
|
if Ekind (Current_Scope) /= E_Record_Type then
|
|
Analyze (Decl);
|
|
end if;
|
|
|
|
return Act;
|
|
end;
|
|
end Build_Default_Subtype;
|
|
|
|
--------------------------------------------
|
|
-- Build_Discriminal_Subtype_Of_Component --
|
|
--------------------------------------------
|
|
|
|
function Build_Discriminal_Subtype_Of_Component
|
|
(T : Entity_Id) return Node_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (T);
|
|
D : Elmt_Id;
|
|
Id : Node_Id;
|
|
|
|
function Build_Discriminal_Array_Constraint return List_Id;
|
|
-- If one or more of the bounds of the component depends on
|
|
-- discriminants, build actual constraint using the discriminants
|
|
-- of the prefix.
|
|
|
|
function Build_Discriminal_Record_Constraint return List_Id;
|
|
-- Similar to previous one, for discriminated components constrained by
|
|
-- the discriminant of the enclosing object.
|
|
|
|
----------------------------------------
|
|
-- Build_Discriminal_Array_Constraint --
|
|
----------------------------------------
|
|
|
|
function Build_Discriminal_Array_Constraint return List_Id is
|
|
Constraints : constant List_Id := New_List;
|
|
Indx : Node_Id;
|
|
Hi : Node_Id;
|
|
Lo : Node_Id;
|
|
Old_Hi : Node_Id;
|
|
Old_Lo : Node_Id;
|
|
|
|
begin
|
|
Indx := First_Index (T);
|
|
while Present (Indx) loop
|
|
Old_Lo := Type_Low_Bound (Etype (Indx));
|
|
Old_Hi := Type_High_Bound (Etype (Indx));
|
|
|
|
if Denotes_Discriminant (Old_Lo) then
|
|
Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
|
|
|
|
else
|
|
Lo := New_Copy_Tree (Old_Lo);
|
|
end if;
|
|
|
|
if Denotes_Discriminant (Old_Hi) then
|
|
Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
|
|
|
|
else
|
|
Hi := New_Copy_Tree (Old_Hi);
|
|
end if;
|
|
|
|
Append (Make_Range (Loc, Lo, Hi), Constraints);
|
|
Next_Index (Indx);
|
|
end loop;
|
|
|
|
return Constraints;
|
|
end Build_Discriminal_Array_Constraint;
|
|
|
|
-----------------------------------------
|
|
-- Build_Discriminal_Record_Constraint --
|
|
-----------------------------------------
|
|
|
|
function Build_Discriminal_Record_Constraint return List_Id is
|
|
Constraints : constant List_Id := New_List;
|
|
D : Elmt_Id;
|
|
D_Val : Node_Id;
|
|
|
|
begin
|
|
D := First_Elmt (Discriminant_Constraint (T));
|
|
while Present (D) loop
|
|
if Denotes_Discriminant (Node (D)) then
|
|
D_Val :=
|
|
New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
|
|
else
|
|
D_Val := New_Copy_Tree (Node (D));
|
|
end if;
|
|
|
|
Append (D_Val, Constraints);
|
|
Next_Elmt (D);
|
|
end loop;
|
|
|
|
return Constraints;
|
|
end Build_Discriminal_Record_Constraint;
|
|
|
|
-- Start of processing for Build_Discriminal_Subtype_Of_Component
|
|
|
|
begin
|
|
if Ekind (T) = E_Array_Subtype then
|
|
Id := First_Index (T);
|
|
while Present (Id) loop
|
|
if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
|
|
or else
|
|
Denotes_Discriminant (Type_High_Bound (Etype (Id)))
|
|
then
|
|
return Build_Component_Subtype
|
|
(Build_Discriminal_Array_Constraint, Loc, T);
|
|
end if;
|
|
|
|
Next_Index (Id);
|
|
end loop;
|
|
|
|
elsif Ekind (T) = E_Record_Subtype
|
|
and then Has_Discriminants (T)
|
|
and then not Has_Unknown_Discriminants (T)
|
|
then
|
|
D := First_Elmt (Discriminant_Constraint (T));
|
|
while Present (D) loop
|
|
if Denotes_Discriminant (Node (D)) then
|
|
return Build_Component_Subtype
|
|
(Build_Discriminal_Record_Constraint, Loc, T);
|
|
end if;
|
|
|
|
Next_Elmt (D);
|
|
end loop;
|
|
end if;
|
|
|
|
-- If none of the above, the actual and nominal subtypes are the same
|
|
|
|
return Empty;
|
|
end Build_Discriminal_Subtype_Of_Component;
|
|
|
|
------------------------------
|
|
-- Build_Elaboration_Entity --
|
|
------------------------------
|
|
|
|
procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Decl : Node_Id;
|
|
Elab_Ent : Entity_Id;
|
|
|
|
procedure Set_Package_Name (Ent : Entity_Id);
|
|
-- Given an entity, sets the fully qualified name of the entity in
|
|
-- Name_Buffer, with components separated by double underscores. This
|
|
-- is a recursive routine that climbs the scope chain to Standard.
|
|
|
|
----------------------
|
|
-- Set_Package_Name --
|
|
----------------------
|
|
|
|
procedure Set_Package_Name (Ent : Entity_Id) is
|
|
begin
|
|
if Scope (Ent) /= Standard_Standard then
|
|
Set_Package_Name (Scope (Ent));
|
|
|
|
declare
|
|
Nam : constant String := Get_Name_String (Chars (Ent));
|
|
begin
|
|
Name_Buffer (Name_Len + 1) := '_';
|
|
Name_Buffer (Name_Len + 2) := '_';
|
|
Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
|
|
Name_Len := Name_Len + Nam'Length + 2;
|
|
end;
|
|
|
|
else
|
|
Get_Name_String (Chars (Ent));
|
|
end if;
|
|
end Set_Package_Name;
|
|
|
|
-- Start of processing for Build_Elaboration_Entity
|
|
|
|
begin
|
|
-- Ignore call if already constructed
|
|
|
|
if Present (Elaboration_Entity (Spec_Id)) then
|
|
return;
|
|
|
|
-- Ignore in ASIS mode, elaboration entity is not in source and plays
|
|
-- no role in analysis.
|
|
|
|
elsif ASIS_Mode then
|
|
return;
|
|
|
|
-- See if we need elaboration entity.
|
|
|
|
-- We always need an elaboration entity when preserving control flow, as
|
|
-- we want to remain explicit about the unit's elaboration order.
|
|
|
|
elsif Opt.Suppress_Control_Flow_Optimizations then
|
|
null;
|
|
|
|
-- We always need an elaboration entity for the dynamic elaboration
|
|
-- model, since it is needed to properly generate the PE exception for
|
|
-- access before elaboration.
|
|
|
|
elsif Dynamic_Elaboration_Checks then
|
|
null;
|
|
|
|
-- For the static model, we don't need the elaboration counter if this
|
|
-- unit is sure to have no elaboration code, since that means there
|
|
-- is no elaboration unit to be called. Note that we can't just decide
|
|
-- after the fact by looking to see whether there was elaboration code,
|
|
-- because that's too late to make this decision.
|
|
|
|
elsif Restriction_Active (No_Elaboration_Code) then
|
|
return;
|
|
|
|
-- Similarly, for the static model, we can skip the elaboration counter
|
|
-- if we have the No_Multiple_Elaboration restriction, since for the
|
|
-- static model, that's the only purpose of the counter (to avoid
|
|
-- multiple elaboration).
|
|
|
|
elsif Restriction_Active (No_Multiple_Elaboration) then
|
|
return;
|
|
end if;
|
|
|
|
-- Here we need the elaboration entity
|
|
|
|
-- Construct name of elaboration entity as xxx_E, where xxx is the unit
|
|
-- name with dots replaced by double underscore. We have to manually
|
|
-- construct this name, since it will be elaborated in the outer scope,
|
|
-- and thus will not have the unit name automatically prepended.
|
|
|
|
Set_Package_Name (Spec_Id);
|
|
Add_Str_To_Name_Buffer ("_E");
|
|
|
|
-- Create elaboration counter
|
|
|
|
Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
|
|
Set_Elaboration_Entity (Spec_Id, Elab_Ent);
|
|
|
|
Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Elab_Ent,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (Standard_Short_Integer, Loc),
|
|
Expression => Make_Integer_Literal (Loc, Uint_0));
|
|
|
|
Push_Scope (Standard_Standard);
|
|
Add_Global_Declaration (Decl);
|
|
Pop_Scope;
|
|
|
|
-- Reset True_Constant indication, since we will indeed assign a value
|
|
-- to the variable in the binder main. We also kill the Current_Value
|
|
-- and Last_Assignment fields for the same reason.
|
|
|
|
Set_Is_True_Constant (Elab_Ent, False);
|
|
Set_Current_Value (Elab_Ent, Empty);
|
|
Set_Last_Assignment (Elab_Ent, Empty);
|
|
|
|
-- We do not want any further qualification of the name (if we did not
|
|
-- do this, we would pick up the name of the generic package in the case
|
|
-- of a library level generic instantiation).
|
|
|
|
Set_Has_Qualified_Name (Elab_Ent);
|
|
Set_Has_Fully_Qualified_Name (Elab_Ent);
|
|
end Build_Elaboration_Entity;
|
|
|
|
--------------------------------
|
|
-- Build_Explicit_Dereference --
|
|
--------------------------------
|
|
|
|
procedure Build_Explicit_Dereference
|
|
(Expr : Node_Id;
|
|
Disc : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Expr);
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
-- An entity of a type with a reference aspect is overloaded with
|
|
-- both interpretations: with and without the dereference. Now that
|
|
-- the dereference is made explicit, set the type of the node properly,
|
|
-- to prevent anomalies in the backend. Same if the expression is an
|
|
-- overloaded function call whose return type has a reference aspect.
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
Set_Etype (Expr, Etype (Entity (Expr)));
|
|
|
|
-- The designated entity will not be examined again when resolving
|
|
-- the dereference, so generate a reference to it now.
|
|
|
|
Generate_Reference (Entity (Expr), Expr);
|
|
|
|
elsif Nkind (Expr) = N_Function_Call then
|
|
|
|
-- If the name of the indexing function is overloaded, locate the one
|
|
-- whose return type has an implicit dereference on the desired
|
|
-- discriminant, and set entity and type of function call.
|
|
|
|
if Is_Overloaded (Name (Expr)) then
|
|
Get_First_Interp (Name (Expr), I, It);
|
|
|
|
while Present (It.Nam) loop
|
|
if Ekind ((It.Typ)) = E_Record_Type
|
|
and then First_Entity ((It.Typ)) = Disc
|
|
then
|
|
Set_Entity (Name (Expr), It.Nam);
|
|
Set_Etype (Name (Expr), Etype (It.Nam));
|
|
exit;
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Set type of call from resolved function name.
|
|
|
|
Set_Etype (Expr, Etype (Name (Expr)));
|
|
end if;
|
|
|
|
Set_Is_Overloaded (Expr, False);
|
|
|
|
-- The expression will often be a generalized indexing that yields a
|
|
-- container element that is then dereferenced, in which case the
|
|
-- generalized indexing call is also non-overloaded.
|
|
|
|
if Nkind (Expr) = N_Indexed_Component
|
|
and then Present (Generalized_Indexing (Expr))
|
|
then
|
|
Set_Is_Overloaded (Generalized_Indexing (Expr), False);
|
|
end if;
|
|
|
|
Rewrite (Expr,
|
|
Make_Explicit_Dereference (Loc,
|
|
Prefix =>
|
|
Make_Selected_Component (Loc,
|
|
Prefix => Relocate_Node (Expr),
|
|
Selector_Name => New_Occurrence_Of (Disc, Loc))));
|
|
Set_Etype (Prefix (Expr), Etype (Disc));
|
|
Set_Etype (Expr, Designated_Type (Etype (Disc)));
|
|
end Build_Explicit_Dereference;
|
|
|
|
-----------------------------------
|
|
-- Cannot_Raise_Constraint_Error --
|
|
-----------------------------------
|
|
|
|
function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
|
|
begin
|
|
if Compile_Time_Known_Value (Expr) then
|
|
return True;
|
|
|
|
elsif Do_Range_Check (Expr) then
|
|
return False;
|
|
|
|
elsif Raises_Constraint_Error (Expr) then
|
|
return False;
|
|
|
|
else
|
|
case Nkind (Expr) is
|
|
when N_Identifier =>
|
|
return True;
|
|
|
|
when N_Expanded_Name =>
|
|
return True;
|
|
|
|
when N_Selected_Component =>
|
|
return not Do_Discriminant_Check (Expr);
|
|
|
|
when N_Attribute_Reference =>
|
|
if Do_Overflow_Check (Expr) then
|
|
return False;
|
|
|
|
elsif No (Expressions (Expr)) then
|
|
return True;
|
|
|
|
else
|
|
declare
|
|
N : Node_Id;
|
|
|
|
begin
|
|
N := First (Expressions (Expr));
|
|
while Present (N) loop
|
|
if Cannot_Raise_Constraint_Error (N) then
|
|
Next (N);
|
|
else
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end;
|
|
end if;
|
|
|
|
when N_Type_Conversion =>
|
|
if Do_Overflow_Check (Expr)
|
|
or else Do_Length_Check (Expr)
|
|
or else Do_Tag_Check (Expr)
|
|
then
|
|
return False;
|
|
else
|
|
return Cannot_Raise_Constraint_Error (Expression (Expr));
|
|
end if;
|
|
|
|
when N_Unchecked_Type_Conversion =>
|
|
return Cannot_Raise_Constraint_Error (Expression (Expr));
|
|
|
|
when N_Unary_Op =>
|
|
if Do_Overflow_Check (Expr) then
|
|
return False;
|
|
else
|
|
return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
|
|
end if;
|
|
|
|
when N_Op_Divide |
|
|
N_Op_Mod |
|
|
N_Op_Rem
|
|
=>
|
|
if Do_Division_Check (Expr)
|
|
or else
|
|
Do_Overflow_Check (Expr)
|
|
then
|
|
return False;
|
|
else
|
|
return
|
|
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
|
|
and then
|
|
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
|
|
end if;
|
|
|
|
when N_Op_Add |
|
|
N_Op_And |
|
|
N_Op_Concat |
|
|
N_Op_Eq |
|
|
N_Op_Expon |
|
|
N_Op_Ge |
|
|
N_Op_Gt |
|
|
N_Op_Le |
|
|
N_Op_Lt |
|
|
N_Op_Multiply |
|
|
N_Op_Ne |
|
|
N_Op_Or |
|
|
N_Op_Rotate_Left |
|
|
N_Op_Rotate_Right |
|
|
N_Op_Shift_Left |
|
|
N_Op_Shift_Right |
|
|
N_Op_Shift_Right_Arithmetic |
|
|
N_Op_Subtract |
|
|
N_Op_Xor
|
|
=>
|
|
if Do_Overflow_Check (Expr) then
|
|
return False;
|
|
else
|
|
return
|
|
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
|
|
and then
|
|
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
|
|
end if;
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end if;
|
|
end Cannot_Raise_Constraint_Error;
|
|
|
|
-----------------------------
|
|
-- Check_Part_Of_Reference --
|
|
-----------------------------
|
|
|
|
procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
|
|
Conc_Typ : constant Entity_Id := Encapsulating_State (Var_Id);
|
|
Decl : Node_Id;
|
|
OK_Use : Boolean := False;
|
|
Par : Node_Id;
|
|
Prag_Nam : Name_Id;
|
|
Spec_Id : Entity_Id;
|
|
|
|
begin
|
|
-- Traverse the parent chain looking for a suitable context for the
|
|
-- reference to the concurrent constituent.
|
|
|
|
Par := Parent (Ref);
|
|
while Present (Par) loop
|
|
if Nkind (Par) = N_Pragma then
|
|
Prag_Nam := Pragma_Name (Par);
|
|
|
|
-- A concurrent constituent is allowed to appear in pragmas
|
|
-- Initial_Condition and Initializes as this is part of the
|
|
-- elaboration checks for the constituent (SPARK RM 9.3).
|
|
|
|
if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
|
|
OK_Use := True;
|
|
exit;
|
|
|
|
-- When the reference appears within pragma Depends or Global,
|
|
-- check whether the pragma applies to a single task type. Note
|
|
-- that the pragma is not encapsulated by the type definition,
|
|
-- but this is still a valid context.
|
|
|
|
elsif Nam_In (Prag_Nam, Name_Depends, Name_Global) then
|
|
Decl := Find_Related_Declaration_Or_Body (Par);
|
|
|
|
if Nkind (Decl) = N_Object_Declaration
|
|
and then Defining_Entity (Decl) = Conc_Typ
|
|
then
|
|
OK_Use := True;
|
|
exit;
|
|
end if;
|
|
end if;
|
|
|
|
-- The reference appears somewhere in the definition of the single
|
|
-- protected/task type (SPARK RM 9.3).
|
|
|
|
elsif Nkind_In (Par, N_Single_Protected_Declaration,
|
|
N_Single_Task_Declaration)
|
|
and then Defining_Entity (Par) = Conc_Typ
|
|
then
|
|
OK_Use := True;
|
|
exit;
|
|
|
|
-- The reference appears within the expanded declaration or the body
|
|
-- of the single protected/task type (SPARK RM 9.3).
|
|
|
|
elsif Nkind_In (Par, N_Protected_Body,
|
|
N_Protected_Type_Declaration,
|
|
N_Task_Body,
|
|
N_Task_Type_Declaration)
|
|
then
|
|
Spec_Id := Unique_Defining_Entity (Par);
|
|
|
|
if Present (Anonymous_Object (Spec_Id))
|
|
and then Anonymous_Object (Spec_Id) = Conc_Typ
|
|
then
|
|
OK_Use := True;
|
|
exit;
|
|
end if;
|
|
|
|
-- The reference has been relocated within an internally generated
|
|
-- package or subprogram. Assume that the reference is legal as the
|
|
-- real check was already performed in the original context of the
|
|
-- reference.
|
|
|
|
elsif Nkind_In (Par, N_Package_Body,
|
|
N_Package_Declaration,
|
|
N_Subprogram_Body,
|
|
N_Subprogram_Declaration)
|
|
and then not Comes_From_Source (Par)
|
|
then
|
|
OK_Use := True;
|
|
exit;
|
|
|
|
-- The reference has been relocated to an inlined body for GNATprove.
|
|
-- Assume that the reference is legal as the real check was already
|
|
-- performed in the original context of the reference.
|
|
|
|
elsif GNATprove_Mode
|
|
and then Nkind (Par) = N_Subprogram_Body
|
|
and then Chars (Defining_Entity (Par)) = Name_uParent
|
|
then
|
|
OK_Use := True;
|
|
exit;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
-- The reference is illegal as it appears outside the definition or
|
|
-- body of the single protected/task type.
|
|
|
|
if not OK_Use then
|
|
Error_Msg_NE
|
|
("reference to variable & cannot appear in this context",
|
|
Ref, Var_Id);
|
|
Error_Msg_Name_1 := Chars (Var_Id);
|
|
|
|
if Ekind (Conc_Typ) = E_Protected_Type then
|
|
Error_Msg_NE
|
|
("\% is constituent of single protected type &", Ref, Conc_Typ);
|
|
else
|
|
Error_Msg_NE
|
|
("\% is constituent of single task type &", Ref, Conc_Typ);
|
|
end if;
|
|
end if;
|
|
end Check_Part_Of_Reference;
|
|
|
|
-----------------------------------------
|
|
-- Check_Dynamically_Tagged_Expression --
|
|
-----------------------------------------
|
|
|
|
procedure Check_Dynamically_Tagged_Expression
|
|
(Expr : Node_Id;
|
|
Typ : Entity_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
begin
|
|
pragma Assert (Is_Tagged_Type (Typ));
|
|
|
|
-- In order to avoid spurious errors when analyzing the expanded code,
|
|
-- this check is done only for nodes that come from source and for
|
|
-- actuals of generic instantiations.
|
|
|
|
if (Comes_From_Source (Related_Nod)
|
|
or else In_Generic_Actual (Expr))
|
|
and then (Is_Class_Wide_Type (Etype (Expr))
|
|
or else Is_Dynamically_Tagged (Expr))
|
|
and then Is_Tagged_Type (Typ)
|
|
and then not Is_Class_Wide_Type (Typ)
|
|
then
|
|
Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
|
|
end if;
|
|
end Check_Dynamically_Tagged_Expression;
|
|
|
|
--------------------------
|
|
-- Check_Fully_Declared --
|
|
--------------------------
|
|
|
|
procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
|
|
begin
|
|
if Ekind (T) = E_Incomplete_Type then
|
|
|
|
-- Ada 2005 (AI-50217): If the type is available through a limited
|
|
-- with_clause, verify that its full view has been analyzed.
|
|
|
|
if From_Limited_With (T)
|
|
and then Present (Non_Limited_View (T))
|
|
and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
|
|
then
|
|
-- The non-limited view is fully declared
|
|
|
|
null;
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("premature usage of incomplete}", N, First_Subtype (T));
|
|
end if;
|
|
|
|
-- Need comments for these tests ???
|
|
|
|
elsif Has_Private_Component (T)
|
|
and then not Is_Generic_Type (Root_Type (T))
|
|
and then not In_Spec_Expression
|
|
then
|
|
-- Special case: if T is the anonymous type created for a single
|
|
-- task or protected object, use the name of the source object.
|
|
|
|
if Is_Concurrent_Type (T)
|
|
and then not Comes_From_Source (T)
|
|
and then Nkind (N) = N_Object_Declaration
|
|
then
|
|
Error_Msg_NE
|
|
("type of& has incomplete component",
|
|
N, Defining_Identifier (N));
|
|
else
|
|
Error_Msg_NE
|
|
("premature usage of incomplete}",
|
|
N, First_Subtype (T));
|
|
end if;
|
|
end if;
|
|
end Check_Fully_Declared;
|
|
|
|
-------------------------------------------
|
|
-- Check_Function_With_Address_Parameter --
|
|
-------------------------------------------
|
|
|
|
procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
|
|
F : Entity_Id;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
F := First_Formal (Subp_Id);
|
|
while Present (F) loop
|
|
T := Etype (F);
|
|
|
|
if Is_Private_Type (T) and then Present (Full_View (T)) then
|
|
T := Full_View (T);
|
|
end if;
|
|
|
|
if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
|
|
Set_Is_Pure (Subp_Id, False);
|
|
exit;
|
|
end if;
|
|
|
|
Next_Formal (F);
|
|
end loop;
|
|
end Check_Function_With_Address_Parameter;
|
|
|
|
-------------------------------------
|
|
-- Check_Function_Writable_Actuals --
|
|
-------------------------------------
|
|
|
|
procedure Check_Function_Writable_Actuals (N : Node_Id) is
|
|
Writable_Actuals_List : Elist_Id := No_Elist;
|
|
Identifiers_List : Elist_Id := No_Elist;
|
|
Aggr_Error_Node : Node_Id := Empty;
|
|
Error_Node : Node_Id := Empty;
|
|
|
|
procedure Collect_Identifiers (N : Node_Id);
|
|
-- In a single traversal of subtree N collect in Writable_Actuals_List
|
|
-- all the actuals of functions with writable actuals, and in the list
|
|
-- Identifiers_List collect all the identifiers that are not actuals of
|
|
-- functions with writable actuals. If a writable actual is referenced
|
|
-- twice as writable actual then Error_Node is set to reference its
|
|
-- second occurrence, the error is reported, and the tree traversal
|
|
-- is abandoned.
|
|
|
|
function Get_Function_Id (Call : Node_Id) return Entity_Id;
|
|
-- Return the entity associated with the function call
|
|
|
|
procedure Preanalyze_Without_Errors (N : Node_Id);
|
|
-- Preanalyze N without reporting errors. Very dubious, you can't just
|
|
-- go analyzing things more than once???
|
|
|
|
-------------------------
|
|
-- Collect_Identifiers --
|
|
-------------------------
|
|
|
|
procedure Collect_Identifiers (N : Node_Id) is
|
|
|
|
function Check_Node (N : Node_Id) return Traverse_Result;
|
|
-- Process a single node during the tree traversal to collect the
|
|
-- writable actuals of functions and all the identifiers which are
|
|
-- not writable actuals of functions.
|
|
|
|
function Contains (List : Elist_Id; N : Node_Id) return Boolean;
|
|
-- Returns True if List has a node whose Entity is Entity (N)
|
|
|
|
-------------------------
|
|
-- Check_Function_Call --
|
|
-------------------------
|
|
|
|
function Check_Node (N : Node_Id) return Traverse_Result is
|
|
Is_Writable_Actual : Boolean := False;
|
|
Id : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (N) = N_Identifier then
|
|
|
|
-- No analysis possible if the entity is not decorated
|
|
|
|
if No (Entity (N)) then
|
|
return Skip;
|
|
|
|
-- Don't collect identifiers of packages, called functions, etc
|
|
|
|
elsif Ekind_In (Entity (N), E_Package,
|
|
E_Function,
|
|
E_Procedure,
|
|
E_Entry)
|
|
then
|
|
return Skip;
|
|
|
|
-- For rewritten nodes, continue the traversal in the original
|
|
-- subtree. Needed to handle aggregates in original expressions
|
|
-- extracted from the tree by Remove_Side_Effects.
|
|
|
|
elsif Is_Rewrite_Substitution (N) then
|
|
Collect_Identifiers (Original_Node (N));
|
|
return Skip;
|
|
|
|
-- For now we skip aggregate discriminants, since they require
|
|
-- performing the analysis in two phases to identify conflicts:
|
|
-- first one analyzing discriminants and second one analyzing
|
|
-- the rest of components (since at run time, discriminants are
|
|
-- evaluated prior to components): too much computation cost
|
|
-- to identify a corner case???
|
|
|
|
elsif Nkind (Parent (N)) = N_Component_Association
|
|
and then Nkind_In (Parent (Parent (N)),
|
|
N_Aggregate,
|
|
N_Extension_Aggregate)
|
|
then
|
|
declare
|
|
Choice : constant Node_Id := First (Choices (Parent (N)));
|
|
|
|
begin
|
|
if Ekind (Entity (N)) = E_Discriminant then
|
|
return Skip;
|
|
|
|
elsif Expression (Parent (N)) = N
|
|
and then Nkind (Choice) = N_Identifier
|
|
and then Ekind (Entity (Choice)) = E_Discriminant
|
|
then
|
|
return Skip;
|
|
end if;
|
|
end;
|
|
|
|
-- Analyze if N is a writable actual of a function
|
|
|
|
elsif Nkind (Parent (N)) = N_Function_Call then
|
|
declare
|
|
Call : constant Node_Id := Parent (N);
|
|
Actual : Node_Id;
|
|
Formal : Node_Id;
|
|
|
|
begin
|
|
Id := Get_Function_Id (Call);
|
|
|
|
-- In case of previous error, no check is possible
|
|
|
|
if No (Id) then
|
|
return Abandon;
|
|
end if;
|
|
|
|
if Ekind_In (Id, E_Function, E_Generic_Function)
|
|
and then Has_Out_Or_In_Out_Parameter (Id)
|
|
then
|
|
Formal := First_Formal (Id);
|
|
Actual := First_Actual (Call);
|
|
while Present (Actual) and then Present (Formal) loop
|
|
if Actual = N then
|
|
if Ekind_In (Formal, E_Out_Parameter,
|
|
E_In_Out_Parameter)
|
|
then
|
|
Is_Writable_Actual := True;
|
|
end if;
|
|
|
|
exit;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
Next_Actual (Actual);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
if Is_Writable_Actual then
|
|
|
|
-- Skip checking the error in non-elementary types since
|
|
-- RM 6.4.1(6.15/3) is restricted to elementary types, but
|
|
-- store this actual in Writable_Actuals_List since it is
|
|
-- needed to perform checks on other constructs that have
|
|
-- arbitrary order of evaluation (for example, aggregates).
|
|
|
|
if not Is_Elementary_Type (Etype (N)) then
|
|
if not Contains (Writable_Actuals_List, N) then
|
|
Append_New_Elmt (N, To => Writable_Actuals_List);
|
|
end if;
|
|
|
|
-- Second occurrence of an elementary type writable actual
|
|
|
|
elsif Contains (Writable_Actuals_List, N) then
|
|
|
|
-- Report the error on the second occurrence of the
|
|
-- identifier. We cannot assume that N is the second
|
|
-- occurrence (according to their location in the
|
|
-- sources), since Traverse_Func walks through Field2
|
|
-- last (see comment in the body of Traverse_Func).
|
|
|
|
declare
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
Elmt := First_Elmt (Writable_Actuals_List);
|
|
while Present (Elmt)
|
|
and then Entity (Node (Elmt)) /= Entity (N)
|
|
loop
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
if Sloc (N) > Sloc (Node (Elmt)) then
|
|
Error_Node := N;
|
|
else
|
|
Error_Node := Node (Elmt);
|
|
end if;
|
|
|
|
Error_Msg_NE
|
|
("value may be affected by call to & "
|
|
& "because order of evaluation is arbitrary",
|
|
Error_Node, Id);
|
|
return Abandon;
|
|
end;
|
|
|
|
-- First occurrence of a elementary type writable actual
|
|
|
|
else
|
|
Append_New_Elmt (N, To => Writable_Actuals_List);
|
|
end if;
|
|
|
|
else
|
|
if Identifiers_List = No_Elist then
|
|
Identifiers_List := New_Elmt_List;
|
|
end if;
|
|
|
|
Append_Unique_Elmt (N, Identifiers_List);
|
|
end if;
|
|
end if;
|
|
|
|
return OK;
|
|
end Check_Node;
|
|
|
|
--------------
|
|
-- Contains --
|
|
--------------
|
|
|
|
function Contains
|
|
(List : Elist_Id;
|
|
N : Node_Id) return Boolean
|
|
is
|
|
pragma Assert (Nkind (N) in N_Has_Entity);
|
|
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
if List = No_Elist then
|
|
return False;
|
|
end if;
|
|
|
|
Elmt := First_Elmt (List);
|
|
while Present (Elmt) loop
|
|
if Entity (Node (Elmt)) = Entity (N) then
|
|
return True;
|
|
else
|
|
Next_Elmt (Elmt);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Contains;
|
|
|
|
------------------
|
|
-- Do_Traversal --
|
|
------------------
|
|
|
|
procedure Do_Traversal is new Traverse_Proc (Check_Node);
|
|
-- The traversal procedure
|
|
|
|
-- Start of processing for Collect_Identifiers
|
|
|
|
begin
|
|
if Present (Error_Node) then
|
|
return;
|
|
end if;
|
|
|
|
if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
|
|
return;
|
|
end if;
|
|
|
|
Do_Traversal (N);
|
|
end Collect_Identifiers;
|
|
|
|
---------------------
|
|
-- Get_Function_Id --
|
|
---------------------
|
|
|
|
function Get_Function_Id (Call : Node_Id) return Entity_Id is
|
|
Nam : constant Node_Id := Name (Call);
|
|
Id : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Nam) = N_Explicit_Dereference then
|
|
Id := Etype (Nam);
|
|
pragma Assert (Ekind (Id) = E_Subprogram_Type);
|
|
|
|
elsif Nkind (Nam) = N_Selected_Component then
|
|
Id := Entity (Selector_Name (Nam));
|
|
|
|
elsif Nkind (Nam) = N_Indexed_Component then
|
|
Id := Entity (Selector_Name (Prefix (Nam)));
|
|
|
|
else
|
|
Id := Entity (Nam);
|
|
end if;
|
|
|
|
return Id;
|
|
end Get_Function_Id;
|
|
|
|
-------------------------------
|
|
-- Preanalyze_Without_Errors --
|
|
-------------------------------
|
|
|
|
procedure Preanalyze_Without_Errors (N : Node_Id) is
|
|
Status : constant Boolean := Get_Ignore_Errors;
|
|
begin
|
|
Set_Ignore_Errors (True);
|
|
Preanalyze (N);
|
|
Set_Ignore_Errors (Status);
|
|
end Preanalyze_Without_Errors;
|
|
|
|
-- Start of processing for Check_Function_Writable_Actuals
|
|
|
|
begin
|
|
-- The check only applies to Ada 2012 code on which Check_Actuals has
|
|
-- been set, and only to constructs that have multiple constituents
|
|
-- whose order of evaluation is not specified by the language.
|
|
|
|
if Ada_Version < Ada_2012
|
|
or else not Check_Actuals (N)
|
|
or else (not (Nkind (N) in N_Op)
|
|
and then not (Nkind (N) in N_Membership_Test)
|
|
and then not Nkind_In (N, N_Range,
|
|
N_Aggregate,
|
|
N_Extension_Aggregate,
|
|
N_Full_Type_Declaration,
|
|
N_Function_Call,
|
|
N_Procedure_Call_Statement,
|
|
N_Entry_Call_Statement))
|
|
or else (Nkind (N) = N_Full_Type_Declaration
|
|
and then not Is_Record_Type (Defining_Identifier (N)))
|
|
|
|
-- In addition, this check only applies to source code, not to code
|
|
-- generated by constraint checks.
|
|
|
|
or else not Comes_From_Source (N)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- If a construct C has two or more direct constituents that are names
|
|
-- or expressions whose evaluation may occur in an arbitrary order, at
|
|
-- least one of which contains a function call with an in out or out
|
|
-- parameter, then the construct is legal only if: for each name N that
|
|
-- is passed as a parameter of mode in out or out to some inner function
|
|
-- call C2 (not including the construct C itself), there is no other
|
|
-- name anywhere within a direct constituent of the construct C other
|
|
-- than the one containing C2, that is known to refer to the same
|
|
-- object (RM 6.4.1(6.17/3)).
|
|
|
|
case Nkind (N) is
|
|
when N_Range =>
|
|
Collect_Identifiers (Low_Bound (N));
|
|
Collect_Identifiers (High_Bound (N));
|
|
|
|
when N_Op | N_Membership_Test =>
|
|
declare
|
|
Expr : Node_Id;
|
|
|
|
begin
|
|
Collect_Identifiers (Left_Opnd (N));
|
|
|
|
if Present (Right_Opnd (N)) then
|
|
Collect_Identifiers (Right_Opnd (N));
|
|
end if;
|
|
|
|
if Nkind_In (N, N_In, N_Not_In)
|
|
and then Present (Alternatives (N))
|
|
then
|
|
Expr := First (Alternatives (N));
|
|
while Present (Expr) loop
|
|
Collect_Identifiers (Expr);
|
|
|
|
Next (Expr);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
|
|
when N_Full_Type_Declaration =>
|
|
declare
|
|
function Get_Record_Part (N : Node_Id) return Node_Id;
|
|
-- Return the record part of this record type definition
|
|
|
|
function Get_Record_Part (N : Node_Id) return Node_Id is
|
|
Type_Def : constant Node_Id := Type_Definition (N);
|
|
begin
|
|
if Nkind (Type_Def) = N_Derived_Type_Definition then
|
|
return Record_Extension_Part (Type_Def);
|
|
else
|
|
return Type_Def;
|
|
end if;
|
|
end Get_Record_Part;
|
|
|
|
Comp : Node_Id;
|
|
Def_Id : Entity_Id := Defining_Identifier (N);
|
|
Rec : Node_Id := Get_Record_Part (N);
|
|
|
|
begin
|
|
-- No need to perform any analysis if the record has no
|
|
-- components
|
|
|
|
if No (Rec) or else No (Component_List (Rec)) then
|
|
return;
|
|
end if;
|
|
|
|
-- Collect the identifiers starting from the deepest
|
|
-- derivation. Done to report the error in the deepest
|
|
-- derivation.
|
|
|
|
loop
|
|
if Present (Component_List (Rec)) then
|
|
Comp := First (Component_Items (Component_List (Rec)));
|
|
while Present (Comp) loop
|
|
if Nkind (Comp) = N_Component_Declaration
|
|
and then Present (Expression (Comp))
|
|
then
|
|
Collect_Identifiers (Expression (Comp));
|
|
end if;
|
|
|
|
Next (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
exit when No (Underlying_Type (Etype (Def_Id)))
|
|
or else Base_Type (Underlying_Type (Etype (Def_Id)))
|
|
= Def_Id;
|
|
|
|
Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
|
|
Rec := Get_Record_Part (Parent (Def_Id));
|
|
end loop;
|
|
end;
|
|
|
|
when N_Subprogram_Call |
|
|
N_Entry_Call_Statement =>
|
|
declare
|
|
Id : constant Entity_Id := Get_Function_Id (N);
|
|
Formal : Node_Id;
|
|
Actual : Node_Id;
|
|
|
|
begin
|
|
Formal := First_Formal (Id);
|
|
Actual := First_Actual (N);
|
|
while Present (Actual) and then Present (Formal) loop
|
|
if Ekind_In (Formal, E_Out_Parameter,
|
|
E_In_Out_Parameter)
|
|
then
|
|
Collect_Identifiers (Actual);
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
Next_Actual (Actual);
|
|
end loop;
|
|
end;
|
|
|
|
when N_Aggregate |
|
|
N_Extension_Aggregate =>
|
|
declare
|
|
Assoc : Node_Id;
|
|
Choice : Node_Id;
|
|
Comp_Expr : Node_Id;
|
|
|
|
begin
|
|
-- Handle the N_Others_Choice of array aggregates with static
|
|
-- bounds. There is no need to perform this analysis in
|
|
-- aggregates without static bounds since we cannot evaluate
|
|
-- if the N_Others_Choice covers several elements. There is
|
|
-- no need to handle the N_Others choice of record aggregates
|
|
-- since at this stage it has been already expanded by
|
|
-- Resolve_Record_Aggregate.
|
|
|
|
if Is_Array_Type (Etype (N))
|
|
and then Nkind (N) = N_Aggregate
|
|
and then Present (Aggregate_Bounds (N))
|
|
and then Compile_Time_Known_Bounds (Etype (N))
|
|
and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
|
|
>
|
|
Expr_Value (Low_Bound (Aggregate_Bounds (N)))
|
|
then
|
|
declare
|
|
Count_Components : Uint := Uint_0;
|
|
Num_Components : Uint;
|
|
Others_Assoc : Node_Id;
|
|
Others_Choice : Node_Id := Empty;
|
|
Others_Box_Present : Boolean := False;
|
|
|
|
begin
|
|
-- Count positional associations
|
|
|
|
if Present (Expressions (N)) then
|
|
Comp_Expr := First (Expressions (N));
|
|
while Present (Comp_Expr) loop
|
|
Count_Components := Count_Components + 1;
|
|
Next (Comp_Expr);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Count the rest of elements and locate the N_Others
|
|
-- choice (if any)
|
|
|
|
Assoc := First (Component_Associations (N));
|
|
while Present (Assoc) loop
|
|
Choice := First (Choices (Assoc));
|
|
while Present (Choice) loop
|
|
if Nkind (Choice) = N_Others_Choice then
|
|
Others_Assoc := Assoc;
|
|
Others_Choice := Choice;
|
|
Others_Box_Present := Box_Present (Assoc);
|
|
|
|
-- Count several components
|
|
|
|
elsif Nkind_In (Choice, N_Range,
|
|
N_Subtype_Indication)
|
|
or else (Is_Entity_Name (Choice)
|
|
and then Is_Type (Entity (Choice)))
|
|
then
|
|
declare
|
|
L, H : Node_Id;
|
|
begin
|
|
Get_Index_Bounds (Choice, L, H);
|
|
pragma Assert
|
|
(Compile_Time_Known_Value (L)
|
|
and then Compile_Time_Known_Value (H));
|
|
Count_Components :=
|
|
Count_Components
|
|
+ Expr_Value (H) - Expr_Value (L) + 1;
|
|
end;
|
|
|
|
-- Count single component. No other case available
|
|
-- since we are handling an aggregate with static
|
|
-- bounds.
|
|
|
|
else
|
|
pragma Assert (Is_OK_Static_Expression (Choice)
|
|
or else Nkind (Choice) = N_Identifier
|
|
or else Nkind (Choice) = N_Integer_Literal);
|
|
|
|
Count_Components := Count_Components + 1;
|
|
end if;
|
|
|
|
Next (Choice);
|
|
end loop;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
|
|
Num_Components :=
|
|
Expr_Value (High_Bound (Aggregate_Bounds (N))) -
|
|
Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
|
|
|
|
pragma Assert (Count_Components <= Num_Components);
|
|
|
|
-- Handle the N_Others choice if it covers several
|
|
-- components
|
|
|
|
if Present (Others_Choice)
|
|
and then (Num_Components - Count_Components) > 1
|
|
then
|
|
if not Others_Box_Present then
|
|
|
|
-- At this stage, if expansion is active, the
|
|
-- expression of the others choice has not been
|
|
-- analyzed. Hence we generate a duplicate and
|
|
-- we analyze it silently to have available the
|
|
-- minimum decoration required to collect the
|
|
-- identifiers.
|
|
|
|
if not Expander_Active then
|
|
Comp_Expr := Expression (Others_Assoc);
|
|
else
|
|
Comp_Expr :=
|
|
New_Copy_Tree (Expression (Others_Assoc));
|
|
Preanalyze_Without_Errors (Comp_Expr);
|
|
end if;
|
|
|
|
Collect_Identifiers (Comp_Expr);
|
|
|
|
if Writable_Actuals_List /= No_Elist then
|
|
|
|
-- As suggested by Robert, at current stage we
|
|
-- report occurrences of this case as warnings.
|
|
|
|
Error_Msg_N
|
|
("writable function parameter may affect "
|
|
& "value in other component because order "
|
|
& "of evaluation is unspecified??",
|
|
Node (First_Elmt (Writable_Actuals_List)));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- For an array aggregate, a discrete_choice_list that has
|
|
-- a nonstatic range is considered as two or more separate
|
|
-- occurrences of the expression (RM 6.4.1(20/3)).
|
|
|
|
elsif Is_Array_Type (Etype (N))
|
|
and then Nkind (N) = N_Aggregate
|
|
and then Present (Aggregate_Bounds (N))
|
|
and then not Compile_Time_Known_Bounds (Etype (N))
|
|
then
|
|
-- Collect identifiers found in the dynamic bounds
|
|
|
|
declare
|
|
Count_Components : Natural := 0;
|
|
Low, High : Node_Id;
|
|
|
|
begin
|
|
Assoc := First (Component_Associations (N));
|
|
while Present (Assoc) loop
|
|
Choice := First (Choices (Assoc));
|
|
while Present (Choice) loop
|
|
if Nkind_In (Choice, N_Range,
|
|
N_Subtype_Indication)
|
|
or else (Is_Entity_Name (Choice)
|
|
and then Is_Type (Entity (Choice)))
|
|
then
|
|
Get_Index_Bounds (Choice, Low, High);
|
|
|
|
if not Compile_Time_Known_Value (Low) then
|
|
Collect_Identifiers (Low);
|
|
|
|
if No (Aggr_Error_Node) then
|
|
Aggr_Error_Node := Low;
|
|
end if;
|
|
end if;
|
|
|
|
if not Compile_Time_Known_Value (High) then
|
|
Collect_Identifiers (High);
|
|
|
|
if No (Aggr_Error_Node) then
|
|
Aggr_Error_Node := High;
|
|
end if;
|
|
end if;
|
|
|
|
-- The RM rule is violated if there is more than
|
|
-- a single choice in a component association.
|
|
|
|
else
|
|
Count_Components := Count_Components + 1;
|
|
|
|
if No (Aggr_Error_Node)
|
|
and then Count_Components > 1
|
|
then
|
|
Aggr_Error_Node := Choice;
|
|
end if;
|
|
|
|
if not Compile_Time_Known_Value (Choice) then
|
|
Collect_Identifiers (Choice);
|
|
end if;
|
|
end if;
|
|
|
|
Next (Choice);
|
|
end loop;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Handle ancestor part of extension aggregates
|
|
|
|
if Nkind (N) = N_Extension_Aggregate then
|
|
Collect_Identifiers (Ancestor_Part (N));
|
|
end if;
|
|
|
|
-- Handle positional associations
|
|
|
|
if Present (Expressions (N)) then
|
|
Comp_Expr := First (Expressions (N));
|
|
while Present (Comp_Expr) loop
|
|
if not Is_OK_Static_Expression (Comp_Expr) then
|
|
Collect_Identifiers (Comp_Expr);
|
|
end if;
|
|
|
|
Next (Comp_Expr);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Handle discrete associations
|
|
|
|
if Present (Component_Associations (N)) then
|
|
Assoc := First (Component_Associations (N));
|
|
while Present (Assoc) loop
|
|
|
|
if not Box_Present (Assoc) then
|
|
Choice := First (Choices (Assoc));
|
|
while Present (Choice) loop
|
|
|
|
-- For now we skip discriminants since it requires
|
|
-- performing the analysis in two phases: first one
|
|
-- analyzing discriminants and second one analyzing
|
|
-- the rest of components since discriminants are
|
|
-- evaluated prior to components: too much extra
|
|
-- work to detect a corner case???
|
|
|
|
if Nkind (Choice) in N_Has_Entity
|
|
and then Present (Entity (Choice))
|
|
and then Ekind (Entity (Choice)) = E_Discriminant
|
|
then
|
|
null;
|
|
|
|
elsif Box_Present (Assoc) then
|
|
null;
|
|
|
|
else
|
|
if not Analyzed (Expression (Assoc)) then
|
|
Comp_Expr :=
|
|
New_Copy_Tree (Expression (Assoc));
|
|
Set_Parent (Comp_Expr, Parent (N));
|
|
Preanalyze_Without_Errors (Comp_Expr);
|
|
else
|
|
Comp_Expr := Expression (Assoc);
|
|
end if;
|
|
|
|
Collect_Identifiers (Comp_Expr);
|
|
end if;
|
|
|
|
Next (Choice);
|
|
end loop;
|
|
end if;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
|
|
when others =>
|
|
return;
|
|
end case;
|
|
|
|
-- No further action needed if we already reported an error
|
|
|
|
if Present (Error_Node) then
|
|
return;
|
|
end if;
|
|
|
|
-- Check violation of RM 6.20/3 in aggregates
|
|
|
|
if Present (Aggr_Error_Node)
|
|
and then Writable_Actuals_List /= No_Elist
|
|
then
|
|
Error_Msg_N
|
|
("value may be affected by call in other component because they "
|
|
& "are evaluated in unspecified order",
|
|
Node (First_Elmt (Writable_Actuals_List)));
|
|
return;
|
|
end if;
|
|
|
|
-- Check if some writable argument of a function is referenced
|
|
|
|
if Writable_Actuals_List /= No_Elist
|
|
and then Identifiers_List /= No_Elist
|
|
then
|
|
declare
|
|
Elmt_1 : Elmt_Id;
|
|
Elmt_2 : Elmt_Id;
|
|
|
|
begin
|
|
Elmt_1 := First_Elmt (Writable_Actuals_List);
|
|
while Present (Elmt_1) loop
|
|
Elmt_2 := First_Elmt (Identifiers_List);
|
|
while Present (Elmt_2) loop
|
|
if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
|
|
case Nkind (Parent (Node (Elmt_2))) is
|
|
when N_Aggregate |
|
|
N_Component_Association |
|
|
N_Component_Declaration =>
|
|
Error_Msg_N
|
|
("value may be affected by call in other "
|
|
& "component because they are evaluated "
|
|
& "in unspecified order",
|
|
Node (Elmt_2));
|
|
|
|
when N_In | N_Not_In =>
|
|
Error_Msg_N
|
|
("value may be affected by call in other "
|
|
& "alternative because they are evaluated "
|
|
& "in unspecified order",
|
|
Node (Elmt_2));
|
|
|
|
when others =>
|
|
Error_Msg_N
|
|
("value of actual may be affected by call in "
|
|
& "other actual because they are evaluated "
|
|
& "in unspecified order",
|
|
Node (Elmt_2));
|
|
end case;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt_2);
|
|
end loop;
|
|
|
|
Next_Elmt (Elmt_1);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end Check_Function_Writable_Actuals;
|
|
|
|
--------------------------------
|
|
-- Check_Implicit_Dereference --
|
|
--------------------------------
|
|
|
|
procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
|
|
Disc : Entity_Id;
|
|
Desig : Entity_Id;
|
|
Nam : Node_Id;
|
|
|
|
begin
|
|
if Nkind (N) = N_Indexed_Component
|
|
and then Present (Generalized_Indexing (N))
|
|
then
|
|
Nam := Generalized_Indexing (N);
|
|
else
|
|
Nam := N;
|
|
end if;
|
|
|
|
if Ada_Version < Ada_2012
|
|
or else not Has_Implicit_Dereference (Base_Type (Typ))
|
|
then
|
|
return;
|
|
|
|
elsif not Comes_From_Source (N)
|
|
and then Nkind (N) /= N_Indexed_Component
|
|
then
|
|
return;
|
|
|
|
elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
|
|
null;
|
|
|
|
else
|
|
Disc := First_Discriminant (Typ);
|
|
while Present (Disc) loop
|
|
if Has_Implicit_Dereference (Disc) then
|
|
Desig := Designated_Type (Etype (Disc));
|
|
Add_One_Interp (Nam, Disc, Desig);
|
|
|
|
-- If the node is a generalized indexing, add interpretation
|
|
-- to that node as well, for subsequent resolution.
|
|
|
|
if Nkind (N) = N_Indexed_Component then
|
|
Add_One_Interp (N, Disc, Desig);
|
|
end if;
|
|
|
|
-- If the operation comes from a generic unit and the context
|
|
-- is a selected component, the selector name may be global
|
|
-- and set in the instance already. Remove the entity to
|
|
-- force resolution of the selected component, and the
|
|
-- generation of an explicit dereference if needed.
|
|
|
|
if In_Instance
|
|
and then Nkind (Parent (Nam)) = N_Selected_Component
|
|
then
|
|
Set_Entity (Selector_Name (Parent (Nam)), Empty);
|
|
end if;
|
|
|
|
exit;
|
|
end if;
|
|
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
end if;
|
|
end Check_Implicit_Dereference;
|
|
|
|
----------------------------------
|
|
-- Check_Internal_Protected_Use --
|
|
----------------------------------
|
|
|
|
procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
|
|
S : Entity_Id;
|
|
Prot : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) loop
|
|
if S = Standard_Standard then
|
|
return;
|
|
|
|
elsif Ekind (S) = E_Function
|
|
and then Ekind (Scope (S)) = E_Protected_Type
|
|
then
|
|
Prot := Scope (S);
|
|
exit;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
|
|
|
|
-- An indirect function call (e.g. a callback within a protected
|
|
-- function body) is not statically illegal. If the access type is
|
|
-- anonymous and is the type of an access parameter, the scope of Nam
|
|
-- will be the protected type, but it is not a protected operation.
|
|
|
|
if Ekind (Nam) = E_Subprogram_Type
|
|
and then
|
|
Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
|
|
then
|
|
null;
|
|
|
|
elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
|
|
Error_Msg_N
|
|
("within protected function cannot use protected "
|
|
& "procedure in renaming or as generic actual", N);
|
|
|
|
elsif Nkind (N) = N_Attribute_Reference then
|
|
Error_Msg_N
|
|
("within protected function cannot take access of "
|
|
& " protected procedure", N);
|
|
|
|
else
|
|
Error_Msg_N
|
|
("within protected function, protected object is constant", N);
|
|
Error_Msg_N
|
|
("\cannot call operation that may modify it", N);
|
|
end if;
|
|
end if;
|
|
end Check_Internal_Protected_Use;
|
|
|
|
---------------------------------------
|
|
-- Check_Later_Vs_Basic_Declarations --
|
|
---------------------------------------
|
|
|
|
procedure Check_Later_Vs_Basic_Declarations
|
|
(Decls : List_Id;
|
|
During_Parsing : Boolean)
|
|
is
|
|
Body_Sloc : Source_Ptr;
|
|
Decl : Node_Id;
|
|
|
|
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
|
|
-- Return whether Decl is considered as a declarative item.
|
|
-- When During_Parsing is True, the semantics of Ada 83 is followed.
|
|
-- When During_Parsing is False, the semantics of SPARK is followed.
|
|
|
|
-------------------------------
|
|
-- Is_Later_Declarative_Item --
|
|
-------------------------------
|
|
|
|
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (Decl) in N_Later_Decl_Item then
|
|
return True;
|
|
|
|
elsif Nkind (Decl) = N_Pragma then
|
|
return True;
|
|
|
|
elsif During_Parsing then
|
|
return False;
|
|
|
|
-- In SPARK, a package declaration is not considered as a later
|
|
-- declarative item.
|
|
|
|
elsif Nkind (Decl) = N_Package_Declaration then
|
|
return False;
|
|
|
|
-- In SPARK, a renaming is considered as a later declarative item
|
|
|
|
elsif Nkind (Decl) in N_Renaming_Declaration then
|
|
return True;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Later_Declarative_Item;
|
|
|
|
-- Start of processing for Check_Later_Vs_Basic_Declarations
|
|
|
|
begin
|
|
Decl := First (Decls);
|
|
|
|
-- Loop through sequence of basic declarative items
|
|
|
|
Outer : while Present (Decl) loop
|
|
if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
|
|
and then Nkind (Decl) not in N_Body_Stub
|
|
then
|
|
Next (Decl);
|
|
|
|
-- Once a body is encountered, we only allow later declarative
|
|
-- items. The inner loop checks the rest of the list.
|
|
|
|
else
|
|
Body_Sloc := Sloc (Decl);
|
|
|
|
Inner : while Present (Decl) loop
|
|
if not Is_Later_Declarative_Item (Decl) then
|
|
if During_Parsing then
|
|
if Ada_Version = Ada_83 then
|
|
Error_Msg_Sloc := Body_Sloc;
|
|
Error_Msg_N
|
|
("(Ada 83) decl cannot appear after body#", Decl);
|
|
end if;
|
|
else
|
|
Error_Msg_Sloc := Body_Sloc;
|
|
Check_SPARK_05_Restriction
|
|
("decl cannot appear after body#", Decl);
|
|
end if;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop Inner;
|
|
end if;
|
|
end loop Outer;
|
|
end Check_Later_Vs_Basic_Declarations;
|
|
|
|
---------------------------
|
|
-- Check_No_Hidden_State --
|
|
---------------------------
|
|
|
|
procedure Check_No_Hidden_State (Id : Entity_Id) is
|
|
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
|
|
-- Determine whether the entity of a package denoted by Pkg has a null
|
|
-- abstract state.
|
|
|
|
-----------------------------
|
|
-- Has_Null_Abstract_State --
|
|
-----------------------------
|
|
|
|
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
|
|
States : constant Elist_Id := Abstract_States (Pkg);
|
|
|
|
begin
|
|
-- Check first available state of related package. A null abstract
|
|
-- state always appears as the sole element of the state list.
|
|
|
|
return
|
|
Present (States)
|
|
and then Is_Null_State (Node (First_Elmt (States)));
|
|
end Has_Null_Abstract_State;
|
|
|
|
-- Local variables
|
|
|
|
Context : Entity_Id := Empty;
|
|
Not_Visible : Boolean := False;
|
|
Scop : Entity_Id;
|
|
|
|
-- Start of processing for Check_No_Hidden_State
|
|
|
|
begin
|
|
pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
|
|
|
|
-- Find the proper context where the object or state appears
|
|
|
|
Scop := Scope (Id);
|
|
while Present (Scop) loop
|
|
Context := Scop;
|
|
|
|
-- Keep track of the context's visibility
|
|
|
|
Not_Visible := Not_Visible or else In_Private_Part (Context);
|
|
|
|
-- Prevent the search from going too far
|
|
|
|
if Context = Standard_Standard then
|
|
return;
|
|
|
|
-- Objects and states that appear immediately within a subprogram or
|
|
-- inside a construct nested within a subprogram do not introduce a
|
|
-- hidden state. They behave as local variable declarations.
|
|
|
|
elsif Is_Subprogram (Context) then
|
|
return;
|
|
|
|
-- When examining a package body, use the entity of the spec as it
|
|
-- carries the abstract state declarations.
|
|
|
|
elsif Ekind (Context) = E_Package_Body then
|
|
Context := Spec_Entity (Context);
|
|
end if;
|
|
|
|
-- Stop the traversal when a package subject to a null abstract state
|
|
-- has been found.
|
|
|
|
if Ekind_In (Context, E_Generic_Package, E_Package)
|
|
and then Has_Null_Abstract_State (Context)
|
|
then
|
|
exit;
|
|
end if;
|
|
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
-- At this point we know that there is at least one package with a null
|
|
-- abstract state in visibility. Emit an error message unconditionally
|
|
-- if the entity being processed is a state because the placement of the
|
|
-- related package is irrelevant. This is not the case for objects as
|
|
-- the intermediate context matters.
|
|
|
|
if Present (Context)
|
|
and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
|
|
then
|
|
Error_Msg_N ("cannot introduce hidden state &", Id);
|
|
Error_Msg_NE ("\package & has null abstract state", Id, Context);
|
|
end if;
|
|
end Check_No_Hidden_State;
|
|
|
|
----------------------------------------
|
|
-- Check_Nonvolatile_Function_Profile --
|
|
----------------------------------------
|
|
|
|
procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
-- Inspect all formal parameters
|
|
|
|
Formal := First_Formal (Func_Id);
|
|
while Present (Formal) loop
|
|
if Is_Effectively_Volatile (Etype (Formal)) then
|
|
Error_Msg_NE
|
|
("nonvolatile function & cannot have a volatile parameter",
|
|
Formal, Func_Id);
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
-- Inspect the return type
|
|
|
|
if Is_Effectively_Volatile (Etype (Func_Id)) then
|
|
Error_Msg_NE
|
|
("nonvolatile function & cannot have a volatile return type",
|
|
Result_Definition (Parent (Func_Id)), Func_Id);
|
|
end if;
|
|
end Check_Nonvolatile_Function_Profile;
|
|
|
|
------------------------------------------
|
|
-- Check_Potentially_Blocking_Operation --
|
|
------------------------------------------
|
|
|
|
procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
-- N is one of the potentially blocking operations listed in 9.5.1(8).
|
|
-- When pragma Detect_Blocking is active, the run time will raise
|
|
-- Program_Error. Here we only issue a warning, since we generally
|
|
-- support the use of potentially blocking operations in the absence
|
|
-- of the pragma.
|
|
|
|
-- Indirect blocking through a subprogram call cannot be diagnosed
|
|
-- statically without interprocedural analysis, so we do not attempt
|
|
-- to do it here.
|
|
|
|
S := Scope (Current_Scope);
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Is_Protected_Type (S) then
|
|
Error_Msg_N
|
|
("potentially blocking operation in protected operation??", N);
|
|
return;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
end Check_Potentially_Blocking_Operation;
|
|
|
|
---------------------------------
|
|
-- Check_Result_And_Post_State --
|
|
---------------------------------
|
|
|
|
procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
|
|
procedure Check_Result_And_Post_State_In_Pragma
|
|
(Prag : Node_Id;
|
|
Result_Seen : in out Boolean);
|
|
-- Determine whether pragma Prag mentions attribute 'Result and whether
|
|
-- the pragma contains an expression that evaluates differently in pre-
|
|
-- and post-state. Prag is a [refined] postcondition or a contract-cases
|
|
-- pragma. Result_Seen is set when the pragma mentions attribute 'Result
|
|
|
|
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
|
|
-- Determine whether subprogram Subp_Id contains at least one IN OUT
|
|
-- formal parameter.
|
|
|
|
-------------------------------------------
|
|
-- Check_Result_And_Post_State_In_Pragma --
|
|
-------------------------------------------
|
|
|
|
procedure Check_Result_And_Post_State_In_Pragma
|
|
(Prag : Node_Id;
|
|
Result_Seen : in out Boolean)
|
|
is
|
|
procedure Check_Expression (Expr : Node_Id);
|
|
-- Perform the 'Result and post-state checks on a given expression
|
|
|
|
function Is_Function_Result (N : Node_Id) return Traverse_Result;
|
|
-- Attempt to find attribute 'Result in a subtree denoted by N
|
|
|
|
function Is_Trivial_Boolean (N : Node_Id) return Boolean;
|
|
-- Determine whether source node N denotes "True" or "False"
|
|
|
|
function Mentions_Post_State (N : Node_Id) return Boolean;
|
|
-- Determine whether a subtree denoted by N mentions any construct
|
|
-- that denotes a post-state.
|
|
|
|
procedure Check_Function_Result is
|
|
new Traverse_Proc (Is_Function_Result);
|
|
|
|
----------------------
|
|
-- Check_Expression --
|
|
----------------------
|
|
|
|
procedure Check_Expression (Expr : Node_Id) is
|
|
begin
|
|
if not Is_Trivial_Boolean (Expr) then
|
|
Check_Function_Result (Expr);
|
|
|
|
if not Mentions_Post_State (Expr) then
|
|
if Pragma_Name (Prag) = Name_Contract_Cases then
|
|
Error_Msg_NE
|
|
("contract case does not check the outcome of calling "
|
|
& "&?T?", Expr, Subp_Id);
|
|
|
|
elsif Pragma_Name (Prag) = Name_Refined_Post then
|
|
Error_Msg_NE
|
|
("refined postcondition does not check the outcome of "
|
|
& "calling &?T?", Prag, Subp_Id);
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("postcondition does not check the outcome of calling "
|
|
& "&?T?", Prag, Subp_Id);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Check_Expression;
|
|
|
|
------------------------
|
|
-- Is_Function_Result --
|
|
------------------------
|
|
|
|
function Is_Function_Result (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if Is_Attribute_Result (N) then
|
|
Result_Seen := True;
|
|
return Abandon;
|
|
|
|
-- Continue the traversal
|
|
|
|
else
|
|
return OK;
|
|
end if;
|
|
end Is_Function_Result;
|
|
|
|
------------------------
|
|
-- Is_Trivial_Boolean --
|
|
------------------------
|
|
|
|
function Is_Trivial_Boolean (N : Node_Id) return Boolean is
|
|
begin
|
|
return
|
|
Comes_From_Source (N)
|
|
and then Is_Entity_Name (N)
|
|
and then (Entity (N) = Standard_True
|
|
or else
|
|
Entity (N) = Standard_False);
|
|
end Is_Trivial_Boolean;
|
|
|
|
-------------------------
|
|
-- Mentions_Post_State --
|
|
-------------------------
|
|
|
|
function Mentions_Post_State (N : Node_Id) return Boolean is
|
|
Post_State_Seen : Boolean := False;
|
|
|
|
function Is_Post_State (N : Node_Id) return Traverse_Result;
|
|
-- Attempt to find a construct that denotes a post-state. If this
|
|
-- is the case, set flag Post_State_Seen.
|
|
|
|
-------------------
|
|
-- Is_Post_State --
|
|
-------------------
|
|
|
|
function Is_Post_State (N : Node_Id) return Traverse_Result is
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
|
|
Post_State_Seen := True;
|
|
return Abandon;
|
|
|
|
elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
|
|
Ent := Entity (N);
|
|
|
|
-- The entity may be modifiable through an implicit
|
|
-- dereference.
|
|
|
|
if No (Ent)
|
|
or else Ekind (Ent) in Assignable_Kind
|
|
or else (Is_Access_Type (Etype (Ent))
|
|
and then Nkind (Parent (N)) =
|
|
N_Selected_Component)
|
|
then
|
|
Post_State_Seen := True;
|
|
return Abandon;
|
|
end if;
|
|
|
|
elsif Nkind (N) = N_Attribute_Reference then
|
|
if Attribute_Name (N) = Name_Old then
|
|
return Skip;
|
|
|
|
elsif Attribute_Name (N) = Name_Result then
|
|
Post_State_Seen := True;
|
|
return Abandon;
|
|
end if;
|
|
end if;
|
|
|
|
return OK;
|
|
end Is_Post_State;
|
|
|
|
procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
|
|
|
|
-- Start of processing for Mentions_Post_State
|
|
|
|
begin
|
|
Find_Post_State (N);
|
|
|
|
return Post_State_Seen;
|
|
end Mentions_Post_State;
|
|
|
|
-- Local variables
|
|
|
|
Expr : constant Node_Id :=
|
|
Get_Pragma_Arg
|
|
(First (Pragma_Argument_Associations (Prag)));
|
|
Nam : constant Name_Id := Pragma_Name (Prag);
|
|
CCase : Node_Id;
|
|
|
|
-- Start of processing for Check_Result_And_Post_State_In_Pragma
|
|
|
|
begin
|
|
-- Examine all consequences
|
|
|
|
if Nam = Name_Contract_Cases then
|
|
CCase := First (Component_Associations (Expr));
|
|
while Present (CCase) loop
|
|
Check_Expression (Expression (CCase));
|
|
|
|
Next (CCase);
|
|
end loop;
|
|
|
|
-- Examine the expression of a postcondition
|
|
|
|
else pragma Assert (Nam_In (Nam, Name_Postcondition,
|
|
Name_Refined_Post));
|
|
Check_Expression (Expr);
|
|
end if;
|
|
end Check_Result_And_Post_State_In_Pragma;
|
|
|
|
--------------------------
|
|
-- Has_In_Out_Parameter --
|
|
--------------------------
|
|
|
|
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
-- Traverse the formals looking for an IN OUT parameter
|
|
|
|
Formal := First_Formal (Subp_Id);
|
|
while Present (Formal) loop
|
|
if Ekind (Formal) = E_In_Out_Parameter then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
return False;
|
|
end Has_In_Out_Parameter;
|
|
|
|
-- Local variables
|
|
|
|
Items : constant Node_Id := Contract (Subp_Id);
|
|
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
|
|
Case_Prag : Node_Id := Empty;
|
|
Post_Prag : Node_Id := Empty;
|
|
Prag : Node_Id;
|
|
Seen_In_Case : Boolean := False;
|
|
Seen_In_Post : Boolean := False;
|
|
Spec_Id : Entity_Id;
|
|
|
|
-- Start of processing for Check_Result_And_Post_State
|
|
|
|
begin
|
|
-- The lack of attribute 'Result or a post-state is classified as a
|
|
-- suspicious contract. Do not perform the check if the corresponding
|
|
-- swich is not set.
|
|
|
|
if not Warn_On_Suspicious_Contract then
|
|
return;
|
|
|
|
-- Nothing to do if there is no contract
|
|
|
|
elsif No (Items) then
|
|
return;
|
|
end if;
|
|
|
|
-- Retrieve the entity of the subprogram spec (if any)
|
|
|
|
if Nkind (Subp_Decl) = N_Subprogram_Body
|
|
and then Present (Corresponding_Spec (Subp_Decl))
|
|
then
|
|
Spec_Id := Corresponding_Spec (Subp_Decl);
|
|
|
|
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
|
|
and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
|
|
then
|
|
Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
|
|
|
|
else
|
|
Spec_Id := Subp_Id;
|
|
end if;
|
|
|
|
-- Examine all postconditions for attribute 'Result and a post-state
|
|
|
|
Prag := Pre_Post_Conditions (Items);
|
|
while Present (Prag) loop
|
|
if Nam_In (Pragma_Name (Prag), Name_Postcondition,
|
|
Name_Refined_Post)
|
|
and then not Error_Posted (Prag)
|
|
then
|
|
Post_Prag := Prag;
|
|
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
|
|
end if;
|
|
|
|
Prag := Next_Pragma (Prag);
|
|
end loop;
|
|
|
|
-- Examine the contract cases of the subprogram for attribute 'Result
|
|
-- and a post-state.
|
|
|
|
Prag := Contract_Test_Cases (Items);
|
|
while Present (Prag) loop
|
|
if Pragma_Name (Prag) = Name_Contract_Cases
|
|
and then not Error_Posted (Prag)
|
|
then
|
|
Case_Prag := Prag;
|
|
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
|
|
end if;
|
|
|
|
Prag := Next_Pragma (Prag);
|
|
end loop;
|
|
|
|
-- Do not emit any errors if the subprogram is not a function
|
|
|
|
if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
|
|
null;
|
|
|
|
-- Regardless of whether the function has postconditions or contract
|
|
-- cases, or whether they mention attribute 'Result, an IN OUT formal
|
|
-- parameter is always treated as a result.
|
|
|
|
elsif Has_In_Out_Parameter (Spec_Id) then
|
|
null;
|
|
|
|
-- The function has both a postcondition and contract cases and they do
|
|
-- not mention attribute 'Result.
|
|
|
|
elsif Present (Case_Prag)
|
|
and then not Seen_In_Case
|
|
and then Present (Post_Prag)
|
|
and then not Seen_In_Post
|
|
then
|
|
Error_Msg_N
|
|
("neither postcondition nor contract cases mention function "
|
|
& "result?T?", Post_Prag);
|
|
|
|
-- The function has contract cases only and they do not mention
|
|
-- attribute 'Result.
|
|
|
|
elsif Present (Case_Prag) and then not Seen_In_Case then
|
|
Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
|
|
|
|
-- The function has postconditions only and they do not mention
|
|
-- attribute 'Result.
|
|
|
|
elsif Present (Post_Prag) and then not Seen_In_Post then
|
|
Error_Msg_N
|
|
("postcondition does not mention function result?T?", Post_Prag);
|
|
end if;
|
|
end Check_Result_And_Post_State;
|
|
|
|
-----------------------------
|
|
-- Check_State_Refinements --
|
|
-----------------------------
|
|
|
|
procedure Check_State_Refinements
|
|
(Context : Node_Id;
|
|
Is_Main_Unit : Boolean := False)
|
|
is
|
|
procedure Check_Package (Pack : Node_Id);
|
|
-- Verify that all abstract states of a [generic] package denoted by its
|
|
-- declarative node Pack have proper refinement. Recursively verify the
|
|
-- visible and private declarations of the [generic] package for other
|
|
-- nested packages.
|
|
|
|
procedure Check_Packages_In (Decls : List_Id);
|
|
-- Seek out [generic] package declarations within declarative list Decls
|
|
-- and verify the status of their abstract state refinement.
|
|
|
|
function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
|
|
-- Determine whether construct N is subject to pragma SPARK_Mode Off
|
|
|
|
-------------------
|
|
-- Check_Package --
|
|
-------------------
|
|
|
|
procedure Check_Package (Pack : Node_Id) is
|
|
Body_Id : constant Entity_Id := Corresponding_Body (Pack);
|
|
Spec : constant Node_Id := Specification (Pack);
|
|
States : constant Elist_Id :=
|
|
Abstract_States (Defining_Entity (Pack));
|
|
|
|
State_Elmt : Elmt_Id;
|
|
State_Id : Entity_Id;
|
|
|
|
begin
|
|
-- Do not verify proper state refinement when the package is subject
|
|
-- to pragma SPARK_Mode Off because this disables the requirement for
|
|
-- state refinement.
|
|
|
|
if SPARK_Mode_Is_Off (Pack) then
|
|
null;
|
|
|
|
-- State refinement can only occur in a completing packge body. Do
|
|
-- not verify proper state refinement when the body is subject to
|
|
-- pragma SPARK_Mode Off because this disables the requirement for
|
|
-- state refinement.
|
|
|
|
elsif Present (Body_Id)
|
|
and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
|
|
then
|
|
null;
|
|
|
|
-- Do not verify proper state refinement when the package is an
|
|
-- instance as this check was already performed in the generic.
|
|
|
|
elsif Present (Generic_Parent (Spec)) then
|
|
null;
|
|
|
|
-- Otherwise examine the contents of the package
|
|
|
|
else
|
|
if Present (States) then
|
|
State_Elmt := First_Elmt (States);
|
|
while Present (State_Elmt) loop
|
|
State_Id := Node (State_Elmt);
|
|
|
|
-- Emit an error when a non-null state lacks any form of
|
|
-- refinement.
|
|
|
|
if not Is_Null_State (State_Id)
|
|
and then not Has_Null_Refinement (State_Id)
|
|
and then not Has_Non_Null_Refinement (State_Id)
|
|
then
|
|
Error_Msg_N ("state & requires refinement", State_Id);
|
|
end if;
|
|
|
|
Next_Elmt (State_Elmt);
|
|
end loop;
|
|
end if;
|
|
|
|
Check_Packages_In (Visible_Declarations (Spec));
|
|
Check_Packages_In (Private_Declarations (Spec));
|
|
end if;
|
|
end Check_Package;
|
|
|
|
-----------------------
|
|
-- Check_Packages_In --
|
|
-----------------------
|
|
|
|
procedure Check_Packages_In (Decls : List_Id) is
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
if Present (Decls) then
|
|
Decl := First (Decls);
|
|
while Present (Decl) loop
|
|
if Nkind_In (Decl, N_Generic_Package_Declaration,
|
|
N_Package_Declaration)
|
|
then
|
|
Check_Package (Decl);
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end if;
|
|
end Check_Packages_In;
|
|
|
|
-----------------------
|
|
-- SPARK_Mode_Is_Off --
|
|
-----------------------
|
|
|
|
function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
|
|
Prag : constant Node_Id := SPARK_Pragma (Defining_Entity (N));
|
|
|
|
begin
|
|
return
|
|
Present (Prag) and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
|
|
end SPARK_Mode_Is_Off;
|
|
|
|
-- Start of processing for Check_State_Refinements
|
|
|
|
begin
|
|
-- A block may declare a nested package
|
|
|
|
if Nkind (Context) = N_Block_Statement then
|
|
Check_Packages_In (Declarations (Context));
|
|
|
|
-- An entry, protected, subprogram, or task body may declare a nested
|
|
-- package.
|
|
|
|
elsif Nkind_In (Context, N_Entry_Body,
|
|
N_Protected_Body,
|
|
N_Subprogram_Body,
|
|
N_Task_Body)
|
|
then
|
|
-- Do not verify proper state refinement when the body is subject to
|
|
-- pragma SPARK_Mode Off because this disables the requirement for
|
|
-- state refinement.
|
|
|
|
if not SPARK_Mode_Is_Off (Context) then
|
|
Check_Packages_In (Declarations (Context));
|
|
end if;
|
|
|
|
-- A package body may declare a nested package
|
|
|
|
elsif Nkind (Context) = N_Package_Body then
|
|
Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));
|
|
|
|
-- Do not verify proper state refinement when the body is subject to
|
|
-- pragma SPARK_Mode Off because this disables the requirement for
|
|
-- state refinement.
|
|
|
|
if not SPARK_Mode_Is_Off (Context) then
|
|
Check_Packages_In (Declarations (Context));
|
|
end if;
|
|
|
|
-- A library level [generic] package may declare a nested package
|
|
|
|
elsif Nkind_In (Context, N_Generic_Package_Declaration,
|
|
N_Package_Declaration)
|
|
and then Is_Main_Unit
|
|
then
|
|
Check_Package (Context);
|
|
end if;
|
|
end Check_State_Refinements;
|
|
|
|
------------------------------
|
|
-- Check_Unprotected_Access --
|
|
------------------------------
|
|
|
|
procedure Check_Unprotected_Access
|
|
(Context : Node_Id;
|
|
Expr : Node_Id)
|
|
is
|
|
Cont_Encl_Typ : Entity_Id;
|
|
Pref_Encl_Typ : Entity_Id;
|
|
|
|
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
|
|
-- Check whether Obj is a private component of a protected object.
|
|
-- Return the protected type where the component resides, Empty
|
|
-- otherwise.
|
|
|
|
function Is_Public_Operation return Boolean;
|
|
-- Verify that the enclosing operation is callable from outside the
|
|
-- protected object, to minimize false positives.
|
|
|
|
------------------------------
|
|
-- Enclosing_Protected_Type --
|
|
------------------------------
|
|
|
|
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
|
|
begin
|
|
if Is_Entity_Name (Obj) then
|
|
declare
|
|
Ent : Entity_Id := Entity (Obj);
|
|
|
|
begin
|
|
-- The object can be a renaming of a private component, use
|
|
-- the original record component.
|
|
|
|
if Is_Prival (Ent) then
|
|
Ent := Prival_Link (Ent);
|
|
end if;
|
|
|
|
if Is_Protected_Type (Scope (Ent)) then
|
|
return Scope (Ent);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- For indexed and selected components, recursively check the prefix
|
|
|
|
if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
|
|
return Enclosing_Protected_Type (Prefix (Obj));
|
|
|
|
-- The object does not denote a protected component
|
|
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end Enclosing_Protected_Type;
|
|
|
|
-------------------------
|
|
-- Is_Public_Operation --
|
|
-------------------------
|
|
|
|
function Is_Public_Operation return Boolean is
|
|
S : Entity_Id;
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Pref_Encl_Typ loop
|
|
if Scope (S) = Pref_Encl_Typ then
|
|
E := First_Entity (Pref_Encl_Typ);
|
|
while Present (E)
|
|
and then E /= First_Private_Entity (Pref_Encl_Typ)
|
|
loop
|
|
if E = S then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Entity (E);
|
|
end loop;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Public_Operation;
|
|
|
|
-- Start of processing for Check_Unprotected_Access
|
|
|
|
begin
|
|
if Nkind (Expr) = N_Attribute_Reference
|
|
and then Attribute_Name (Expr) = Name_Unchecked_Access
|
|
then
|
|
Cont_Encl_Typ := Enclosing_Protected_Type (Context);
|
|
Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
|
|
|
|
-- Check whether we are trying to export a protected component to a
|
|
-- context with an equal or lower access level.
|
|
|
|
if Present (Pref_Encl_Typ)
|
|
and then No (Cont_Encl_Typ)
|
|
and then Is_Public_Operation
|
|
and then Scope_Depth (Pref_Encl_Typ) >=
|
|
Object_Access_Level (Context)
|
|
then
|
|
Error_Msg_N
|
|
("??possible unprotected access to protected data", Expr);
|
|
end if;
|
|
end if;
|
|
end Check_Unprotected_Access;
|
|
|
|
------------------------------
|
|
-- Check_Unused_Body_States --
|
|
------------------------------
|
|
|
|
procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
|
|
procedure Process_Refinement_Clause
|
|
(Clause : Node_Id;
|
|
States : Elist_Id);
|
|
-- Inspect all constituents of refinement clause Clause and remove any
|
|
-- matches from body state list States.
|
|
|
|
procedure Report_Unused_Body_States (States : Elist_Id);
|
|
-- Emit errors for each abstract state or object found in list States
|
|
|
|
-------------------------------
|
|
-- Process_Refinement_Clause --
|
|
-------------------------------
|
|
|
|
procedure Process_Refinement_Clause
|
|
(Clause : Node_Id;
|
|
States : Elist_Id)
|
|
is
|
|
procedure Process_Constituent (Constit : Node_Id);
|
|
-- Remove constituent Constit from body state list States
|
|
|
|
-------------------------
|
|
-- Process_Constituent --
|
|
-------------------------
|
|
|
|
procedure Process_Constituent (Constit : Node_Id) is
|
|
Constit_Id : Entity_Id;
|
|
|
|
begin
|
|
-- Guard against illegal constituents. Only abstract states and
|
|
-- objects can appear on the right hand side of a refinement.
|
|
|
|
if Is_Entity_Name (Constit) then
|
|
Constit_Id := Entity_Of (Constit);
|
|
|
|
if Present (Constit_Id)
|
|
and then Ekind_In (Constit_Id, E_Abstract_State,
|
|
E_Constant,
|
|
E_Variable)
|
|
then
|
|
Remove (States, Constit_Id);
|
|
end if;
|
|
end if;
|
|
end Process_Constituent;
|
|
|
|
-- Local variables
|
|
|
|
Constit : Node_Id;
|
|
|
|
-- Start of processing for Process_Refinement_Clause
|
|
|
|
begin
|
|
if Nkind (Clause) = N_Component_Association then
|
|
Constit := Expression (Clause);
|
|
|
|
-- Multiple constituents appear as an aggregate
|
|
|
|
if Nkind (Constit) = N_Aggregate then
|
|
Constit := First (Expressions (Constit));
|
|
while Present (Constit) loop
|
|
Process_Constituent (Constit);
|
|
Next (Constit);
|
|
end loop;
|
|
|
|
-- Various forms of a single constituent
|
|
|
|
else
|
|
Process_Constituent (Constit);
|
|
end if;
|
|
end if;
|
|
end Process_Refinement_Clause;
|
|
|
|
-------------------------------
|
|
-- Report_Unused_Body_States --
|
|
-------------------------------
|
|
|
|
procedure Report_Unused_Body_States (States : Elist_Id) is
|
|
Posted : Boolean := False;
|
|
State_Elmt : Elmt_Id;
|
|
State_Id : Entity_Id;
|
|
|
|
begin
|
|
if Present (States) then
|
|
State_Elmt := First_Elmt (States);
|
|
while Present (State_Elmt) loop
|
|
State_Id := Node (State_Elmt);
|
|
|
|
-- Constants are part of the hidden state of a package, but the
|
|
-- compiler cannot determine whether they have variable input
|
|
-- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
|
|
-- hidden state. Do not emit an error when a constant does not
|
|
-- participate in a state refinement, even though it acts as a
|
|
-- hidden state.
|
|
|
|
if Ekind (State_Id) = E_Constant then
|
|
null;
|
|
|
|
-- Generate an error message of the form:
|
|
|
|
-- body of package ... has unused hidden states
|
|
-- abstract state ... defined at ...
|
|
-- variable ... defined at ...
|
|
|
|
else
|
|
if not Posted then
|
|
Posted := True;
|
|
SPARK_Msg_N
|
|
("body of package & has unused hidden states", Body_Id);
|
|
end if;
|
|
|
|
Error_Msg_Sloc := Sloc (State_Id);
|
|
|
|
if Ekind (State_Id) = E_Abstract_State then
|
|
SPARK_Msg_NE
|
|
("\abstract state & defined #", Body_Id, State_Id);
|
|
|
|
else
|
|
SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Elmt (State_Elmt);
|
|
end loop;
|
|
end if;
|
|
end Report_Unused_Body_States;
|
|
|
|
-- Local variables
|
|
|
|
Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
|
|
Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
|
|
Clause : Node_Id;
|
|
States : Elist_Id;
|
|
|
|
-- Start of processing for Check_Unused_Body_States
|
|
|
|
begin
|
|
-- Inspect the clauses of pragma Refined_State and determine whether all
|
|
-- visible states declared within the package body participate in the
|
|
-- refinement.
|
|
|
|
if Present (Prag) then
|
|
Clause := Expression (Get_Argument (Prag, Spec_Id));
|
|
States := Collect_Body_States (Body_Id);
|
|
|
|
-- Multiple non-null state refinements appear as an aggregate
|
|
|
|
if Nkind (Clause) = N_Aggregate then
|
|
Clause := First (Component_Associations (Clause));
|
|
while Present (Clause) loop
|
|
Process_Refinement_Clause (Clause, States);
|
|
Next (Clause);
|
|
end loop;
|
|
|
|
-- Various forms of a single state refinement
|
|
|
|
else
|
|
Process_Refinement_Clause (Clause, States);
|
|
end if;
|
|
|
|
-- Ensure that all abstract states and objects declared in the
|
|
-- package body state space are utilized as constituents.
|
|
|
|
Report_Unused_Body_States (States);
|
|
end if;
|
|
end Check_Unused_Body_States;
|
|
|
|
-------------------------
|
|
-- Collect_Body_States --
|
|
-------------------------
|
|
|
|
function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
|
|
function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
|
|
-- Determine whether object Obj_Id is a suitable visible state of a
|
|
-- package body.
|
|
|
|
procedure Collect_Visible_States
|
|
(Pack_Id : Entity_Id;
|
|
States : in out Elist_Id);
|
|
-- Gather the entities of all abstract states and objects declared in
|
|
-- the visible state space of package Pack_Id.
|
|
|
|
----------------------------
|
|
-- Collect_Visible_States --
|
|
----------------------------
|
|
|
|
procedure Collect_Visible_States
|
|
(Pack_Id : Entity_Id;
|
|
States : in out Elist_Id)
|
|
is
|
|
Item_Id : Entity_Id;
|
|
|
|
begin
|
|
-- Traverse the entity chain of the package and inspect all visible
|
|
-- items.
|
|
|
|
Item_Id := First_Entity (Pack_Id);
|
|
while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
|
|
|
|
-- Do not consider internally generated items as those cannot be
|
|
-- named and participate in refinement.
|
|
|
|
if not Comes_From_Source (Item_Id) then
|
|
null;
|
|
|
|
elsif Ekind (Item_Id) = E_Abstract_State then
|
|
Append_New_Elmt (Item_Id, States);
|
|
|
|
elsif Ekind_In (Item_Id, E_Constant, E_Variable)
|
|
and then Is_Visible_Object (Item_Id)
|
|
then
|
|
Append_New_Elmt (Item_Id, States);
|
|
|
|
-- Recursively gather the visible states of a nested package
|
|
|
|
elsif Ekind (Item_Id) = E_Package then
|
|
Collect_Visible_States (Item_Id, States);
|
|
end if;
|
|
|
|
Next_Entity (Item_Id);
|
|
end loop;
|
|
end Collect_Visible_States;
|
|
|
|
-----------------------
|
|
-- Is_Visible_Object --
|
|
-----------------------
|
|
|
|
function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
|
|
begin
|
|
-- Objects that map generic formals to their actuals are not visible
|
|
-- from outside the generic instantiation.
|
|
|
|
if Present (Corresponding_Generic_Association
|
|
(Declaration_Node (Obj_Id)))
|
|
then
|
|
return False;
|
|
|
|
-- Constituents of a single protected/task type act as components of
|
|
-- the type and are not visible from outside the type.
|
|
|
|
elsif Ekind (Obj_Id) = E_Variable
|
|
and then Present (Encapsulating_State (Obj_Id))
|
|
and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
|
|
then
|
|
return False;
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Is_Visible_Object;
|
|
|
|
-- Local variables
|
|
|
|
Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
|
|
Decl : Node_Id;
|
|
Item_Id : Entity_Id;
|
|
States : Elist_Id := No_Elist;
|
|
|
|
-- Start of processing for Collect_Body_States
|
|
|
|
begin
|
|
-- Inspect the declarations of the body looking for source objects,
|
|
-- packages and package instantiations. Note that even though this
|
|
-- processing is very similar to Collect_Visible_States, a package
|
|
-- body does not have a First/Next_Entity list.
|
|
|
|
Decl := First (Declarations (Body_Decl));
|
|
while Present (Decl) loop
|
|
|
|
-- Capture source objects as internally generated temporaries cannot
|
|
-- be named and participate in refinement.
|
|
|
|
if Nkind (Decl) = N_Object_Declaration then
|
|
Item_Id := Defining_Entity (Decl);
|
|
|
|
if Comes_From_Source (Item_Id)
|
|
and then Is_Visible_Object (Item_Id)
|
|
then
|
|
Append_New_Elmt (Item_Id, States);
|
|
end if;
|
|
|
|
-- Capture the visible abstract states and objects of a source
|
|
-- package [instantiation].
|
|
|
|
elsif Nkind (Decl) = N_Package_Declaration then
|
|
Item_Id := Defining_Entity (Decl);
|
|
|
|
if Comes_From_Source (Item_Id) then
|
|
Collect_Visible_States (Item_Id, States);
|
|
end if;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
|
|
return States;
|
|
end Collect_Body_States;
|
|
|
|
------------------------
|
|
-- Collect_Interfaces --
|
|
------------------------
|
|
|
|
procedure Collect_Interfaces
|
|
(T : Entity_Id;
|
|
Ifaces_List : out Elist_Id;
|
|
Exclude_Parents : Boolean := False;
|
|
Use_Full_View : Boolean := True)
|
|
is
|
|
procedure Collect (Typ : Entity_Id);
|
|
-- Subsidiary subprogram used to traverse the whole list
|
|
-- of directly and indirectly implemented interfaces
|
|
|
|
-------------
|
|
-- Collect --
|
|
-------------
|
|
|
|
procedure Collect (Typ : Entity_Id) is
|
|
Ancestor : Entity_Id;
|
|
Full_T : Entity_Id;
|
|
Id : Node_Id;
|
|
Iface : Entity_Id;
|
|
|
|
begin
|
|
Full_T := Typ;
|
|
|
|
-- Handle private types and subtypes
|
|
|
|
if Use_Full_View
|
|
and then Is_Private_Type (Typ)
|
|
and then Present (Full_View (Typ))
|
|
then
|
|
Full_T := Full_View (Typ);
|
|
|
|
if Ekind (Full_T) = E_Record_Subtype then
|
|
Full_T := Etype (Typ);
|
|
|
|
if Present (Full_View (Full_T)) then
|
|
Full_T := Full_View (Full_T);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- Include the ancestor if we are generating the whole list of
|
|
-- abstract interfaces.
|
|
|
|
if Etype (Full_T) /= Typ
|
|
|
|
-- Protect the frontend against wrong sources. For example:
|
|
|
|
-- package P is
|
|
-- type A is tagged null record;
|
|
-- type B is new A with private;
|
|
-- type C is new A with private;
|
|
-- private
|
|
-- type B is new C with null record;
|
|
-- type C is new B with null record;
|
|
-- end P;
|
|
|
|
and then Etype (Full_T) /= T
|
|
then
|
|
Ancestor := Etype (Full_T);
|
|
Collect (Ancestor);
|
|
|
|
if Is_Interface (Ancestor) and then not Exclude_Parents then
|
|
Append_Unique_Elmt (Ancestor, Ifaces_List);
|
|
end if;
|
|
end if;
|
|
|
|
-- Traverse the graph of ancestor interfaces
|
|
|
|
if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
|
|
Id := First (Abstract_Interface_List (Full_T));
|
|
while Present (Id) loop
|
|
Iface := Etype (Id);
|
|
|
|
-- Protect against wrong uses. For example:
|
|
-- type I is interface;
|
|
-- type O is tagged null record;
|
|
-- type Wrong is new I and O with null record; -- ERROR
|
|
|
|
if Is_Interface (Iface) then
|
|
if Exclude_Parents
|
|
and then Etype (T) /= T
|
|
and then Interface_Present_In_Ancestor (Etype (T), Iface)
|
|
then
|
|
null;
|
|
else
|
|
Collect (Iface);
|
|
Append_Unique_Elmt (Iface, Ifaces_List);
|
|
end if;
|
|
end if;
|
|
|
|
Next (Id);
|
|
end loop;
|
|
end if;
|
|
end Collect;
|
|
|
|
-- Start of processing for Collect_Interfaces
|
|
|
|
begin
|
|
pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
|
|
Ifaces_List := New_Elmt_List;
|
|
Collect (T);
|
|
end Collect_Interfaces;
|
|
|
|
----------------------------------
|
|
-- Collect_Interface_Components --
|
|
----------------------------------
|
|
|
|
procedure Collect_Interface_Components
|
|
(Tagged_Type : Entity_Id;
|
|
Components_List : out Elist_Id)
|
|
is
|
|
procedure Collect (Typ : Entity_Id);
|
|
-- Subsidiary subprogram used to climb to the parents
|
|
|
|
-------------
|
|
-- Collect --
|
|
-------------
|
|
|
|
procedure Collect (Typ : Entity_Id) is
|
|
Tag_Comp : Entity_Id;
|
|
Parent_Typ : Entity_Id;
|
|
|
|
begin
|
|
-- Handle private types
|
|
|
|
if Present (Full_View (Etype (Typ))) then
|
|
Parent_Typ := Full_View (Etype (Typ));
|
|
else
|
|
Parent_Typ := Etype (Typ);
|
|
end if;
|
|
|
|
if Parent_Typ /= Typ
|
|
|
|
-- Protect the frontend against wrong sources. For example:
|
|
|
|
-- package P is
|
|
-- type A is tagged null record;
|
|
-- type B is new A with private;
|
|
-- type C is new A with private;
|
|
-- private
|
|
-- type B is new C with null record;
|
|
-- type C is new B with null record;
|
|
-- end P;
|
|
|
|
and then Parent_Typ /= Tagged_Type
|
|
then
|
|
Collect (Parent_Typ);
|
|
end if;
|
|
|
|
-- Collect the components containing tags of secondary dispatch
|
|
-- tables.
|
|
|
|
Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
|
|
while Present (Tag_Comp) loop
|
|
pragma Assert (Present (Related_Type (Tag_Comp)));
|
|
Append_Elmt (Tag_Comp, Components_List);
|
|
|
|
Tag_Comp := Next_Tag_Component (Tag_Comp);
|
|
end loop;
|
|
end Collect;
|
|
|
|
-- Start of processing for Collect_Interface_Components
|
|
|
|
begin
|
|
pragma Assert (Ekind (Tagged_Type) = E_Record_Type
|
|
and then Is_Tagged_Type (Tagged_Type));
|
|
|
|
Components_List := New_Elmt_List;
|
|
Collect (Tagged_Type);
|
|
end Collect_Interface_Components;
|
|
|
|
-----------------------------
|
|
-- Collect_Interfaces_Info --
|
|
-----------------------------
|
|
|
|
procedure Collect_Interfaces_Info
|
|
(T : Entity_Id;
|
|
Ifaces_List : out Elist_Id;
|
|
Components_List : out Elist_Id;
|
|
Tags_List : out Elist_Id)
|
|
is
|
|
Comps_List : Elist_Id;
|
|
Comp_Elmt : Elmt_Id;
|
|
Comp_Iface : Entity_Id;
|
|
Iface_Elmt : Elmt_Id;
|
|
Iface : Entity_Id;
|
|
|
|
function Search_Tag (Iface : Entity_Id) return Entity_Id;
|
|
-- Search for the secondary tag associated with the interface type
|
|
-- Iface that is implemented by T.
|
|
|
|
----------------
|
|
-- Search_Tag --
|
|
----------------
|
|
|
|
function Search_Tag (Iface : Entity_Id) return Entity_Id is
|
|
ADT : Elmt_Id;
|
|
begin
|
|
if not Is_CPP_Class (T) then
|
|
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
|
|
else
|
|
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
|
|
end if;
|
|
|
|
while Present (ADT)
|
|
and then Is_Tag (Node (ADT))
|
|
and then Related_Type (Node (ADT)) /= Iface
|
|
loop
|
|
-- Skip secondary dispatch table referencing thunks to user
|
|
-- defined primitives covered by this interface.
|
|
|
|
pragma Assert (Has_Suffix (Node (ADT), 'P'));
|
|
Next_Elmt (ADT);
|
|
|
|
-- Skip secondary dispatch tables of Ada types
|
|
|
|
if not Is_CPP_Class (T) then
|
|
|
|
-- Skip secondary dispatch table referencing thunks to
|
|
-- predefined primitives.
|
|
|
|
pragma Assert (Has_Suffix (Node (ADT), 'Y'));
|
|
Next_Elmt (ADT);
|
|
|
|
-- Skip secondary dispatch table referencing user-defined
|
|
-- primitives covered by this interface.
|
|
|
|
pragma Assert (Has_Suffix (Node (ADT), 'D'));
|
|
Next_Elmt (ADT);
|
|
|
|
-- Skip secondary dispatch table referencing predefined
|
|
-- primitives.
|
|
|
|
pragma Assert (Has_Suffix (Node (ADT), 'Z'));
|
|
Next_Elmt (ADT);
|
|
end if;
|
|
end loop;
|
|
|
|
pragma Assert (Is_Tag (Node (ADT)));
|
|
return Node (ADT);
|
|
end Search_Tag;
|
|
|
|
-- Start of processing for Collect_Interfaces_Info
|
|
|
|
begin
|
|
Collect_Interfaces (T, Ifaces_List);
|
|
Collect_Interface_Components (T, Comps_List);
|
|
|
|
-- Search for the record component and tag associated with each
|
|
-- interface type of T.
|
|
|
|
Components_List := New_Elmt_List;
|
|
Tags_List := New_Elmt_List;
|
|
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
|
while Present (Iface_Elmt) loop
|
|
Iface := Node (Iface_Elmt);
|
|
|
|
-- Associate the primary tag component and the primary dispatch table
|
|
-- with all the interfaces that are parents of T
|
|
|
|
if Is_Ancestor (Iface, T, Use_Full_View => True) then
|
|
Append_Elmt (First_Tag_Component (T), Components_List);
|
|
Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
|
|
|
|
-- Otherwise search for the tag component and secondary dispatch
|
|
-- table of Iface
|
|
|
|
else
|
|
Comp_Elmt := First_Elmt (Comps_List);
|
|
while Present (Comp_Elmt) loop
|
|
Comp_Iface := Related_Type (Node (Comp_Elmt));
|
|
|
|
if Comp_Iface = Iface
|
|
or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
|
|
then
|
|
Append_Elmt (Node (Comp_Elmt), Components_List);
|
|
Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
|
|
exit;
|
|
end if;
|
|
|
|
Next_Elmt (Comp_Elmt);
|
|
end loop;
|
|
pragma Assert (Present (Comp_Elmt));
|
|
end if;
|
|
|
|
Next_Elmt (Iface_Elmt);
|
|
end loop;
|
|
end Collect_Interfaces_Info;
|
|
|
|
---------------------
|
|
-- Collect_Parents --
|
|
---------------------
|
|
|
|
procedure Collect_Parents
|
|
(T : Entity_Id;
|
|
List : out Elist_Id;
|
|
Use_Full_View : Boolean := True)
|
|
is
|
|
Current_Typ : Entity_Id := T;
|
|
Parent_Typ : Entity_Id;
|
|
|
|
begin
|
|
List := New_Elmt_List;
|
|
|
|
-- No action if the if the type has no parents
|
|
|
|
if T = Etype (T) then
|
|
return;
|
|
end if;
|
|
|
|
loop
|
|
Parent_Typ := Etype (Current_Typ);
|
|
|
|
if Is_Private_Type (Parent_Typ)
|
|
and then Present (Full_View (Parent_Typ))
|
|
and then Use_Full_View
|
|
then
|
|
Parent_Typ := Full_View (Base_Type (Parent_Typ));
|
|
end if;
|
|
|
|
Append_Elmt (Parent_Typ, List);
|
|
|
|
exit when Parent_Typ = Current_Typ;
|
|
Current_Typ := Parent_Typ;
|
|
end loop;
|
|
end Collect_Parents;
|
|
|
|
----------------------------------
|
|
-- Collect_Primitive_Operations --
|
|
----------------------------------
|
|
|
|
function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
|
|
B_Type : constant Entity_Id := Base_Type (T);
|
|
B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
|
|
B_Scope : Entity_Id := Scope (B_Type);
|
|
Op_List : Elist_Id;
|
|
Formal : Entity_Id;
|
|
Is_Prim : Boolean;
|
|
Is_Type_In_Pkg : Boolean;
|
|
Formal_Derived : Boolean := False;
|
|
Id : Entity_Id;
|
|
|
|
function Match (E : Entity_Id) return Boolean;
|
|
-- True if E's base type is B_Type, or E is of an anonymous access type
|
|
-- and the base type of its designated type is B_Type.
|
|
|
|
-----------
|
|
-- Match --
|
|
-----------
|
|
|
|
function Match (E : Entity_Id) return Boolean is
|
|
Etyp : Entity_Id := Etype (E);
|
|
|
|
begin
|
|
if Ekind (Etyp) = E_Anonymous_Access_Type then
|
|
Etyp := Designated_Type (Etyp);
|
|
end if;
|
|
|
|
-- In Ada 2012 a primitive operation may have a formal of an
|
|
-- incomplete view of the parent type.
|
|
|
|
return Base_Type (Etyp) = B_Type
|
|
or else
|
|
(Ada_Version >= Ada_2012
|
|
and then Ekind (Etyp) = E_Incomplete_Type
|
|
and then Full_View (Etyp) = B_Type);
|
|
end Match;
|
|
|
|
-- Start of processing for Collect_Primitive_Operations
|
|
|
|
begin
|
|
-- For tagged types, the primitive operations are collected as they
|
|
-- are declared, and held in an explicit list which is simply returned.
|
|
|
|
if Is_Tagged_Type (B_Type) then
|
|
return Primitive_Operations (B_Type);
|
|
|
|
-- An untagged generic type that is a derived type inherits the
|
|
-- primitive operations of its parent type. Other formal types only
|
|
-- have predefined operators, which are not explicitly represented.
|
|
|
|
elsif Is_Generic_Type (B_Type) then
|
|
if Nkind (B_Decl) = N_Formal_Type_Declaration
|
|
and then Nkind (Formal_Type_Definition (B_Decl)) =
|
|
N_Formal_Derived_Type_Definition
|
|
then
|
|
Formal_Derived := True;
|
|
else
|
|
return New_Elmt_List;
|
|
end if;
|
|
end if;
|
|
|
|
Op_List := New_Elmt_List;
|
|
|
|
if B_Scope = Standard_Standard then
|
|
if B_Type = Standard_String then
|
|
Append_Elmt (Standard_Op_Concat, Op_List);
|
|
|
|
elsif B_Type = Standard_Wide_String then
|
|
Append_Elmt (Standard_Op_Concatw, Op_List);
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
|
|
-- Locate the primitive subprograms of the type
|
|
|
|
else
|
|
-- The primitive operations appear after the base type, except
|
|
-- if the derivation happens within the private part of B_Scope
|
|
-- and the type is a private type, in which case both the type
|
|
-- and some primitive operations may appear before the base
|
|
-- type, and the list of candidates starts after the type.
|
|
|
|
if In_Open_Scopes (B_Scope)
|
|
and then Scope (T) = B_Scope
|
|
and then In_Private_Part (B_Scope)
|
|
then
|
|
Id := Next_Entity (T);
|
|
|
|
-- In Ada 2012, If the type has an incomplete partial view, there
|
|
-- may be primitive operations declared before the full view, so
|
|
-- we need to start scanning from the incomplete view, which is
|
|
-- earlier on the entity chain.
|
|
|
|
elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
|
|
and then Present (Incomplete_View (Parent (B_Type)))
|
|
then
|
|
Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
|
|
|
|
-- If T is a derived from a type with an incomplete view declared
|
|
-- elsewhere, that incomplete view is irrelevant, we want the
|
|
-- operations in the scope of T.
|
|
|
|
if Scope (Id) /= Scope (B_Type) then
|
|
Id := Next_Entity (B_Type);
|
|
end if;
|
|
|
|
else
|
|
Id := Next_Entity (B_Type);
|
|
end if;
|
|
|
|
-- Set flag if this is a type in a package spec
|
|
|
|
Is_Type_In_Pkg :=
|
|
Is_Package_Or_Generic_Package (B_Scope)
|
|
and then
|
|
Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
|
|
N_Package_Body;
|
|
|
|
while Present (Id) loop
|
|
|
|
-- Test whether the result type or any of the parameter types of
|
|
-- each subprogram following the type match that type when the
|
|
-- type is declared in a package spec, is a derived type, or the
|
|
-- subprogram is marked as primitive. (The Is_Primitive test is
|
|
-- needed to find primitives of nonderived types in declarative
|
|
-- parts that happen to override the predefined "=" operator.)
|
|
|
|
-- Note that generic formal subprograms are not considered to be
|
|
-- primitive operations and thus are never inherited.
|
|
|
|
if Is_Overloadable (Id)
|
|
and then (Is_Type_In_Pkg
|
|
or else Is_Derived_Type (B_Type)
|
|
or else Is_Primitive (Id))
|
|
and then Nkind (Parent (Parent (Id)))
|
|
not in N_Formal_Subprogram_Declaration
|
|
then
|
|
Is_Prim := False;
|
|
|
|
if Match (Id) then
|
|
Is_Prim := True;
|
|
|
|
else
|
|
Formal := First_Formal (Id);
|
|
while Present (Formal) loop
|
|
if Match (Formal) then
|
|
Is_Prim := True;
|
|
exit;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
end if;
|
|
|
|
-- For a formal derived type, the only primitives are the ones
|
|
-- inherited from the parent type. Operations appearing in the
|
|
-- package declaration are not primitive for it.
|
|
|
|
if Is_Prim
|
|
and then (not Formal_Derived or else Present (Alias (Id)))
|
|
then
|
|
-- In the special case of an equality operator aliased to
|
|
-- an overriding dispatching equality belonging to the same
|
|
-- type, we don't include it in the list of primitives.
|
|
-- This avoids inheriting multiple equality operators when
|
|
-- deriving from untagged private types whose full type is
|
|
-- tagged, which can otherwise cause ambiguities. Note that
|
|
-- this should only happen for this kind of untagged parent
|
|
-- type, since normally dispatching operations are inherited
|
|
-- using the type's Primitive_Operations list.
|
|
|
|
if Chars (Id) = Name_Op_Eq
|
|
and then Is_Dispatching_Operation (Id)
|
|
and then Present (Alias (Id))
|
|
and then Present (Overridden_Operation (Alias (Id)))
|
|
and then Base_Type (Etype (First_Entity (Id))) =
|
|
Base_Type (Etype (First_Entity (Alias (Id))))
|
|
then
|
|
null;
|
|
|
|
-- Include the subprogram in the list of primitives
|
|
|
|
else
|
|
Append_Elmt (Id, Op_List);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Id);
|
|
|
|
-- For a type declared in System, some of its operations may
|
|
-- appear in the target-specific extension to System.
|
|
|
|
if No (Id)
|
|
and then B_Scope = RTU_Entity (System)
|
|
and then Present_System_Aux
|
|
then
|
|
B_Scope := System_Aux_Id;
|
|
Id := First_Entity (System_Aux_Id);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
return Op_List;
|
|
end Collect_Primitive_Operations;
|
|
|
|
-----------------------------------
|
|
-- Compile_Time_Constraint_Error --
|
|
-----------------------------------
|
|
|
|
function Compile_Time_Constraint_Error
|
|
(N : Node_Id;
|
|
Msg : String;
|
|
Ent : Entity_Id := Empty;
|
|
Loc : Source_Ptr := No_Location;
|
|
Warn : Boolean := False) return Node_Id
|
|
is
|
|
Msgc : String (1 .. Msg'Length + 3);
|
|
-- Copy of message, with room for possible ?? or << and ! at end
|
|
|
|
Msgl : Natural;
|
|
Wmsg : Boolean;
|
|
Eloc : Source_Ptr;
|
|
|
|
-- Start of processing for Compile_Time_Constraint_Error
|
|
|
|
begin
|
|
-- If this is a warning, convert it into an error if we are in code
|
|
-- subject to SPARK_Mode being set On, unless Warn is True to force a
|
|
-- warning. The rationale is that a compile-time constraint error should
|
|
-- lead to an error instead of a warning when SPARK_Mode is On, but in
|
|
-- a few cases we prefer to issue a warning and generate both a suitable
|
|
-- run-time error in GNAT and a suitable check message in GNATprove.
|
|
-- Those cases are those that likely correspond to deactivated SPARK
|
|
-- code, so that this kind of code can be compiled and analyzed instead
|
|
-- of being rejected.
|
|
|
|
Error_Msg_Warn := Warn or SPARK_Mode /= On;
|
|
|
|
-- A static constraint error in an instance body is not a fatal error.
|
|
-- we choose to inhibit the message altogether, because there is no
|
|
-- obvious node (for now) on which to post it. On the other hand the
|
|
-- offending node must be replaced with a constraint_error in any case.
|
|
|
|
-- No messages are generated if we already posted an error on this node
|
|
|
|
if not Error_Posted (N) then
|
|
if Loc /= No_Location then
|
|
Eloc := Loc;
|
|
else
|
|
Eloc := Sloc (N);
|
|
end if;
|
|
|
|
-- Copy message to Msgc, converting any ? in the message into
|
|
-- < instead, so that we have an error in GNATprove mode.
|
|
|
|
Msgl := Msg'Length;
|
|
|
|
for J in 1 .. Msgl loop
|
|
if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
|
|
Msgc (J) := '<';
|
|
else
|
|
Msgc (J) := Msg (J);
|
|
end if;
|
|
end loop;
|
|
|
|
-- Message is a warning, even in Ada 95 case
|
|
|
|
if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
|
|
Wmsg := True;
|
|
|
|
-- In Ada 83, all messages are warnings. In the private part and
|
|
-- the body of an instance, constraint_checks are only warnings.
|
|
-- We also make this a warning if the Warn parameter is set.
|
|
|
|
elsif Warn
|
|
or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
|
|
then
|
|
Msgl := Msgl + 1;
|
|
Msgc (Msgl) := '<';
|
|
Msgl := Msgl + 1;
|
|
Msgc (Msgl) := '<';
|
|
Wmsg := True;
|
|
|
|
elsif In_Instance_Not_Visible then
|
|
Msgl := Msgl + 1;
|
|
Msgc (Msgl) := '<';
|
|
Msgl := Msgl + 1;
|
|
Msgc (Msgl) := '<';
|
|
Wmsg := True;
|
|
|
|
-- Otherwise we have a real error message (Ada 95 static case)
|
|
-- and we make this an unconditional message. Note that in the
|
|
-- warning case we do not make the message unconditional, it seems
|
|
-- quite reasonable to delete messages like this (about exceptions
|
|
-- that will be raised) in dead code.
|
|
|
|
else
|
|
Wmsg := False;
|
|
Msgl := Msgl + 1;
|
|
Msgc (Msgl) := '!';
|
|
end if;
|
|
|
|
-- One more test, skip the warning if the related expression is
|
|
-- statically unevaluated, since we don't want to warn about what
|
|
-- will happen when something is evaluated if it never will be
|
|
-- evaluated.
|
|
|
|
if not Is_Statically_Unevaluated (N) then
|
|
if Present (Ent) then
|
|
Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
|
|
else
|
|
Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
|
|
end if;
|
|
|
|
if Wmsg then
|
|
|
|
-- Check whether the context is an Init_Proc
|
|
|
|
if Inside_Init_Proc then
|
|
declare
|
|
Conc_Typ : constant Entity_Id :=
|
|
Corresponding_Concurrent_Type
|
|
(Entity (Parameter_Type (First
|
|
(Parameter_Specifications
|
|
(Parent (Current_Scope))))));
|
|
|
|
begin
|
|
-- Don't complain if the corresponding concurrent type
|
|
-- doesn't come from source (i.e. a single task/protected
|
|
-- object).
|
|
|
|
if Present (Conc_Typ)
|
|
and then not Comes_From_Source (Conc_Typ)
|
|
then
|
|
Error_Msg_NEL
|
|
("\& [<<", N, Standard_Constraint_Error, Eloc);
|
|
|
|
else
|
|
if GNATprove_Mode then
|
|
Error_Msg_NEL
|
|
("\& would have been raised for objects of this "
|
|
& "type", N, Standard_Constraint_Error, Eloc);
|
|
else
|
|
Error_Msg_NEL
|
|
("\& will be raised for objects of this type??",
|
|
N, Standard_Constraint_Error, Eloc);
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg ("\static expression fails Constraint_Check", Eloc);
|
|
Set_Error_Posted (N);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
return N;
|
|
end Compile_Time_Constraint_Error;
|
|
|
|
-----------------------
|
|
-- Conditional_Delay --
|
|
-----------------------
|
|
|
|
procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
|
|
begin
|
|
if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
|
|
Set_Has_Delayed_Freeze (New_Ent);
|
|
end if;
|
|
end Conditional_Delay;
|
|
|
|
----------------------------
|
|
-- Contains_Refined_State --
|
|
----------------------------
|
|
|
|
function Contains_Refined_State (Prag : Node_Id) return Boolean is
|
|
function Has_State_In_Dependency (List : Node_Id) return Boolean;
|
|
-- Determine whether a dependency list mentions a state with a visible
|
|
-- refinement.
|
|
|
|
function Has_State_In_Global (List : Node_Id) return Boolean;
|
|
-- Determine whether a global list mentions a state with a visible
|
|
-- refinement.
|
|
|
|
function Is_Refined_State (Item : Node_Id) return Boolean;
|
|
-- Determine whether Item is a reference to an abstract state with a
|
|
-- visible refinement.
|
|
|
|
-----------------------------
|
|
-- Has_State_In_Dependency --
|
|
-----------------------------
|
|
|
|
function Has_State_In_Dependency (List : Node_Id) return Boolean is
|
|
Clause : Node_Id;
|
|
Output : Node_Id;
|
|
|
|
begin
|
|
-- A null dependency list does not mention any states
|
|
|
|
if Nkind (List) = N_Null then
|
|
return False;
|
|
|
|
-- Dependency clauses appear as component associations of an
|
|
-- aggregate.
|
|
|
|
elsif Nkind (List) = N_Aggregate
|
|
and then Present (Component_Associations (List))
|
|
then
|
|
Clause := First (Component_Associations (List));
|
|
while Present (Clause) loop
|
|
|
|
-- Inspect the outputs of a dependency clause
|
|
|
|
Output := First (Choices (Clause));
|
|
while Present (Output) loop
|
|
if Is_Refined_State (Output) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Output);
|
|
end loop;
|
|
|
|
-- Inspect the outputs of a dependency clause
|
|
|
|
if Is_Refined_State (Expression (Clause)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Clause);
|
|
end loop;
|
|
|
|
-- If we get here, then none of the dependency clauses mention a
|
|
-- state with visible refinement.
|
|
|
|
return False;
|
|
|
|
-- An illegal pragma managed to sneak in
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
end Has_State_In_Dependency;
|
|
|
|
-------------------------
|
|
-- Has_State_In_Global --
|
|
-------------------------
|
|
|
|
function Has_State_In_Global (List : Node_Id) return Boolean is
|
|
Item : Node_Id;
|
|
|
|
begin
|
|
-- A null global list does not mention any states
|
|
|
|
if Nkind (List) = N_Null then
|
|
return False;
|
|
|
|
-- Simple global list or moded global list declaration
|
|
|
|
elsif Nkind (List) = N_Aggregate then
|
|
|
|
-- The declaration of a simple global list appear as a collection
|
|
-- of expressions.
|
|
|
|
if Present (Expressions (List)) then
|
|
Item := First (Expressions (List));
|
|
while Present (Item) loop
|
|
if Is_Refined_State (Item) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Item);
|
|
end loop;
|
|
|
|
-- The declaration of a moded global list appears as a collection
|
|
-- of component associations where individual choices denote
|
|
-- modes.
|
|
|
|
else
|
|
Item := First (Component_Associations (List));
|
|
while Present (Item) loop
|
|
if Has_State_In_Global (Expression (Item)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Item);
|
|
end loop;
|
|
end if;
|
|
|
|
-- If we get here, then the simple/moded global list did not
|
|
-- mention any states with a visible refinement.
|
|
|
|
return False;
|
|
|
|
-- Single global item declaration
|
|
|
|
elsif Is_Entity_Name (List) then
|
|
return Is_Refined_State (List);
|
|
|
|
-- An illegal pragma managed to sneak in
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
end Has_State_In_Global;
|
|
|
|
----------------------
|
|
-- Is_Refined_State --
|
|
----------------------
|
|
|
|
function Is_Refined_State (Item : Node_Id) return Boolean is
|
|
Elmt : Node_Id;
|
|
Item_Id : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Item) = N_Null then
|
|
return False;
|
|
|
|
-- States cannot be subject to attribute 'Result. This case arises
|
|
-- in dependency relations.
|
|
|
|
elsif Nkind (Item) = N_Attribute_Reference
|
|
and then Attribute_Name (Item) = Name_Result
|
|
then
|
|
return False;
|
|
|
|
-- Multiple items appear as an aggregate. This case arises in
|
|
-- dependency relations.
|
|
|
|
elsif Nkind (Item) = N_Aggregate
|
|
and then Present (Expressions (Item))
|
|
then
|
|
Elmt := First (Expressions (Item));
|
|
while Present (Elmt) loop
|
|
if Is_Refined_State (Elmt) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Elmt);
|
|
end loop;
|
|
|
|
-- If we get here, then none of the inputs or outputs reference a
|
|
-- state with visible refinement.
|
|
|
|
return False;
|
|
|
|
-- Single item
|
|
|
|
else
|
|
Item_Id := Entity_Of (Item);
|
|
|
|
return
|
|
Present (Item_Id)
|
|
and then Ekind (Item_Id) = E_Abstract_State
|
|
and then Has_Visible_Refinement (Item_Id);
|
|
end if;
|
|
end Is_Refined_State;
|
|
|
|
-- Local variables
|
|
|
|
Arg : constant Node_Id :=
|
|
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
|
|
Nam : constant Name_Id := Pragma_Name (Prag);
|
|
|
|
-- Start of processing for Contains_Refined_State
|
|
|
|
begin
|
|
if Nam = Name_Depends then
|
|
return Has_State_In_Dependency (Arg);
|
|
|
|
else pragma Assert (Nam = Name_Global);
|
|
return Has_State_In_Global (Arg);
|
|
end if;
|
|
end Contains_Refined_State;
|
|
|
|
-------------------------
|
|
-- Copy_Component_List --
|
|
-------------------------
|
|
|
|
function Copy_Component_List
|
|
(R_Typ : Entity_Id;
|
|
Loc : Source_Ptr) return List_Id
|
|
is
|
|
Comp : Node_Id;
|
|
Comps : constant List_Id := New_List;
|
|
|
|
begin
|
|
Comp := First_Component (Underlying_Type (R_Typ));
|
|
while Present (Comp) loop
|
|
if Comes_From_Source (Comp) then
|
|
declare
|
|
Comp_Decl : constant Node_Id := Declaration_Node (Comp);
|
|
begin
|
|
Append_To (Comps,
|
|
Make_Component_Declaration (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Chars (Comp)),
|
|
Component_Definition =>
|
|
New_Copy_Tree
|
|
(Component_Definition (Comp_Decl), New_Sloc => Loc)));
|
|
end;
|
|
end if;
|
|
|
|
Next_Component (Comp);
|
|
end loop;
|
|
|
|
return Comps;
|
|
end Copy_Component_List;
|
|
|
|
-------------------------
|
|
-- Copy_Parameter_List --
|
|
-------------------------
|
|
|
|
function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
|
|
Loc : constant Source_Ptr := Sloc (Subp_Id);
|
|
Plist : List_Id;
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
if No (First_Formal (Subp_Id)) then
|
|
return No_List;
|
|
else
|
|
Plist := New_List;
|
|
Formal := First_Formal (Subp_Id);
|
|
while Present (Formal) loop
|
|
Append_To (Plist,
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
|
|
In_Present => In_Present (Parent (Formal)),
|
|
Out_Present => Out_Present (Parent (Formal)),
|
|
Parameter_Type =>
|
|
New_Occurrence_Of (Etype (Formal), Loc),
|
|
Expression =>
|
|
New_Copy_Tree (Expression (Parent (Formal)))));
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
end if;
|
|
|
|
return Plist;
|
|
end Copy_Parameter_List;
|
|
|
|
--------------------------
|
|
-- Copy_Subprogram_Spec --
|
|
--------------------------
|
|
|
|
function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
|
|
Def_Id : Node_Id;
|
|
Formal_Spec : Node_Id;
|
|
Result : Node_Id;
|
|
|
|
begin
|
|
-- The structure of the original tree must be replicated without any
|
|
-- alterations. Use New_Copy_Tree for this purpose.
|
|
|
|
Result := New_Copy_Tree (Spec);
|
|
|
|
-- Create a new entity for the defining unit name
|
|
|
|
Def_Id := Defining_Unit_Name (Result);
|
|
Set_Defining_Unit_Name (Result,
|
|
Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
|
|
|
|
-- Create new entities for the formal parameters
|
|
|
|
if Present (Parameter_Specifications (Result)) then
|
|
Formal_Spec := First (Parameter_Specifications (Result));
|
|
while Present (Formal_Spec) loop
|
|
Def_Id := Defining_Identifier (Formal_Spec);
|
|
Set_Defining_Identifier (Formal_Spec,
|
|
Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
|
|
|
|
Next (Formal_Spec);
|
|
end loop;
|
|
end if;
|
|
|
|
return Result;
|
|
end Copy_Subprogram_Spec;
|
|
|
|
--------------------------------
|
|
-- Corresponding_Generic_Type --
|
|
--------------------------------
|
|
|
|
function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
|
|
Inst : Entity_Id;
|
|
Gen : Entity_Id;
|
|
Typ : Entity_Id;
|
|
|
|
begin
|
|
if not Is_Generic_Actual_Type (T) then
|
|
return Any_Type;
|
|
|
|
-- If the actual is the actual of an enclosing instance, resolution
|
|
-- was correct in the generic.
|
|
|
|
elsif Nkind (Parent (T)) = N_Subtype_Declaration
|
|
and then Is_Entity_Name (Subtype_Indication (Parent (T)))
|
|
and then
|
|
Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
|
|
then
|
|
return Any_Type;
|
|
|
|
else
|
|
Inst := Scope (T);
|
|
|
|
if Is_Wrapper_Package (Inst) then
|
|
Inst := Related_Instance (Inst);
|
|
end if;
|
|
|
|
Gen :=
|
|
Generic_Parent
|
|
(Specification (Unit_Declaration_Node (Inst)));
|
|
|
|
-- Generic actual has the same name as the corresponding formal
|
|
|
|
Typ := First_Entity (Gen);
|
|
while Present (Typ) loop
|
|
if Chars (Typ) = Chars (T) then
|
|
return Typ;
|
|
end if;
|
|
|
|
Next_Entity (Typ);
|
|
end loop;
|
|
|
|
return Any_Type;
|
|
end if;
|
|
end Corresponding_Generic_Type;
|
|
|
|
--------------------
|
|
-- Current_Entity --
|
|
--------------------
|
|
|
|
-- The currently visible definition for a given identifier is the
|
|
-- one most chained at the start of the visibility chain, i.e. the
|
|
-- one that is referenced by the Node_Id value of the name of the
|
|
-- given identifier.
|
|
|
|
function Current_Entity (N : Node_Id) return Entity_Id is
|
|
begin
|
|
return Get_Name_Entity_Id (Chars (N));
|
|
end Current_Entity;
|
|
|
|
-----------------------------
|
|
-- Current_Entity_In_Scope --
|
|
-----------------------------
|
|
|
|
function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
|
|
E : Entity_Id;
|
|
CS : constant Entity_Id := Current_Scope;
|
|
|
|
Transient_Case : constant Boolean := Scope_Is_Transient;
|
|
|
|
begin
|
|
E := Get_Name_Entity_Id (Chars (N));
|
|
while Present (E)
|
|
and then Scope (E) /= CS
|
|
and then (not Transient_Case or else Scope (E) /= Scope (CS))
|
|
loop
|
|
E := Homonym (E);
|
|
end loop;
|
|
|
|
return E;
|
|
end Current_Entity_In_Scope;
|
|
|
|
-------------------
|
|
-- Current_Scope --
|
|
-------------------
|
|
|
|
function Current_Scope return Entity_Id is
|
|
begin
|
|
if Scope_Stack.Last = -1 then
|
|
return Standard_Standard;
|
|
else
|
|
declare
|
|
C : constant Entity_Id :=
|
|
Scope_Stack.Table (Scope_Stack.Last).Entity;
|
|
begin
|
|
if Present (C) then
|
|
return C;
|
|
else
|
|
return Standard_Standard;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Current_Scope;
|
|
|
|
----------------------------
|
|
-- Current_Scope_No_Loops --
|
|
----------------------------
|
|
|
|
function Current_Scope_No_Loops return Entity_Id is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
-- Examine the scope stack starting from the current scope and skip any
|
|
-- internally generated loops.
|
|
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
|
|
S := Scope (S);
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
return S;
|
|
end Current_Scope_No_Loops;
|
|
|
|
------------------------
|
|
-- Current_Subprogram --
|
|
------------------------
|
|
|
|
function Current_Subprogram return Entity_Id is
|
|
Scop : constant Entity_Id := Current_Scope;
|
|
begin
|
|
if Is_Subprogram_Or_Generic_Subprogram (Scop) then
|
|
return Scop;
|
|
else
|
|
return Enclosing_Subprogram (Scop);
|
|
end if;
|
|
end Current_Subprogram;
|
|
|
|
----------------------------------
|
|
-- Deepest_Type_Access_Level --
|
|
----------------------------------
|
|
|
|
function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
|
|
begin
|
|
if Ekind (Typ) = E_Anonymous_Access_Type
|
|
and then not Is_Local_Anonymous_Access (Typ)
|
|
and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
|
|
then
|
|
-- Typ is the type of an Ada 2012 stand-alone object of an anonymous
|
|
-- access type.
|
|
|
|
return
|
|
Scope_Depth (Enclosing_Dynamic_Scope
|
|
(Defining_Identifier
|
|
(Associated_Node_For_Itype (Typ))));
|
|
|
|
-- For generic formal type, return Int'Last (infinite).
|
|
-- See comment preceding Is_Generic_Type call in Type_Access_Level.
|
|
|
|
elsif Is_Generic_Type (Root_Type (Typ)) then
|
|
return UI_From_Int (Int'Last);
|
|
|
|
else
|
|
return Type_Access_Level (Typ);
|
|
end if;
|
|
end Deepest_Type_Access_Level;
|
|
|
|
---------------------
|
|
-- Defining_Entity --
|
|
---------------------
|
|
|
|
function Defining_Entity
|
|
(N : Node_Id;
|
|
Empty_On_Errors : Boolean := False) return Entity_Id
|
|
is
|
|
Err : Entity_Id := Empty;
|
|
|
|
begin
|
|
case Nkind (N) is
|
|
when N_Abstract_Subprogram_Declaration |
|
|
N_Expression_Function |
|
|
N_Formal_Subprogram_Declaration |
|
|
N_Generic_Package_Declaration |
|
|
N_Generic_Subprogram_Declaration |
|
|
N_Package_Declaration |
|
|
N_Subprogram_Body |
|
|
N_Subprogram_Body_Stub |
|
|
N_Subprogram_Declaration |
|
|
N_Subprogram_Renaming_Declaration
|
|
=>
|
|
return Defining_Entity (Specification (N));
|
|
|
|
when N_Component_Declaration |
|
|
N_Defining_Program_Unit_Name |
|
|
N_Discriminant_Specification |
|
|
N_Entry_Body |
|
|
N_Entry_Declaration |
|
|
N_Entry_Index_Specification |
|
|
N_Exception_Declaration |
|
|
N_Exception_Renaming_Declaration |
|
|
N_Formal_Object_Declaration |
|
|
N_Formal_Package_Declaration |
|
|
N_Formal_Type_Declaration |
|
|
N_Full_Type_Declaration |
|
|
N_Implicit_Label_Declaration |
|
|
N_Incomplete_Type_Declaration |
|
|
N_Loop_Parameter_Specification |
|
|
N_Number_Declaration |
|
|
N_Object_Declaration |
|
|
N_Object_Renaming_Declaration |
|
|
N_Package_Body_Stub |
|
|
N_Parameter_Specification |
|
|
N_Private_Extension_Declaration |
|
|
N_Private_Type_Declaration |
|
|
N_Protected_Body |
|
|
N_Protected_Body_Stub |
|
|
N_Protected_Type_Declaration |
|
|
N_Single_Protected_Declaration |
|
|
N_Single_Task_Declaration |
|
|
N_Subtype_Declaration |
|
|
N_Task_Body |
|
|
N_Task_Body_Stub |
|
|
N_Task_Type_Declaration
|
|
=>
|
|
return Defining_Identifier (N);
|
|
|
|
when N_Subunit =>
|
|
return Defining_Entity (Proper_Body (N));
|
|
|
|
when N_Function_Instantiation |
|
|
N_Function_Specification |
|
|
N_Generic_Function_Renaming_Declaration |
|
|
N_Generic_Package_Renaming_Declaration |
|
|
N_Generic_Procedure_Renaming_Declaration |
|
|
N_Package_Body |
|
|
N_Package_Instantiation |
|
|
N_Package_Renaming_Declaration |
|
|
N_Package_Specification |
|
|
N_Procedure_Instantiation |
|
|
N_Procedure_Specification
|
|
=>
|
|
declare
|
|
Nam : constant Node_Id := Defining_Unit_Name (N);
|
|
|
|
begin
|
|
if Nkind (Nam) in N_Entity then
|
|
return Nam;
|
|
|
|
-- For Error, make up a name and attach to declaration so we
|
|
-- can continue semantic analysis.
|
|
|
|
elsif Nam = Error then
|
|
if Empty_On_Errors then
|
|
return Empty;
|
|
else
|
|
Err := Make_Temporary (Sloc (N), 'T');
|
|
Set_Defining_Unit_Name (N, Err);
|
|
|
|
return Err;
|
|
end if;
|
|
|
|
-- If not an entity, get defining identifier
|
|
|
|
else
|
|
return Defining_Identifier (Nam);
|
|
end if;
|
|
end;
|
|
|
|
when N_Block_Statement |
|
|
N_Loop_Statement =>
|
|
return Entity (Identifier (N));
|
|
|
|
when others =>
|
|
if Empty_On_Errors then
|
|
return Empty;
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
end case;
|
|
end Defining_Entity;
|
|
|
|
--------------------------
|
|
-- Denotes_Discriminant --
|
|
--------------------------
|
|
|
|
function Denotes_Discriminant
|
|
(N : Node_Id;
|
|
Check_Concurrent : Boolean := False) return Boolean
|
|
is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
if not Is_Entity_Name (N) or else No (Entity (N)) then
|
|
return False;
|
|
else
|
|
E := Entity (N);
|
|
end if;
|
|
|
|
-- If we are checking for a protected type, the discriminant may have
|
|
-- been rewritten as the corresponding discriminal of the original type
|
|
-- or of the corresponding concurrent record, depending on whether we
|
|
-- are in the spec or body of the protected type.
|
|
|
|
return Ekind (E) = E_Discriminant
|
|
or else
|
|
(Check_Concurrent
|
|
and then Ekind (E) = E_In_Parameter
|
|
and then Present (Discriminal_Link (E))
|
|
and then
|
|
(Is_Concurrent_Type (Scope (Discriminal_Link (E)))
|
|
or else
|
|
Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
|
|
end Denotes_Discriminant;
|
|
|
|
-------------------------
|
|
-- Denotes_Same_Object --
|
|
-------------------------
|
|
|
|
function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
|
|
Obj1 : Node_Id := A1;
|
|
Obj2 : Node_Id := A2;
|
|
|
|
function Has_Prefix (N : Node_Id) return Boolean;
|
|
-- Return True if N has attribute Prefix
|
|
|
|
function Is_Renaming (N : Node_Id) return Boolean;
|
|
-- Return true if N names a renaming entity
|
|
|
|
function Is_Valid_Renaming (N : Node_Id) return Boolean;
|
|
-- For renamings, return False if the prefix of any dereference within
|
|
-- the renamed object_name is a variable, or any expression within the
|
|
-- renamed object_name contains references to variables or calls on
|
|
-- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
|
|
|
|
----------------
|
|
-- Has_Prefix --
|
|
----------------
|
|
|
|
function Has_Prefix (N : Node_Id) return Boolean is
|
|
begin
|
|
return
|
|
Nkind_In (N,
|
|
N_Attribute_Reference,
|
|
N_Expanded_Name,
|
|
N_Explicit_Dereference,
|
|
N_Indexed_Component,
|
|
N_Reference,
|
|
N_Selected_Component,
|
|
N_Slice);
|
|
end Has_Prefix;
|
|
|
|
-----------------
|
|
-- Is_Renaming --
|
|
-----------------
|
|
|
|
function Is_Renaming (N : Node_Id) return Boolean is
|
|
begin
|
|
return Is_Entity_Name (N)
|
|
and then Present (Renamed_Entity (Entity (N)));
|
|
end Is_Renaming;
|
|
|
|
-----------------------
|
|
-- Is_Valid_Renaming --
|
|
-----------------------
|
|
|
|
function Is_Valid_Renaming (N : Node_Id) return Boolean is
|
|
|
|
function Check_Renaming (N : Node_Id) return Boolean;
|
|
-- Recursive function used to traverse all the prefixes of N
|
|
|
|
function Check_Renaming (N : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Renaming (N)
|
|
and then not Check_Renaming (Renamed_Entity (Entity (N)))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
if Nkind (N) = N_Indexed_Component then
|
|
declare
|
|
Indx : Node_Id;
|
|
|
|
begin
|
|
Indx := First (Expressions (N));
|
|
while Present (Indx) loop
|
|
if not Is_OK_Static_Expression (Indx) then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Index (Indx);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
if Has_Prefix (N) then
|
|
declare
|
|
P : constant Node_Id := Prefix (N);
|
|
|
|
begin
|
|
if Nkind (N) = N_Explicit_Dereference
|
|
and then Is_Variable (P)
|
|
then
|
|
return False;
|
|
|
|
elsif Is_Entity_Name (P)
|
|
and then Ekind (Entity (P)) = E_Function
|
|
then
|
|
return False;
|
|
|
|
elsif Nkind (P) = N_Function_Call then
|
|
return False;
|
|
end if;
|
|
|
|
-- Recursion to continue traversing the prefix of the
|
|
-- renaming expression
|
|
|
|
return Check_Renaming (P);
|
|
end;
|
|
end if;
|
|
|
|
return True;
|
|
end Check_Renaming;
|
|
|
|
-- Start of processing for Is_Valid_Renaming
|
|
|
|
begin
|
|
return Check_Renaming (N);
|
|
end Is_Valid_Renaming;
|
|
|
|
-- Start of processing for Denotes_Same_Object
|
|
|
|
begin
|
|
-- Both names statically denote the same stand-alone object or parameter
|
|
-- (RM 6.4.1(6.5/3))
|
|
|
|
if Is_Entity_Name (Obj1)
|
|
and then Is_Entity_Name (Obj2)
|
|
and then Entity (Obj1) = Entity (Obj2)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- For renamings, the prefix of any dereference within the renamed
|
|
-- object_name is not a variable, and any expression within the
|
|
-- renamed object_name contains no references to variables nor
|
|
-- calls on nonstatic functions (RM 6.4.1(6.10/3)).
|
|
|
|
if Is_Renaming (Obj1) then
|
|
if Is_Valid_Renaming (Obj1) then
|
|
Obj1 := Renamed_Entity (Entity (Obj1));
|
|
else
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Renaming (Obj2) then
|
|
if Is_Valid_Renaming (Obj2) then
|
|
Obj2 := Renamed_Entity (Entity (Obj2));
|
|
else
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
-- No match if not same node kind (such cases are handled by
|
|
-- Denotes_Same_Prefix)
|
|
|
|
if Nkind (Obj1) /= Nkind (Obj2) then
|
|
return False;
|
|
|
|
-- After handling valid renamings, one of the two names statically
|
|
-- denoted a renaming declaration whose renamed object_name is known
|
|
-- to denote the same object as the other (RM 6.4.1(6.10/3))
|
|
|
|
elsif Is_Entity_Name (Obj1) then
|
|
if Is_Entity_Name (Obj2) then
|
|
return Entity (Obj1) = Entity (Obj2);
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- Both names are selected_components, their prefixes are known to
|
|
-- denote the same object, and their selector_names denote the same
|
|
-- component (RM 6.4.1(6.6/3)).
|
|
|
|
elsif Nkind (Obj1) = N_Selected_Component then
|
|
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
|
|
and then
|
|
Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
|
|
|
|
-- Both names are dereferences and the dereferenced names are known to
|
|
-- denote the same object (RM 6.4.1(6.7/3))
|
|
|
|
elsif Nkind (Obj1) = N_Explicit_Dereference then
|
|
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
|
|
|
|
-- Both names are indexed_components, their prefixes are known to denote
|
|
-- the same object, and each of the pairs of corresponding index values
|
|
-- are either both static expressions with the same static value or both
|
|
-- names that are known to denote the same object (RM 6.4.1(6.8/3))
|
|
|
|
elsif Nkind (Obj1) = N_Indexed_Component then
|
|
if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
|
|
return False;
|
|
else
|
|
declare
|
|
Indx1 : Node_Id;
|
|
Indx2 : Node_Id;
|
|
|
|
begin
|
|
Indx1 := First (Expressions (Obj1));
|
|
Indx2 := First (Expressions (Obj2));
|
|
while Present (Indx1) loop
|
|
|
|
-- Indexes must denote the same static value or same object
|
|
|
|
if Is_OK_Static_Expression (Indx1) then
|
|
if not Is_OK_Static_Expression (Indx2) then
|
|
return False;
|
|
|
|
elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
|
|
return False;
|
|
end if;
|
|
|
|
elsif not Denotes_Same_Object (Indx1, Indx2) then
|
|
return False;
|
|
end if;
|
|
|
|
Next (Indx1);
|
|
Next (Indx2);
|
|
end loop;
|
|
|
|
return True;
|
|
end;
|
|
end if;
|
|
|
|
-- Both names are slices, their prefixes are known to denote the same
|
|
-- object, and the two slices have statically matching index constraints
|
|
-- (RM 6.4.1(6.9/3))
|
|
|
|
elsif Nkind (Obj1) = N_Slice
|
|
and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
|
|
then
|
|
declare
|
|
Lo1, Lo2, Hi1, Hi2 : Node_Id;
|
|
|
|
begin
|
|
Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
|
|
Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
|
|
|
|
-- Check whether bounds are statically identical. There is no
|
|
-- attempt to detect partial overlap of slices.
|
|
|
|
return Denotes_Same_Object (Lo1, Lo2)
|
|
and then
|
|
Denotes_Same_Object (Hi1, Hi2);
|
|
end;
|
|
|
|
-- In the recursion, literals appear as indexes
|
|
|
|
elsif Nkind (Obj1) = N_Integer_Literal
|
|
and then
|
|
Nkind (Obj2) = N_Integer_Literal
|
|
then
|
|
return Intval (Obj1) = Intval (Obj2);
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Denotes_Same_Object;
|
|
|
|
-------------------------
|
|
-- Denotes_Same_Prefix --
|
|
-------------------------
|
|
|
|
function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Entity_Name (A1) then
|
|
if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
|
|
and then not Is_Access_Type (Etype (A1))
|
|
then
|
|
return Denotes_Same_Object (A1, Prefix (A2))
|
|
or else Denotes_Same_Prefix (A1, Prefix (A2));
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
elsif Is_Entity_Name (A2) then
|
|
return Denotes_Same_Prefix (A1 => A2, A2 => A1);
|
|
|
|
elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
|
|
and then
|
|
Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
|
|
then
|
|
declare
|
|
Root1, Root2 : Node_Id;
|
|
Depth1, Depth2 : Nat := 0;
|
|
|
|
begin
|
|
Root1 := Prefix (A1);
|
|
while not Is_Entity_Name (Root1) loop
|
|
if not Nkind_In
|
|
(Root1, N_Selected_Component, N_Indexed_Component)
|
|
then
|
|
return False;
|
|
else
|
|
Root1 := Prefix (Root1);
|
|
end if;
|
|
|
|
Depth1 := Depth1 + 1;
|
|
end loop;
|
|
|
|
Root2 := Prefix (A2);
|
|
while not Is_Entity_Name (Root2) loop
|
|
if not Nkind_In (Root2, N_Selected_Component,
|
|
N_Indexed_Component)
|
|
then
|
|
return False;
|
|
else
|
|
Root2 := Prefix (Root2);
|
|
end if;
|
|
|
|
Depth2 := Depth2 + 1;
|
|
end loop;
|
|
|
|
-- If both have the same depth and they do not denote the same
|
|
-- object, they are disjoint and no warning is needed.
|
|
|
|
if Depth1 = Depth2 then
|
|
return False;
|
|
|
|
elsif Depth1 > Depth2 then
|
|
Root1 := Prefix (A1);
|
|
for J in 1 .. Depth1 - Depth2 - 1 loop
|
|
Root1 := Prefix (Root1);
|
|
end loop;
|
|
|
|
return Denotes_Same_Object (Root1, A2);
|
|
|
|
else
|
|
Root2 := Prefix (A2);
|
|
for J in 1 .. Depth2 - Depth1 - 1 loop
|
|
Root2 := Prefix (Root2);
|
|
end loop;
|
|
|
|
return Denotes_Same_Object (A1, Root2);
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Denotes_Same_Prefix;
|
|
|
|
----------------------
|
|
-- Denotes_Variable --
|
|
----------------------
|
|
|
|
function Denotes_Variable (N : Node_Id) return Boolean is
|
|
begin
|
|
return Is_Variable (N) and then Paren_Count (N) = 0;
|
|
end Denotes_Variable;
|
|
|
|
-----------------------------
|
|
-- Depends_On_Discriminant --
|
|
-----------------------------
|
|
|
|
function Depends_On_Discriminant (N : Node_Id) return Boolean is
|
|
L : Node_Id;
|
|
H : Node_Id;
|
|
|
|
begin
|
|
Get_Index_Bounds (N, L, H);
|
|
return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
|
|
end Depends_On_Discriminant;
|
|
|
|
-------------------------
|
|
-- Designate_Same_Unit --
|
|
-------------------------
|
|
|
|
function Designate_Same_Unit
|
|
(Name1 : Node_Id;
|
|
Name2 : Node_Id) return Boolean
|
|
is
|
|
K1 : constant Node_Kind := Nkind (Name1);
|
|
K2 : constant Node_Kind := Nkind (Name2);
|
|
|
|
function Prefix_Node (N : Node_Id) return Node_Id;
|
|
-- Returns the parent unit name node of a defining program unit name
|
|
-- or the prefix if N is a selected component or an expanded name.
|
|
|
|
function Select_Node (N : Node_Id) return Node_Id;
|
|
-- Returns the defining identifier node of a defining program unit
|
|
-- name or the selector node if N is a selected component or an
|
|
-- expanded name.
|
|
|
|
-----------------
|
|
-- Prefix_Node --
|
|
-----------------
|
|
|
|
function Prefix_Node (N : Node_Id) return Node_Id is
|
|
begin
|
|
if Nkind (N) = N_Defining_Program_Unit_Name then
|
|
return Name (N);
|
|
else
|
|
return Prefix (N);
|
|
end if;
|
|
end Prefix_Node;
|
|
|
|
-----------------
|
|
-- Select_Node --
|
|
-----------------
|
|
|
|
function Select_Node (N : Node_Id) return Node_Id is
|
|
begin
|
|
if Nkind (N) = N_Defining_Program_Unit_Name then
|
|
return Defining_Identifier (N);
|
|
else
|
|
return Selector_Name (N);
|
|
end if;
|
|
end Select_Node;
|
|
|
|
-- Start of processing for Designate_Same_Unit
|
|
|
|
begin
|
|
if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
|
|
and then
|
|
Nkind_In (K2, N_Identifier, N_Defining_Identifier)
|
|
then
|
|
return Chars (Name1) = Chars (Name2);
|
|
|
|
elsif Nkind_In (K1, N_Expanded_Name,
|
|
N_Selected_Component,
|
|
N_Defining_Program_Unit_Name)
|
|
and then
|
|
Nkind_In (K2, N_Expanded_Name,
|
|
N_Selected_Component,
|
|
N_Defining_Program_Unit_Name)
|
|
then
|
|
return
|
|
(Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
|
|
and then
|
|
Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Designate_Same_Unit;
|
|
|
|
------------------------------------------
|
|
-- function Dynamic_Accessibility_Level --
|
|
------------------------------------------
|
|
|
|
function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
|
|
E : Entity_Id;
|
|
Loc : constant Source_Ptr := Sloc (Expr);
|
|
|
|
function Make_Level_Literal (Level : Uint) return Node_Id;
|
|
-- Construct an integer literal representing an accessibility level
|
|
-- with its type set to Natural.
|
|
|
|
------------------------
|
|
-- Make_Level_Literal --
|
|
------------------------
|
|
|
|
function Make_Level_Literal (Level : Uint) return Node_Id is
|
|
Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
|
|
begin
|
|
Set_Etype (Result, Standard_Natural);
|
|
return Result;
|
|
end Make_Level_Literal;
|
|
|
|
-- Start of processing for Dynamic_Accessibility_Level
|
|
|
|
begin
|
|
if Is_Entity_Name (Expr) then
|
|
E := Entity (Expr);
|
|
|
|
if Present (Renamed_Object (E)) then
|
|
return Dynamic_Accessibility_Level (Renamed_Object (E));
|
|
end if;
|
|
|
|
if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
|
|
if Present (Extra_Accessibility (E)) then
|
|
return New_Occurrence_Of (Extra_Accessibility (E), Loc);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
|
|
|
|
case Nkind (Expr) is
|
|
|
|
-- For access discriminant, the level of the enclosing object
|
|
|
|
when N_Selected_Component =>
|
|
if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
|
|
and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
|
|
E_Anonymous_Access_Type
|
|
then
|
|
return Make_Level_Literal (Object_Access_Level (Expr));
|
|
end if;
|
|
|
|
when N_Attribute_Reference =>
|
|
case Get_Attribute_Id (Attribute_Name (Expr)) is
|
|
|
|
-- For X'Access, the level of the prefix X
|
|
|
|
when Attribute_Access =>
|
|
return Make_Level_Literal
|
|
(Object_Access_Level (Prefix (Expr)));
|
|
|
|
-- Treat the unchecked attributes as library-level
|
|
|
|
when Attribute_Unchecked_Access |
|
|
Attribute_Unrestricted_Access =>
|
|
return Make_Level_Literal (Scope_Depth (Standard_Standard));
|
|
|
|
-- No other access-valued attributes
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
when N_Allocator =>
|
|
|
|
-- Unimplemented: depends on context. As an actual parameter where
|
|
-- formal type is anonymous, use
|
|
-- Scope_Depth (Current_Scope) + 1.
|
|
-- For other cases, see 3.10.2(14/3) and following. ???
|
|
|
|
null;
|
|
|
|
when N_Type_Conversion =>
|
|
if not Is_Local_Anonymous_Access (Etype (Expr)) then
|
|
|
|
-- Handle type conversions introduced for a rename of an
|
|
-- Ada 2012 stand-alone object of an anonymous access type.
|
|
|
|
return Dynamic_Accessibility_Level (Expression (Expr));
|
|
end if;
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
|
|
end Dynamic_Accessibility_Level;
|
|
|
|
-----------------------------------
|
|
-- Effective_Extra_Accessibility --
|
|
-----------------------------------
|
|
|
|
function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
|
|
begin
|
|
if Present (Renamed_Object (Id))
|
|
and then Is_Entity_Name (Renamed_Object (Id))
|
|
then
|
|
return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
|
|
else
|
|
return Extra_Accessibility (Id);
|
|
end if;
|
|
end Effective_Extra_Accessibility;
|
|
|
|
-----------------------------
|
|
-- Effective_Reads_Enabled --
|
|
-----------------------------
|
|
|
|
function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return Has_Enabled_Property (Id, Name_Effective_Reads);
|
|
end Effective_Reads_Enabled;
|
|
|
|
------------------------------
|
|
-- Effective_Writes_Enabled --
|
|
------------------------------
|
|
|
|
function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return Has_Enabled_Property (Id, Name_Effective_Writes);
|
|
end Effective_Writes_Enabled;
|
|
|
|
------------------------------
|
|
-- Enclosing_Comp_Unit_Node --
|
|
------------------------------
|
|
|
|
function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
|
|
Current_Node : Node_Id;
|
|
|
|
begin
|
|
Current_Node := N;
|
|
while Present (Current_Node)
|
|
and then Nkind (Current_Node) /= N_Compilation_Unit
|
|
loop
|
|
Current_Node := Parent (Current_Node);
|
|
end loop;
|
|
|
|
if Nkind (Current_Node) /= N_Compilation_Unit then
|
|
return Empty;
|
|
else
|
|
return Current_Node;
|
|
end if;
|
|
end Enclosing_Comp_Unit_Node;
|
|
|
|
--------------------------
|
|
-- Enclosing_CPP_Parent --
|
|
--------------------------
|
|
|
|
function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
|
|
Parent_Typ : Entity_Id := Typ;
|
|
|
|
begin
|
|
while not Is_CPP_Class (Parent_Typ)
|
|
and then Etype (Parent_Typ) /= Parent_Typ
|
|
loop
|
|
Parent_Typ := Etype (Parent_Typ);
|
|
|
|
if Is_Private_Type (Parent_Typ) then
|
|
Parent_Typ := Full_View (Base_Type (Parent_Typ));
|
|
end if;
|
|
end loop;
|
|
|
|
pragma Assert (Is_CPP_Class (Parent_Typ));
|
|
return Parent_Typ;
|
|
end Enclosing_CPP_Parent;
|
|
|
|
---------------------------
|
|
-- Enclosing_Declaration --
|
|
---------------------------
|
|
|
|
function Enclosing_Declaration (N : Node_Id) return Node_Id is
|
|
Decl : Node_Id := N;
|
|
|
|
begin
|
|
while Present (Decl)
|
|
and then not (Nkind (Decl) in N_Declaration
|
|
or else
|
|
Nkind (Decl) in N_Later_Decl_Item)
|
|
loop
|
|
Decl := Parent (Decl);
|
|
end loop;
|
|
|
|
return Decl;
|
|
end Enclosing_Declaration;
|
|
|
|
----------------------------
|
|
-- Enclosing_Generic_Body --
|
|
----------------------------
|
|
|
|
function Enclosing_Generic_Body
|
|
(N : Node_Id) return Node_Id
|
|
is
|
|
P : Node_Id;
|
|
Decl : Node_Id;
|
|
Spec : Node_Id;
|
|
|
|
begin
|
|
P := Parent (N);
|
|
while Present (P) loop
|
|
if Nkind (P) = N_Package_Body
|
|
or else Nkind (P) = N_Subprogram_Body
|
|
then
|
|
Spec := Corresponding_Spec (P);
|
|
|
|
if Present (Spec) then
|
|
Decl := Unit_Declaration_Node (Spec);
|
|
|
|
if Nkind (Decl) = N_Generic_Package_Declaration
|
|
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
|
|
then
|
|
return P;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Enclosing_Generic_Body;
|
|
|
|
----------------------------
|
|
-- Enclosing_Generic_Unit --
|
|
----------------------------
|
|
|
|
function Enclosing_Generic_Unit
|
|
(N : Node_Id) return Node_Id
|
|
is
|
|
P : Node_Id;
|
|
Decl : Node_Id;
|
|
Spec : Node_Id;
|
|
|
|
begin
|
|
P := Parent (N);
|
|
while Present (P) loop
|
|
if Nkind (P) = N_Generic_Package_Declaration
|
|
or else Nkind (P) = N_Generic_Subprogram_Declaration
|
|
then
|
|
return P;
|
|
|
|
elsif Nkind (P) = N_Package_Body
|
|
or else Nkind (P) = N_Subprogram_Body
|
|
then
|
|
Spec := Corresponding_Spec (P);
|
|
|
|
if Present (Spec) then
|
|
Decl := Unit_Declaration_Node (Spec);
|
|
|
|
if Nkind (Decl) = N_Generic_Package_Declaration
|
|
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
|
|
then
|
|
return Decl;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Enclosing_Generic_Unit;
|
|
|
|
-------------------------------
|
|
-- Enclosing_Lib_Unit_Entity --
|
|
-------------------------------
|
|
|
|
function Enclosing_Lib_Unit_Entity
|
|
(E : Entity_Id := Current_Scope) return Entity_Id
|
|
is
|
|
Unit_Entity : Entity_Id;
|
|
|
|
begin
|
|
-- Look for enclosing library unit entity by following scope links.
|
|
-- Equivalent to, but faster than indexing through the scope stack.
|
|
|
|
Unit_Entity := E;
|
|
while (Present (Scope (Unit_Entity))
|
|
and then Scope (Unit_Entity) /= Standard_Standard)
|
|
and not Is_Child_Unit (Unit_Entity)
|
|
loop
|
|
Unit_Entity := Scope (Unit_Entity);
|
|
end loop;
|
|
|
|
return Unit_Entity;
|
|
end Enclosing_Lib_Unit_Entity;
|
|
|
|
-----------------------------
|
|
-- Enclosing_Lib_Unit_Node --
|
|
-----------------------------
|
|
|
|
function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
|
|
Encl_Unit : Node_Id;
|
|
|
|
begin
|
|
Encl_Unit := Enclosing_Comp_Unit_Node (N);
|
|
while Present (Encl_Unit)
|
|
and then Nkind (Unit (Encl_Unit)) = N_Subunit
|
|
loop
|
|
Encl_Unit := Library_Unit (Encl_Unit);
|
|
end loop;
|
|
|
|
pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
|
|
return Encl_Unit;
|
|
end Enclosing_Lib_Unit_Node;
|
|
|
|
-----------------------
|
|
-- Enclosing_Package --
|
|
-----------------------
|
|
|
|
function Enclosing_Package (E : Entity_Id) return Entity_Id is
|
|
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
|
|
|
|
begin
|
|
if Dynamic_Scope = Standard_Standard then
|
|
return Standard_Standard;
|
|
|
|
elsif Dynamic_Scope = Empty then
|
|
return Empty;
|
|
|
|
elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
|
|
E_Generic_Package)
|
|
then
|
|
return Dynamic_Scope;
|
|
|
|
else
|
|
return Enclosing_Package (Dynamic_Scope);
|
|
end if;
|
|
end Enclosing_Package;
|
|
|
|
-------------------------------------
|
|
-- Enclosing_Package_Or_Subprogram --
|
|
-------------------------------------
|
|
|
|
function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Scope (E);
|
|
while Present (S) loop
|
|
if Is_Package_Or_Generic_Package (S)
|
|
or else Ekind (S) = E_Package_Body
|
|
then
|
|
return S;
|
|
|
|
elsif Is_Subprogram_Or_Generic_Subprogram (S)
|
|
or else Ekind (S) = E_Subprogram_Body
|
|
then
|
|
return S;
|
|
|
|
else
|
|
S := Scope (S);
|
|
end if;
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Enclosing_Package_Or_Subprogram;
|
|
|
|
--------------------------
|
|
-- Enclosing_Subprogram --
|
|
--------------------------
|
|
|
|
function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
|
|
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
|
|
|
|
begin
|
|
if Dynamic_Scope = Standard_Standard then
|
|
return Empty;
|
|
|
|
elsif Dynamic_Scope = Empty then
|
|
return Empty;
|
|
|
|
elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
|
|
return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
|
|
|
|
elsif Ekind (Dynamic_Scope) = E_Block
|
|
or else Ekind (Dynamic_Scope) = E_Return_Statement
|
|
then
|
|
return Enclosing_Subprogram (Dynamic_Scope);
|
|
|
|
elsif Ekind (Dynamic_Scope) = E_Task_Type then
|
|
return Get_Task_Body_Procedure (Dynamic_Scope);
|
|
|
|
elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
|
|
and then Present (Full_View (Dynamic_Scope))
|
|
and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
|
|
then
|
|
return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
|
|
|
|
-- No body is generated if the protected operation is eliminated
|
|
|
|
elsif Convention (Dynamic_Scope) = Convention_Protected
|
|
and then not Is_Eliminated (Dynamic_Scope)
|
|
and then Present (Protected_Body_Subprogram (Dynamic_Scope))
|
|
then
|
|
return Protected_Body_Subprogram (Dynamic_Scope);
|
|
|
|
else
|
|
return Dynamic_Scope;
|
|
end if;
|
|
end Enclosing_Subprogram;
|
|
|
|
------------------------
|
|
-- Ensure_Freeze_Node --
|
|
------------------------
|
|
|
|
procedure Ensure_Freeze_Node (E : Entity_Id) is
|
|
FN : Node_Id;
|
|
begin
|
|
if No (Freeze_Node (E)) then
|
|
FN := Make_Freeze_Entity (Sloc (E));
|
|
Set_Has_Delayed_Freeze (E);
|
|
Set_Freeze_Node (E, FN);
|
|
Set_Access_Types_To_Process (FN, No_Elist);
|
|
Set_TSS_Elist (FN, No_Elist);
|
|
Set_Entity (FN, E);
|
|
end if;
|
|
end Ensure_Freeze_Node;
|
|
|
|
----------------
|
|
-- Enter_Name --
|
|
----------------
|
|
|
|
procedure Enter_Name (Def_Id : Entity_Id) is
|
|
C : constant Entity_Id := Current_Entity (Def_Id);
|
|
E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
|
|
S : constant Entity_Id := Current_Scope;
|
|
|
|
begin
|
|
Generate_Definition (Def_Id);
|
|
|
|
-- Add new name to current scope declarations. Check for duplicate
|
|
-- declaration, which may or may not be a genuine error.
|
|
|
|
if Present (E) then
|
|
|
|
-- Case of previous entity entered because of a missing declaration
|
|
-- or else a bad subtype indication. Best is to use the new entity,
|
|
-- and make the previous one invisible.
|
|
|
|
if Etype (E) = Any_Type then
|
|
Set_Is_Immediately_Visible (E, False);
|
|
|
|
-- Case of renaming declaration constructed for package instances.
|
|
-- if there is an explicit declaration with the same identifier,
|
|
-- the renaming is not immediately visible any longer, but remains
|
|
-- visible through selected component notation.
|
|
|
|
elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
|
|
and then not Comes_From_Source (E)
|
|
then
|
|
Set_Is_Immediately_Visible (E, False);
|
|
|
|
-- The new entity may be the package renaming, which has the same
|
|
-- same name as a generic formal which has been seen already.
|
|
|
|
elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
|
|
and then not Comes_From_Source (Def_Id)
|
|
then
|
|
Set_Is_Immediately_Visible (E, False);
|
|
|
|
-- For a fat pointer corresponding to a remote access to subprogram,
|
|
-- we use the same identifier as the RAS type, so that the proper
|
|
-- name appears in the stub. This type is only retrieved through
|
|
-- the RAS type and never by visibility, and is not added to the
|
|
-- visibility list (see below).
|
|
|
|
elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
|
|
and then Ekind (Def_Id) = E_Record_Type
|
|
and then Present (Corresponding_Remote_Type (Def_Id))
|
|
then
|
|
null;
|
|
|
|
-- Case of an implicit operation or derived literal. The new entity
|
|
-- hides the implicit one, which is removed from all visibility,
|
|
-- i.e. the entity list of its scope, and homonym chain of its name.
|
|
|
|
elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
|
|
or else Is_Internal (E)
|
|
then
|
|
declare
|
|
Decl : constant Node_Id := Parent (E);
|
|
Prev : Entity_Id;
|
|
Prev_Vis : Entity_Id;
|
|
|
|
begin
|
|
-- If E is an implicit declaration, it cannot be the first
|
|
-- entity in the scope.
|
|
|
|
Prev := First_Entity (Current_Scope);
|
|
while Present (Prev) and then Next_Entity (Prev) /= E loop
|
|
Next_Entity (Prev);
|
|
end loop;
|
|
|
|
if No (Prev) then
|
|
|
|
-- If E is not on the entity chain of the current scope,
|
|
-- it is an implicit declaration in the generic formal
|
|
-- part of a generic subprogram. When analyzing the body,
|
|
-- the generic formals are visible but not on the entity
|
|
-- chain of the subprogram. The new entity will become
|
|
-- the visible one in the body.
|
|
|
|
pragma Assert
|
|
(Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
|
|
null;
|
|
|
|
else
|
|
Set_Next_Entity (Prev, Next_Entity (E));
|
|
|
|
if No (Next_Entity (Prev)) then
|
|
Set_Last_Entity (Current_Scope, Prev);
|
|
end if;
|
|
|
|
if E = Current_Entity (E) then
|
|
Prev_Vis := Empty;
|
|
|
|
else
|
|
Prev_Vis := Current_Entity (E);
|
|
while Homonym (Prev_Vis) /= E loop
|
|
Prev_Vis := Homonym (Prev_Vis);
|
|
end loop;
|
|
end if;
|
|
|
|
if Present (Prev_Vis) then
|
|
|
|
-- Skip E in the visibility chain
|
|
|
|
Set_Homonym (Prev_Vis, Homonym (E));
|
|
|
|
else
|
|
Set_Name_Entity_Id (Chars (E), Homonym (E));
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- This section of code could use a comment ???
|
|
|
|
elsif Present (Etype (E))
|
|
and then Is_Concurrent_Type (Etype (E))
|
|
and then E = Def_Id
|
|
then
|
|
return;
|
|
|
|
-- If the homograph is a protected component renaming, it should not
|
|
-- be hiding the current entity. Such renamings are treated as weak
|
|
-- declarations.
|
|
|
|
elsif Is_Prival (E) then
|
|
Set_Is_Immediately_Visible (E, False);
|
|
|
|
-- In this case the current entity is a protected component renaming.
|
|
-- Perform minimal decoration by setting the scope and return since
|
|
-- the prival should not be hiding other visible entities.
|
|
|
|
elsif Is_Prival (Def_Id) then
|
|
Set_Scope (Def_Id, Current_Scope);
|
|
return;
|
|
|
|
-- Analogous to privals, the discriminal generated for an entry index
|
|
-- parameter acts as a weak declaration. Perform minimal decoration
|
|
-- to avoid bogus errors.
|
|
|
|
elsif Is_Discriminal (Def_Id)
|
|
and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
|
|
then
|
|
Set_Scope (Def_Id, Current_Scope);
|
|
return;
|
|
|
|
-- In the body or private part of an instance, a type extension may
|
|
-- introduce a component with the same name as that of an actual. The
|
|
-- legality rule is not enforced, but the semantics of the full type
|
|
-- with two components of same name are not clear at this point???
|
|
|
|
elsif In_Instance_Not_Visible then
|
|
null;
|
|
|
|
-- When compiling a package body, some child units may have become
|
|
-- visible. They cannot conflict with local entities that hide them.
|
|
|
|
elsif Is_Child_Unit (E)
|
|
and then In_Open_Scopes (Scope (E))
|
|
and then not Is_Immediately_Visible (E)
|
|
then
|
|
null;
|
|
|
|
-- Conversely, with front-end inlining we may compile the parent body
|
|
-- first, and a child unit subsequently. The context is now the
|
|
-- parent spec, and body entities are not visible.
|
|
|
|
elsif Is_Child_Unit (Def_Id)
|
|
and then Is_Package_Body_Entity (E)
|
|
and then not In_Package_Body (Current_Scope)
|
|
then
|
|
null;
|
|
|
|
-- Case of genuine duplicate declaration
|
|
|
|
else
|
|
Error_Msg_Sloc := Sloc (E);
|
|
|
|
-- If the previous declaration is an incomplete type declaration
|
|
-- this may be an attempt to complete it with a private type. The
|
|
-- following avoids confusing cascaded errors.
|
|
|
|
if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
|
|
and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
|
|
then
|
|
Error_Msg_N
|
|
("incomplete type cannot be completed with a private " &
|
|
"declaration", Parent (Def_Id));
|
|
Set_Is_Immediately_Visible (E, False);
|
|
Set_Full_View (E, Def_Id);
|
|
|
|
-- An inherited component of a record conflicts with a new
|
|
-- discriminant. The discriminant is inserted first in the scope,
|
|
-- but the error should be posted on it, not on the component.
|
|
|
|
elsif Ekind (E) = E_Discriminant
|
|
and then Present (Scope (Def_Id))
|
|
and then Scope (Def_Id) /= Current_Scope
|
|
then
|
|
Error_Msg_Sloc := Sloc (Def_Id);
|
|
Error_Msg_N ("& conflicts with declaration#", E);
|
|
return;
|
|
|
|
-- If the name of the unit appears in its own context clause, a
|
|
-- dummy package with the name has already been created, and the
|
|
-- error emitted. Try to continue quietly.
|
|
|
|
elsif Error_Posted (E)
|
|
and then Sloc (E) = No_Location
|
|
and then Nkind (Parent (E)) = N_Package_Specification
|
|
and then Current_Scope = Standard_Standard
|
|
then
|
|
Set_Scope (Def_Id, Current_Scope);
|
|
return;
|
|
|
|
else
|
|
Error_Msg_N ("& conflicts with declaration#", Def_Id);
|
|
|
|
-- Avoid cascaded messages with duplicate components in
|
|
-- derived types.
|
|
|
|
if Ekind_In (E, E_Component, E_Discriminant) then
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
if Nkind (Parent (Parent (Def_Id))) =
|
|
N_Generic_Subprogram_Declaration
|
|
and then Def_Id =
|
|
Defining_Entity (Specification (Parent (Parent (Def_Id))))
|
|
then
|
|
Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
|
|
end if;
|
|
|
|
-- If entity is in standard, then we are in trouble, because it
|
|
-- means that we have a library package with a duplicated name.
|
|
-- That's hard to recover from, so abort.
|
|
|
|
if S = Standard_Standard then
|
|
raise Unrecoverable_Error;
|
|
|
|
-- Otherwise we continue with the declaration. Having two
|
|
-- identical declarations should not cause us too much trouble.
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- If we fall through, declaration is OK, at least OK enough to continue
|
|
|
|
-- If Def_Id is a discriminant or a record component we are in the midst
|
|
-- of inheriting components in a derived record definition. Preserve
|
|
-- their Ekind and Etype.
|
|
|
|
if Ekind_In (Def_Id, E_Discriminant, E_Component) then
|
|
null;
|
|
|
|
-- If a type is already set, leave it alone (happens when a type
|
|
-- declaration is reanalyzed following a call to the optimizer).
|
|
|
|
elsif Present (Etype (Def_Id)) then
|
|
null;
|
|
|
|
-- Otherwise, the kind E_Void insures that premature uses of the entity
|
|
-- will be detected. Any_Type insures that no cascaded errors will occur
|
|
|
|
else
|
|
Set_Ekind (Def_Id, E_Void);
|
|
Set_Etype (Def_Id, Any_Type);
|
|
end if;
|
|
|
|
-- Inherited discriminants and components in derived record types are
|
|
-- immediately visible. Itypes are not.
|
|
|
|
-- Unless the Itype is for a record type with a corresponding remote
|
|
-- type (what is that about, it was not commented ???)
|
|
|
|
if Ekind_In (Def_Id, E_Discriminant, E_Component)
|
|
or else
|
|
((not Is_Record_Type (Def_Id)
|
|
or else No (Corresponding_Remote_Type (Def_Id)))
|
|
and then not Is_Itype (Def_Id))
|
|
then
|
|
Set_Is_Immediately_Visible (Def_Id);
|
|
Set_Current_Entity (Def_Id);
|
|
end if;
|
|
|
|
Set_Homonym (Def_Id, C);
|
|
Append_Entity (Def_Id, S);
|
|
Set_Public_Status (Def_Id);
|
|
|
|
-- Declaring a homonym is not allowed in SPARK ...
|
|
|
|
if Present (C) and then Restriction_Check_Required (SPARK_05) then
|
|
declare
|
|
Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
|
|
Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
|
|
Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
|
|
|
|
begin
|
|
-- ... unless the new declaration is in a subprogram, and the
|
|
-- visible declaration is a variable declaration or a parameter
|
|
-- specification outside that subprogram.
|
|
|
|
if Present (Enclosing_Subp)
|
|
and then Nkind_In (Parent (C), N_Object_Declaration,
|
|
N_Parameter_Specification)
|
|
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
|
|
then
|
|
null;
|
|
|
|
-- ... or the new declaration is in a package, and the visible
|
|
-- declaration occurs outside that package.
|
|
|
|
elsif Present (Enclosing_Pack)
|
|
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
|
|
then
|
|
null;
|
|
|
|
-- ... or the new declaration is a component declaration in a
|
|
-- record type definition.
|
|
|
|
elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
|
|
null;
|
|
|
|
-- Don't issue error for non-source entities
|
|
|
|
elsif Comes_From_Source (Def_Id)
|
|
and then Comes_From_Source (C)
|
|
then
|
|
Error_Msg_Sloc := Sloc (C);
|
|
Check_SPARK_05_Restriction
|
|
("redeclaration of identifier &#", Def_Id);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Warn if new entity hides an old one
|
|
|
|
if Warn_On_Hiding and then Present (C)
|
|
|
|
-- Don't warn for record components since they always have a well
|
|
-- defined scope which does not confuse other uses. Note that in
|
|
-- some cases, Ekind has not been set yet.
|
|
|
|
and then Ekind (C) /= E_Component
|
|
and then Ekind (C) /= E_Discriminant
|
|
and then Nkind (Parent (C)) /= N_Component_Declaration
|
|
and then Ekind (Def_Id) /= E_Component
|
|
and then Ekind (Def_Id) /= E_Discriminant
|
|
and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
|
|
|
|
-- Don't warn for one character variables. It is too common to use
|
|
-- such variables as locals and will just cause too many false hits.
|
|
|
|
and then Length_Of_Name (Chars (C)) /= 1
|
|
|
|
-- Don't warn for non-source entities
|
|
|
|
and then Comes_From_Source (C)
|
|
and then Comes_From_Source (Def_Id)
|
|
|
|
-- Don't warn unless entity in question is in extended main source
|
|
|
|
and then In_Extended_Main_Source_Unit (Def_Id)
|
|
|
|
-- Finally, the hidden entity must be either immediately visible or
|
|
-- use visible (i.e. from a used package).
|
|
|
|
and then
|
|
(Is_Immediately_Visible (C)
|
|
or else
|
|
Is_Potentially_Use_Visible (C))
|
|
then
|
|
Error_Msg_Sloc := Sloc (C);
|
|
Error_Msg_N ("declaration hides &#?h?", Def_Id);
|
|
end if;
|
|
end Enter_Name;
|
|
|
|
---------------
|
|
-- Entity_Of --
|
|
---------------
|
|
|
|
function Entity_Of (N : Node_Id) return Entity_Id is
|
|
Id : Entity_Id;
|
|
|
|
begin
|
|
Id := Empty;
|
|
|
|
if Is_Entity_Name (N) then
|
|
Id := Entity (N);
|
|
|
|
-- Follow a possible chain of renamings to reach the root renamed
|
|
-- object.
|
|
|
|
while Present (Id)
|
|
and then Is_Object (Id)
|
|
and then Present (Renamed_Object (Id))
|
|
loop
|
|
if Is_Entity_Name (Renamed_Object (Id)) then
|
|
Id := Entity (Renamed_Object (Id));
|
|
else
|
|
Id := Empty;
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
return Id;
|
|
end Entity_Of;
|
|
|
|
--------------------------
|
|
-- Explain_Limited_Type --
|
|
--------------------------
|
|
|
|
procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
|
|
C : Entity_Id;
|
|
|
|
begin
|
|
-- For array, component type must be limited
|
|
|
|
if Is_Array_Type (T) then
|
|
Error_Msg_Node_2 := T;
|
|
Error_Msg_NE
|
|
("\component type& of type& is limited", N, Component_Type (T));
|
|
Explain_Limited_Type (Component_Type (T), N);
|
|
|
|
elsif Is_Record_Type (T) then
|
|
|
|
-- No need for extra messages if explicit limited record
|
|
|
|
if Is_Limited_Record (Base_Type (T)) then
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise find a limited component. Check only components that
|
|
-- come from source, or inherited components that appear in the
|
|
-- source of the ancestor.
|
|
|
|
C := First_Component (T);
|
|
while Present (C) loop
|
|
if Is_Limited_Type (Etype (C))
|
|
and then
|
|
(Comes_From_Source (C)
|
|
or else
|
|
(Present (Original_Record_Component (C))
|
|
and then
|
|
Comes_From_Source (Original_Record_Component (C))))
|
|
then
|
|
Error_Msg_Node_2 := T;
|
|
Error_Msg_NE ("\component& of type& has limited type", N, C);
|
|
Explain_Limited_Type (Etype (C), N);
|
|
return;
|
|
end if;
|
|
|
|
Next_Component (C);
|
|
end loop;
|
|
|
|
-- The type may be declared explicitly limited, even if no component
|
|
-- of it is limited, in which case we fall out of the loop.
|
|
return;
|
|
end if;
|
|
end Explain_Limited_Type;
|
|
|
|
-------------------------------
|
|
-- Extensions_Visible_Status --
|
|
-------------------------------
|
|
|
|
function Extensions_Visible_Status
|
|
(Id : Entity_Id) return Extensions_Visible_Mode
|
|
is
|
|
Arg : Node_Id;
|
|
Decl : Node_Id;
|
|
Expr : Node_Id;
|
|
Prag : Node_Id;
|
|
Subp : Entity_Id;
|
|
|
|
begin
|
|
-- When a formal parameter is subject to Extensions_Visible, the pragma
|
|
-- is stored in the contract of related subprogram.
|
|
|
|
if Is_Formal (Id) then
|
|
Subp := Scope (Id);
|
|
|
|
elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
|
|
Subp := Id;
|
|
|
|
-- No other construct carries this pragma
|
|
|
|
else
|
|
return Extensions_Visible_None;
|
|
end if;
|
|
|
|
Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
|
|
|
|
-- In certain cases analysis may request the Extensions_Visible status
|
|
-- of an expression function before the pragma has been analyzed yet.
|
|
-- Inspect the declarative items after the expression function looking
|
|
-- for the pragma (if any).
|
|
|
|
if No (Prag) and then Is_Expression_Function (Subp) then
|
|
Decl := Next (Unit_Declaration_Node (Subp));
|
|
while Present (Decl) loop
|
|
if Nkind (Decl) = N_Pragma
|
|
and then Pragma_Name (Decl) = Name_Extensions_Visible
|
|
then
|
|
Prag := Decl;
|
|
exit;
|
|
|
|
-- A source construct ends the region where Extensions_Visible may
|
|
-- appear, stop the traversal. An expanded expression function is
|
|
-- no longer a source construct, but it must still be recognized.
|
|
|
|
elsif Comes_From_Source (Decl)
|
|
or else
|
|
(Nkind_In (Decl, N_Subprogram_Body,
|
|
N_Subprogram_Declaration)
|
|
and then Is_Expression_Function (Defining_Entity (Decl)))
|
|
then
|
|
exit;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Extract the value from the Boolean expression (if any)
|
|
|
|
if Present (Prag) then
|
|
Arg := First (Pragma_Argument_Associations (Prag));
|
|
|
|
if Present (Arg) then
|
|
Expr := Get_Pragma_Arg (Arg);
|
|
|
|
-- When the associated subprogram is an expression function, the
|
|
-- argument of the pragma may not have been analyzed.
|
|
|
|
if not Analyzed (Expr) then
|
|
Preanalyze_And_Resolve (Expr, Standard_Boolean);
|
|
end if;
|
|
|
|
-- Guard against cascading errors when the argument of pragma
|
|
-- Extensions_Visible is not a valid static Boolean expression.
|
|
|
|
if Error_Posted (Expr) then
|
|
return Extensions_Visible_None;
|
|
|
|
elsif Is_True (Expr_Value (Expr)) then
|
|
return Extensions_Visible_True;
|
|
|
|
else
|
|
return Extensions_Visible_False;
|
|
end if;
|
|
|
|
-- Otherwise the aspect or pragma defaults to True
|
|
|
|
else
|
|
return Extensions_Visible_True;
|
|
end if;
|
|
|
|
-- Otherwise aspect or pragma Extensions_Visible is not inherited or
|
|
-- directly specified. In SPARK code, its value defaults to "False".
|
|
|
|
elsif SPARK_Mode = On then
|
|
return Extensions_Visible_False;
|
|
|
|
-- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
|
|
-- "True".
|
|
|
|
else
|
|
return Extensions_Visible_True;
|
|
end if;
|
|
end Extensions_Visible_Status;
|
|
|
|
-----------------
|
|
-- Find_Actual --
|
|
-----------------
|
|
|
|
procedure Find_Actual
|
|
(N : Node_Id;
|
|
Formal : out Entity_Id;
|
|
Call : out Node_Id)
|
|
is
|
|
Context : constant Node_Id := Parent (N);
|
|
Actual : Node_Id;
|
|
Call_Nam : Node_Id;
|
|
|
|
begin
|
|
if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
|
|
and then N = Prefix (Context)
|
|
then
|
|
Find_Actual (Context, Formal, Call);
|
|
return;
|
|
|
|
elsif Nkind (Context) = N_Parameter_Association
|
|
and then N = Explicit_Actual_Parameter (Context)
|
|
then
|
|
Call := Parent (Context);
|
|
|
|
elsif Nkind_In (Context, N_Entry_Call_Statement,
|
|
N_Function_Call,
|
|
N_Procedure_Call_Statement)
|
|
then
|
|
Call := Context;
|
|
|
|
else
|
|
Formal := Empty;
|
|
Call := Empty;
|
|
return;
|
|
end if;
|
|
|
|
-- If we have a call to a subprogram look for the parameter. Note that
|
|
-- we exclude overloaded calls, since we don't know enough to be sure
|
|
-- of giving the right answer in this case.
|
|
|
|
if Nkind_In (Call, N_Entry_Call_Statement,
|
|
N_Function_Call,
|
|
N_Procedure_Call_Statement)
|
|
then
|
|
Call_Nam := Name (Call);
|
|
|
|
-- A call to a protected or task entry appears as a selected
|
|
-- component rather than an expanded name.
|
|
|
|
if Nkind (Call_Nam) = N_Selected_Component then
|
|
Call_Nam := Selector_Name (Call_Nam);
|
|
end if;
|
|
|
|
if Is_Entity_Name (Call_Nam)
|
|
and then Present (Entity (Call_Nam))
|
|
and then Is_Overloadable (Entity (Call_Nam))
|
|
and then not Is_Overloaded (Call_Nam)
|
|
then
|
|
-- If node is name in call it is not an actual
|
|
|
|
if N = Call_Nam then
|
|
Formal := Empty;
|
|
Call := Empty;
|
|
return;
|
|
end if;
|
|
|
|
-- Fall here if we are definitely a parameter
|
|
|
|
Actual := First_Actual (Call);
|
|
Formal := First_Formal (Entity (Call_Nam));
|
|
while Present (Formal) and then Present (Actual) loop
|
|
if Actual = N then
|
|
return;
|
|
|
|
-- An actual that is the prefix in a prefixed call may have
|
|
-- been rewritten in the call, after the deferred reference
|
|
-- was collected. Check if sloc and kinds and names match.
|
|
|
|
elsif Sloc (Actual) = Sloc (N)
|
|
and then Nkind (Actual) = N_Identifier
|
|
and then Nkind (Actual) = Nkind (N)
|
|
and then Chars (Actual) = Chars (N)
|
|
then
|
|
return;
|
|
|
|
else
|
|
Actual := Next_Actual (Actual);
|
|
Formal := Next_Formal (Formal);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
-- Fall through here if we did not find matching actual
|
|
|
|
Formal := Empty;
|
|
Call := Empty;
|
|
end Find_Actual;
|
|
|
|
---------------------------
|
|
-- Find_Body_Discriminal --
|
|
---------------------------
|
|
|
|
function Find_Body_Discriminal
|
|
(Spec_Discriminant : Entity_Id) return Entity_Id
|
|
is
|
|
Tsk : Entity_Id;
|
|
Disc : Entity_Id;
|
|
|
|
begin
|
|
-- If expansion is suppressed, then the scope can be the concurrent type
|
|
-- itself rather than a corresponding concurrent record type.
|
|
|
|
if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
|
|
Tsk := Scope (Spec_Discriminant);
|
|
|
|
else
|
|
pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
|
|
|
|
Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
|
|
end if;
|
|
|
|
-- Find discriminant of original concurrent type, and use its current
|
|
-- discriminal, which is the renaming within the task/protected body.
|
|
|
|
Disc := First_Discriminant (Tsk);
|
|
while Present (Disc) loop
|
|
if Chars (Disc) = Chars (Spec_Discriminant) then
|
|
return Discriminal (Disc);
|
|
end if;
|
|
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
|
|
-- That loop should always succeed in finding a matching entry and
|
|
-- returning. Fatal error if not.
|
|
|
|
raise Program_Error;
|
|
end Find_Body_Discriminal;
|
|
|
|
-------------------------------------
|
|
-- Find_Corresponding_Discriminant --
|
|
-------------------------------------
|
|
|
|
function Find_Corresponding_Discriminant
|
|
(Id : Node_Id;
|
|
Typ : Entity_Id) return Entity_Id
|
|
is
|
|
Par_Disc : Entity_Id;
|
|
Old_Disc : Entity_Id;
|
|
New_Disc : Entity_Id;
|
|
|
|
begin
|
|
Par_Disc := Original_Record_Component (Original_Discriminant (Id));
|
|
|
|
-- The original type may currently be private, and the discriminant
|
|
-- only appear on its full view.
|
|
|
|
if Is_Private_Type (Scope (Par_Disc))
|
|
and then not Has_Discriminants (Scope (Par_Disc))
|
|
and then Present (Full_View (Scope (Par_Disc)))
|
|
then
|
|
Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
|
|
else
|
|
Old_Disc := First_Discriminant (Scope (Par_Disc));
|
|
end if;
|
|
|
|
if Is_Class_Wide_Type (Typ) then
|
|
New_Disc := First_Discriminant (Root_Type (Typ));
|
|
else
|
|
New_Disc := First_Discriminant (Typ);
|
|
end if;
|
|
|
|
while Present (Old_Disc) and then Present (New_Disc) loop
|
|
if Old_Disc = Par_Disc then
|
|
return New_Disc;
|
|
end if;
|
|
|
|
Next_Discriminant (Old_Disc);
|
|
Next_Discriminant (New_Disc);
|
|
end loop;
|
|
|
|
-- Should always find it
|
|
|
|
raise Program_Error;
|
|
end Find_Corresponding_Discriminant;
|
|
|
|
----------------------------------
|
|
-- Find_Enclosing_Iterator_Loop --
|
|
----------------------------------
|
|
|
|
function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
|
|
Constr : Node_Id;
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
-- Traverse the scope chain looking for an iterator loop. Such loops are
|
|
-- usually transformed into blocks, hence the use of Original_Node.
|
|
|
|
S := Id;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind (S) = E_Loop
|
|
and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
|
|
then
|
|
Constr := Original_Node (Label_Construct (Parent (S)));
|
|
|
|
if Nkind (Constr) = N_Loop_Statement
|
|
and then Present (Iteration_Scheme (Constr))
|
|
and then Nkind (Iterator_Specification
|
|
(Iteration_Scheme (Constr))) =
|
|
N_Iterator_Specification
|
|
then
|
|
return S;
|
|
end if;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Find_Enclosing_Iterator_Loop;
|
|
|
|
------------------------------------
|
|
-- Find_Loop_In_Conditional_Block --
|
|
------------------------------------
|
|
|
|
function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
|
|
Stmt : Node_Id;
|
|
|
|
begin
|
|
Stmt := N;
|
|
|
|
if Nkind (Stmt) = N_If_Statement then
|
|
Stmt := First (Then_Statements (Stmt));
|
|
end if;
|
|
|
|
pragma Assert (Nkind (Stmt) = N_Block_Statement);
|
|
|
|
-- Inspect the statements of the conditional block. In general the loop
|
|
-- should be the first statement in the statement sequence of the block,
|
|
-- but the finalization machinery may have introduced extra object
|
|
-- declarations.
|
|
|
|
Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
|
|
while Present (Stmt) loop
|
|
if Nkind (Stmt) = N_Loop_Statement then
|
|
return Stmt;
|
|
end if;
|
|
|
|
Next (Stmt);
|
|
end loop;
|
|
|
|
-- The expansion of attribute 'Loop_Entry produced a malformed block
|
|
|
|
raise Program_Error;
|
|
end Find_Loop_In_Conditional_Block;
|
|
|
|
--------------------------
|
|
-- Find_Overlaid_Entity --
|
|
--------------------------
|
|
|
|
procedure Find_Overlaid_Entity
|
|
(N : Node_Id;
|
|
Ent : out Entity_Id;
|
|
Off : out Boolean)
|
|
is
|
|
Expr : Node_Id;
|
|
|
|
begin
|
|
-- We are looking for one of the two following forms:
|
|
|
|
-- for X'Address use Y'Address
|
|
|
|
-- or
|
|
|
|
-- Const : constant Address := expr;
|
|
-- ...
|
|
-- for X'Address use Const;
|
|
|
|
-- In the second case, the expr is either Y'Address, or recursively a
|
|
-- constant that eventually references Y'Address.
|
|
|
|
Ent := Empty;
|
|
Off := False;
|
|
|
|
if Nkind (N) = N_Attribute_Definition_Clause
|
|
and then Chars (N) = Name_Address
|
|
then
|
|
Expr := Expression (N);
|
|
|
|
-- This loop checks the form of the expression for Y'Address,
|
|
-- using recursion to deal with intermediate constants.
|
|
|
|
loop
|
|
-- Check for Y'Address
|
|
|
|
if Nkind (Expr) = N_Attribute_Reference
|
|
and then Attribute_Name (Expr) = Name_Address
|
|
then
|
|
Expr := Prefix (Expr);
|
|
exit;
|
|
|
|
-- Check for Const where Const is a constant entity
|
|
|
|
elsif Is_Entity_Name (Expr)
|
|
and then Ekind (Entity (Expr)) = E_Constant
|
|
then
|
|
Expr := Constant_Value (Entity (Expr));
|
|
|
|
-- Anything else does not need checking
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
end loop;
|
|
|
|
-- This loop checks the form of the prefix for an entity, using
|
|
-- recursion to deal with intermediate components.
|
|
|
|
loop
|
|
-- Check for Y where Y is an entity
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
Ent := Entity (Expr);
|
|
return;
|
|
|
|
-- Check for components
|
|
|
|
elsif
|
|
Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
|
|
then
|
|
Expr := Prefix (Expr);
|
|
Off := True;
|
|
|
|
-- Anything else does not need checking
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
end Find_Overlaid_Entity;
|
|
|
|
-------------------------
|
|
-- Find_Parameter_Type --
|
|
-------------------------
|
|
|
|
function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
|
|
begin
|
|
if Nkind (Param) /= N_Parameter_Specification then
|
|
return Empty;
|
|
|
|
-- For an access parameter, obtain the type from the formal entity
|
|
-- itself, because access to subprogram nodes do not carry a type.
|
|
-- Shouldn't we always use the formal entity ???
|
|
|
|
elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
|
|
return Etype (Defining_Identifier (Param));
|
|
|
|
else
|
|
return Etype (Parameter_Type (Param));
|
|
end if;
|
|
end Find_Parameter_Type;
|
|
|
|
-----------------------------------
|
|
-- Find_Placement_In_State_Space --
|
|
-----------------------------------
|
|
|
|
procedure Find_Placement_In_State_Space
|
|
(Item_Id : Entity_Id;
|
|
Placement : out State_Space_Kind;
|
|
Pack_Id : out Entity_Id)
|
|
is
|
|
Context : Entity_Id;
|
|
|
|
begin
|
|
-- Assume that the item does not appear in the state space of a package
|
|
|
|
Placement := Not_In_Package;
|
|
Pack_Id := Empty;
|
|
|
|
-- Climb the scope stack and examine the enclosing context
|
|
|
|
Context := Scope (Item_Id);
|
|
while Present (Context) and then Context /= Standard_Standard loop
|
|
if Ekind (Context) = E_Package then
|
|
Pack_Id := Context;
|
|
|
|
-- A package body is a cut off point for the traversal as the item
|
|
-- cannot be visible to the outside from this point on. Note that
|
|
-- this test must be done first as a body is also classified as a
|
|
-- private part.
|
|
|
|
if In_Package_Body (Context) then
|
|
Placement := Body_State_Space;
|
|
return;
|
|
|
|
-- The private part of a package is a cut off point for the
|
|
-- traversal as the item cannot be visible to the outside from
|
|
-- this point on.
|
|
|
|
elsif In_Private_Part (Context) then
|
|
Placement := Private_State_Space;
|
|
return;
|
|
|
|
-- When the item appears in the visible state space of a package,
|
|
-- continue to climb the scope stack as this may not be the final
|
|
-- state space.
|
|
|
|
else
|
|
Placement := Visible_State_Space;
|
|
|
|
-- The visible state space of a child unit acts as the proper
|
|
-- placement of an item.
|
|
|
|
if Is_Child_Unit (Context) then
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- The item or its enclosing package appear in a construct that has
|
|
-- no state space.
|
|
|
|
else
|
|
Placement := Not_In_Package;
|
|
return;
|
|
end if;
|
|
|
|
Context := Scope (Context);
|
|
end loop;
|
|
end Find_Placement_In_State_Space;
|
|
|
|
------------------------
|
|
-- Find_Specific_Type --
|
|
------------------------
|
|
|
|
function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
|
|
Typ : Entity_Id := Root_Type (CW);
|
|
|
|
begin
|
|
if Ekind (Typ) = E_Incomplete_Type then
|
|
if From_Limited_With (Typ) then
|
|
Typ := Non_Limited_View (Typ);
|
|
else
|
|
Typ := Full_View (Typ);
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Private_Type (Typ)
|
|
and then not Is_Tagged_Type (Typ)
|
|
and then Present (Full_View (Typ))
|
|
then
|
|
return Full_View (Typ);
|
|
else
|
|
return Typ;
|
|
end if;
|
|
end Find_Specific_Type;
|
|
|
|
-----------------------------
|
|
-- Find_Static_Alternative --
|
|
-----------------------------
|
|
|
|
function Find_Static_Alternative (N : Node_Id) return Node_Id is
|
|
Expr : constant Node_Id := Expression (N);
|
|
Val : constant Uint := Expr_Value (Expr);
|
|
Alt : Node_Id;
|
|
Choice : Node_Id;
|
|
|
|
begin
|
|
Alt := First (Alternatives (N));
|
|
|
|
Search : loop
|
|
if Nkind (Alt) /= N_Pragma then
|
|
Choice := First (Discrete_Choices (Alt));
|
|
while Present (Choice) loop
|
|
|
|
-- Others choice, always matches
|
|
|
|
if Nkind (Choice) = N_Others_Choice then
|
|
exit Search;
|
|
|
|
-- Range, check if value is in the range
|
|
|
|
elsif Nkind (Choice) = N_Range then
|
|
exit Search when
|
|
Val >= Expr_Value (Low_Bound (Choice))
|
|
and then
|
|
Val <= Expr_Value (High_Bound (Choice));
|
|
|
|
-- Choice is a subtype name. Note that we know it must
|
|
-- be a static subtype, since otherwise it would have
|
|
-- been diagnosed as illegal.
|
|
|
|
elsif Is_Entity_Name (Choice)
|
|
and then Is_Type (Entity (Choice))
|
|
then
|
|
exit Search when Is_In_Range (Expr, Etype (Choice),
|
|
Assume_Valid => False);
|
|
|
|
-- Choice is a subtype indication
|
|
|
|
elsif Nkind (Choice) = N_Subtype_Indication then
|
|
declare
|
|
C : constant Node_Id := Constraint (Choice);
|
|
R : constant Node_Id := Range_Expression (C);
|
|
|
|
begin
|
|
exit Search when
|
|
Val >= Expr_Value (Low_Bound (R))
|
|
and then
|
|
Val <= Expr_Value (High_Bound (R));
|
|
end;
|
|
|
|
-- Choice is a simple expression
|
|
|
|
else
|
|
exit Search when Val = Expr_Value (Choice);
|
|
end if;
|
|
|
|
Next (Choice);
|
|
end loop;
|
|
end if;
|
|
|
|
Next (Alt);
|
|
pragma Assert (Present (Alt));
|
|
end loop Search;
|
|
|
|
-- The above loop *must* terminate by finding a match, since
|
|
-- we know the case statement is valid, and the value of the
|
|
-- expression is known at compile time. When we fall out of
|
|
-- the loop, Alt points to the alternative that we know will
|
|
-- be selected at run time.
|
|
|
|
return Alt;
|
|
end Find_Static_Alternative;
|
|
|
|
------------------
|
|
-- First_Actual --
|
|
------------------
|
|
|
|
function First_Actual (Node : Node_Id) return Node_Id is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
if No (Parameter_Associations (Node)) then
|
|
return Empty;
|
|
end if;
|
|
|
|
N := First (Parameter_Associations (Node));
|
|
|
|
if Nkind (N) = N_Parameter_Association then
|
|
return First_Named_Actual (Node);
|
|
else
|
|
return N;
|
|
end if;
|
|
end First_Actual;
|
|
|
|
-------------
|
|
-- Fix_Msg --
|
|
-------------
|
|
|
|
function Fix_Msg (Id : Entity_Id; Msg : String) return String is
|
|
Is_Task : constant Boolean :=
|
|
Ekind_In (Id, E_Task_Body, E_Task_Type)
|
|
or else Is_Single_Task_Object (Id);
|
|
Msg_Last : constant Natural := Msg'Last;
|
|
Msg_Index : Natural;
|
|
Res : String (Msg'Range) := (others => ' ');
|
|
Res_Index : Natural;
|
|
|
|
begin
|
|
-- Copy all characters from the input message Msg to result Res with
|
|
-- suitable replacements.
|
|
|
|
Msg_Index := Msg'First;
|
|
Res_Index := Res'First;
|
|
while Msg_Index <= Msg_Last loop
|
|
|
|
-- Replace "subprogram" with a different word
|
|
|
|
if Msg_Index <= Msg_Last - 10
|
|
and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
|
|
then
|
|
if Ekind_In (Id, E_Entry, E_Entry_Family) then
|
|
Res (Res_Index .. Res_Index + 4) := "entry";
|
|
Res_Index := Res_Index + 5;
|
|
|
|
elsif Is_Task then
|
|
Res (Res_Index .. Res_Index + 8) := "task type";
|
|
Res_Index := Res_Index + 9;
|
|
|
|
else
|
|
Res (Res_Index .. Res_Index + 9) := "subprogram";
|
|
Res_Index := Res_Index + 10;
|
|
end if;
|
|
|
|
Msg_Index := Msg_Index + 10;
|
|
|
|
-- Replace "protected" with a different word
|
|
|
|
elsif Msg_Index <= Msg_Last - 9
|
|
and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
|
|
and then Is_Task
|
|
then
|
|
Res (Res_Index .. Res_Index + 3) := "task";
|
|
Res_Index := Res_Index + 4;
|
|
Msg_Index := Msg_Index + 9;
|
|
|
|
-- Otherwise copy the character
|
|
|
|
else
|
|
Res (Res_Index) := Msg (Msg_Index);
|
|
Msg_Index := Msg_Index + 1;
|
|
Res_Index := Res_Index + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
return Res (Res'First .. Res_Index - 1);
|
|
end Fix_Msg;
|
|
|
|
-----------------------
|
|
-- Gather_Components --
|
|
-----------------------
|
|
|
|
procedure Gather_Components
|
|
(Typ : Entity_Id;
|
|
Comp_List : Node_Id;
|
|
Governed_By : List_Id;
|
|
Into : Elist_Id;
|
|
Report_Errors : out Boolean)
|
|
is
|
|
Assoc : Node_Id;
|
|
Variant : Node_Id;
|
|
Discrete_Choice : Node_Id;
|
|
Comp_Item : Node_Id;
|
|
|
|
Discrim : Entity_Id;
|
|
Discrim_Name : Node_Id;
|
|
Discrim_Value : Node_Id;
|
|
|
|
begin
|
|
Report_Errors := False;
|
|
|
|
if No (Comp_List) or else Null_Present (Comp_List) then
|
|
return;
|
|
|
|
elsif Present (Component_Items (Comp_List)) then
|
|
Comp_Item := First (Component_Items (Comp_List));
|
|
|
|
else
|
|
Comp_Item := Empty;
|
|
end if;
|
|
|
|
while Present (Comp_Item) loop
|
|
|
|
-- Skip the tag of a tagged record, the interface tags, as well
|
|
-- as all items that are not user components (anonymous types,
|
|
-- rep clauses, Parent field, controller field).
|
|
|
|
if Nkind (Comp_Item) = N_Component_Declaration then
|
|
declare
|
|
Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
|
|
begin
|
|
if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
|
|
Append_Elmt (Comp, Into);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next (Comp_Item);
|
|
end loop;
|
|
|
|
if No (Variant_Part (Comp_List)) then
|
|
return;
|
|
else
|
|
Discrim_Name := Name (Variant_Part (Comp_List));
|
|
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
|
|
end if;
|
|
|
|
-- Look for the discriminant that governs this variant part.
|
|
-- The discriminant *must* be in the Governed_By List
|
|
|
|
Assoc := First (Governed_By);
|
|
Find_Constraint : loop
|
|
Discrim := First (Choices (Assoc));
|
|
exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
|
|
or else (Present (Corresponding_Discriminant (Entity (Discrim)))
|
|
and then
|
|
Chars (Corresponding_Discriminant (Entity (Discrim))) =
|
|
Chars (Discrim_Name))
|
|
or else Chars (Original_Record_Component (Entity (Discrim)))
|
|
= Chars (Discrim_Name);
|
|
|
|
if No (Next (Assoc)) then
|
|
if not Is_Constrained (Typ)
|
|
and then Is_Derived_Type (Typ)
|
|
and then Present (Stored_Constraint (Typ))
|
|
then
|
|
-- If the type is a tagged type with inherited discriminants,
|
|
-- use the stored constraint on the parent in order to find
|
|
-- the values of discriminants that are otherwise hidden by an
|
|
-- explicit constraint. Renamed discriminants are handled in
|
|
-- the code above.
|
|
|
|
-- If several parent discriminants are renamed by a single
|
|
-- discriminant of the derived type, the call to obtain the
|
|
-- Corresponding_Discriminant field only retrieves the last
|
|
-- of them. We recover the constraint on the others from the
|
|
-- Stored_Constraint as well.
|
|
|
|
declare
|
|
D : Entity_Id;
|
|
C : Elmt_Id;
|
|
|
|
begin
|
|
D := First_Discriminant (Etype (Typ));
|
|
C := First_Elmt (Stored_Constraint (Typ));
|
|
while Present (D) and then Present (C) loop
|
|
if Chars (Discrim_Name) = Chars (D) then
|
|
if Is_Entity_Name (Node (C))
|
|
and then Entity (Node (C)) = Entity (Discrim)
|
|
then
|
|
-- D is renamed by Discrim, whose value is given in
|
|
-- Assoc.
|
|
|
|
null;
|
|
|
|
else
|
|
Assoc :=
|
|
Make_Component_Association (Sloc (Typ),
|
|
New_List
|
|
(New_Occurrence_Of (D, Sloc (Typ))),
|
|
Duplicate_Subexpr_No_Checks (Node (C)));
|
|
end if;
|
|
exit Find_Constraint;
|
|
end if;
|
|
|
|
Next_Discriminant (D);
|
|
Next_Elmt (C);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
if No (Next (Assoc)) then
|
|
Error_Msg_NE (" missing value for discriminant&",
|
|
First (Governed_By), Discrim_Name);
|
|
Report_Errors := True;
|
|
return;
|
|
end if;
|
|
|
|
Next (Assoc);
|
|
end loop Find_Constraint;
|
|
|
|
Discrim_Value := Expression (Assoc);
|
|
|
|
if not Is_OK_Static_Expression (Discrim_Value) then
|
|
|
|
-- If the variant part is governed by a discriminant of the type
|
|
-- this is an error. If the variant part and the discriminant are
|
|
-- inherited from an ancestor this is legal (AI05-120) unless the
|
|
-- components are being gathered for an aggregate, in which case
|
|
-- the caller must check Report_Errors.
|
|
|
|
if Scope (Original_Record_Component
|
|
((Entity (First (Choices (Assoc)))))) = Typ
|
|
then
|
|
Error_Msg_FE
|
|
("value for discriminant & must be static!",
|
|
Discrim_Value, Discrim);
|
|
Why_Not_Static (Discrim_Value);
|
|
end if;
|
|
|
|
Report_Errors := True;
|
|
return;
|
|
end if;
|
|
|
|
Search_For_Discriminant_Value : declare
|
|
Low : Node_Id;
|
|
High : Node_Id;
|
|
|
|
UI_High : Uint;
|
|
UI_Low : Uint;
|
|
UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
|
|
|
|
begin
|
|
Find_Discrete_Value : while Present (Variant) loop
|
|
Discrete_Choice := First (Discrete_Choices (Variant));
|
|
while Present (Discrete_Choice) loop
|
|
exit Find_Discrete_Value when
|
|
Nkind (Discrete_Choice) = N_Others_Choice;
|
|
|
|
Get_Index_Bounds (Discrete_Choice, Low, High);
|
|
|
|
UI_Low := Expr_Value (Low);
|
|
UI_High := Expr_Value (High);
|
|
|
|
exit Find_Discrete_Value when
|
|
UI_Low <= UI_Discrim_Value
|
|
and then
|
|
UI_High >= UI_Discrim_Value;
|
|
|
|
Next (Discrete_Choice);
|
|
end loop;
|
|
|
|
Next_Non_Pragma (Variant);
|
|
end loop Find_Discrete_Value;
|
|
end Search_For_Discriminant_Value;
|
|
|
|
if No (Variant) then
|
|
Error_Msg_NE
|
|
("value of discriminant & is out of range", Discrim_Value, Discrim);
|
|
Report_Errors := True;
|
|
return;
|
|
end if;
|
|
|
|
-- If we have found the corresponding choice, recursively add its
|
|
-- components to the Into list. The nested components are part of
|
|
-- the same record type.
|
|
|
|
Gather_Components
|
|
(Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
|
|
end Gather_Components;
|
|
|
|
------------------------
|
|
-- Get_Actual_Subtype --
|
|
------------------------
|
|
|
|
function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
|
|
Typ : constant Entity_Id := Etype (N);
|
|
Utyp : Entity_Id := Underlying_Type (Typ);
|
|
Decl : Node_Id;
|
|
Atyp : Entity_Id;
|
|
|
|
begin
|
|
if No (Utyp) then
|
|
Utyp := Typ;
|
|
end if;
|
|
|
|
-- If what we have is an identifier that references a subprogram
|
|
-- formal, or a variable or constant object, then we get the actual
|
|
-- subtype from the referenced entity if one has been built.
|
|
|
|
if Nkind (N) = N_Identifier
|
|
and then
|
|
(Is_Formal (Entity (N))
|
|
or else Ekind (Entity (N)) = E_Constant
|
|
or else Ekind (Entity (N)) = E_Variable)
|
|
and then Present (Actual_Subtype (Entity (N)))
|
|
then
|
|
return Actual_Subtype (Entity (N));
|
|
|
|
-- Actual subtype of unchecked union is always itself. We never need
|
|
-- the "real" actual subtype. If we did, we couldn't get it anyway
|
|
-- because the discriminant is not available. The restrictions on
|
|
-- Unchecked_Union are designed to make sure that this is OK.
|
|
|
|
elsif Is_Unchecked_Union (Base_Type (Utyp)) then
|
|
return Typ;
|
|
|
|
-- Here for the unconstrained case, we must find actual subtype
|
|
-- No actual subtype is available, so we must build it on the fly.
|
|
|
|
-- Checking the type, not the underlying type, for constrainedness
|
|
-- seems to be necessary. Maybe all the tests should be on the type???
|
|
|
|
elsif (not Is_Constrained (Typ))
|
|
and then (Is_Array_Type (Utyp)
|
|
or else (Is_Record_Type (Utyp)
|
|
and then Has_Discriminants (Utyp)))
|
|
and then not Has_Unknown_Discriminants (Utyp)
|
|
and then not (Ekind (Utyp) = E_String_Literal_Subtype)
|
|
then
|
|
-- Nothing to do if in spec expression (why not???)
|
|
|
|
if In_Spec_Expression then
|
|
return Typ;
|
|
|
|
elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
|
|
|
|
-- If the type has no discriminants, there is no subtype to
|
|
-- build, even if the underlying type is discriminated.
|
|
|
|
return Typ;
|
|
|
|
-- Else build the actual subtype
|
|
|
|
else
|
|
Decl := Build_Actual_Subtype (Typ, N);
|
|
Atyp := Defining_Identifier (Decl);
|
|
|
|
-- If Build_Actual_Subtype generated a new declaration then use it
|
|
|
|
if Atyp /= Typ then
|
|
|
|
-- The actual subtype is an Itype, so analyze the declaration,
|
|
-- but do not attach it to the tree, to get the type defined.
|
|
|
|
Set_Parent (Decl, N);
|
|
Set_Is_Itype (Atyp);
|
|
Analyze (Decl, Suppress => All_Checks);
|
|
Set_Associated_Node_For_Itype (Atyp, N);
|
|
Set_Has_Delayed_Freeze (Atyp, False);
|
|
|
|
-- We need to freeze the actual subtype immediately. This is
|
|
-- needed, because otherwise this Itype will not get frozen
|
|
-- at all, and it is always safe to freeze on creation because
|
|
-- any associated types must be frozen at this point.
|
|
|
|
Freeze_Itype (Atyp, N);
|
|
return Atyp;
|
|
|
|
-- Otherwise we did not build a declaration, so return original
|
|
|
|
else
|
|
return Typ;
|
|
end if;
|
|
end if;
|
|
|
|
-- For all remaining cases, the actual subtype is the same as
|
|
-- the nominal type.
|
|
|
|
else
|
|
return Typ;
|
|
end if;
|
|
end Get_Actual_Subtype;
|
|
|
|
-------------------------------------
|
|
-- Get_Actual_Subtype_If_Available --
|
|
-------------------------------------
|
|
|
|
function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
|
|
Typ : constant Entity_Id := Etype (N);
|
|
|
|
begin
|
|
-- If what we have is an identifier that references a subprogram
|
|
-- formal, or a variable or constant object, then we get the actual
|
|
-- subtype from the referenced entity if one has been built.
|
|
|
|
if Nkind (N) = N_Identifier
|
|
and then
|
|
(Is_Formal (Entity (N))
|
|
or else Ekind (Entity (N)) = E_Constant
|
|
or else Ekind (Entity (N)) = E_Variable)
|
|
and then Present (Actual_Subtype (Entity (N)))
|
|
then
|
|
return Actual_Subtype (Entity (N));
|
|
|
|
-- Otherwise the Etype of N is returned unchanged
|
|
|
|
else
|
|
return Typ;
|
|
end if;
|
|
end Get_Actual_Subtype_If_Available;
|
|
|
|
------------------------
|
|
-- Get_Body_From_Stub --
|
|
------------------------
|
|
|
|
function Get_Body_From_Stub (N : Node_Id) return Node_Id is
|
|
begin
|
|
return Proper_Body (Unit (Library_Unit (N)));
|
|
end Get_Body_From_Stub;
|
|
|
|
---------------------
|
|
-- Get_Cursor_Type --
|
|
---------------------
|
|
|
|
function Get_Cursor_Type
|
|
(Aspect : Node_Id;
|
|
Typ : Entity_Id) return Entity_Id
|
|
is
|
|
Assoc : Node_Id;
|
|
Func : Entity_Id;
|
|
First_Op : Entity_Id;
|
|
Cursor : Entity_Id;
|
|
|
|
begin
|
|
-- If error already detected, return
|
|
|
|
if Error_Posted (Aspect) then
|
|
return Any_Type;
|
|
end if;
|
|
|
|
-- The cursor type for an Iterable aspect is the return type of a
|
|
-- non-overloaded First primitive operation. Locate association for
|
|
-- First.
|
|
|
|
Assoc := First (Component_Associations (Expression (Aspect)));
|
|
First_Op := Any_Id;
|
|
while Present (Assoc) loop
|
|
if Chars (First (Choices (Assoc))) = Name_First then
|
|
First_Op := Expression (Assoc);
|
|
exit;
|
|
end if;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
|
|
if First_Op = Any_Id then
|
|
Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
|
|
return Any_Type;
|
|
end if;
|
|
|
|
Cursor := Any_Type;
|
|
|
|
-- Locate function with desired name and profile in scope of type
|
|
-- In the rare case where the type is an integer type, a base type
|
|
-- is created for it, check that the base type of the first formal
|
|
-- of First matches the base type of the domain.
|
|
|
|
Func := First_Entity (Scope (Typ));
|
|
while Present (Func) loop
|
|
if Chars (Func) = Chars (First_Op)
|
|
and then Ekind (Func) = E_Function
|
|
and then Present (First_Formal (Func))
|
|
and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
|
|
and then No (Next_Formal (First_Formal (Func)))
|
|
then
|
|
if Cursor /= Any_Type then
|
|
Error_Msg_N
|
|
("Operation First for iterable type must be unique", Aspect);
|
|
return Any_Type;
|
|
else
|
|
Cursor := Etype (Func);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Func);
|
|
end loop;
|
|
|
|
-- If not found, no way to resolve remaining primitives.
|
|
|
|
if Cursor = Any_Type then
|
|
Error_Msg_N
|
|
("No legal primitive operation First for Iterable type", Aspect);
|
|
end if;
|
|
|
|
return Cursor;
|
|
end Get_Cursor_Type;
|
|
|
|
function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
|
|
begin
|
|
return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
|
|
end Get_Cursor_Type;
|
|
|
|
-------------------------------
|
|
-- Get_Default_External_Name --
|
|
-------------------------------
|
|
|
|
function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
|
|
begin
|
|
Get_Decoded_Name_String (Chars (E));
|
|
|
|
if Opt.External_Name_Imp_Casing = Uppercase then
|
|
Set_Casing (All_Upper_Case);
|
|
else
|
|
Set_Casing (All_Lower_Case);
|
|
end if;
|
|
|
|
return
|
|
Make_String_Literal (Sloc (E),
|
|
Strval => String_From_Name_Buffer);
|
|
end Get_Default_External_Name;
|
|
|
|
--------------------------
|
|
-- Get_Enclosing_Object --
|
|
--------------------------
|
|
|
|
function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
|
|
begin
|
|
if Is_Entity_Name (N) then
|
|
return Entity (N);
|
|
else
|
|
case Nkind (N) is
|
|
when N_Indexed_Component |
|
|
N_Slice |
|
|
N_Selected_Component =>
|
|
|
|
-- If not generating code, a dereference may be left implicit.
|
|
-- In thoses cases, return Empty.
|
|
|
|
if Is_Access_Type (Etype (Prefix (N))) then
|
|
return Empty;
|
|
else
|
|
return Get_Enclosing_Object (Prefix (N));
|
|
end if;
|
|
|
|
when N_Type_Conversion =>
|
|
return Get_Enclosing_Object (Expression (N));
|
|
|
|
when others =>
|
|
return Empty;
|
|
end case;
|
|
end if;
|
|
end Get_Enclosing_Object;
|
|
|
|
---------------------------
|
|
-- Get_Enum_Lit_From_Pos --
|
|
---------------------------
|
|
|
|
function Get_Enum_Lit_From_Pos
|
|
(T : Entity_Id;
|
|
Pos : Uint;
|
|
Loc : Source_Ptr) return Node_Id
|
|
is
|
|
Btyp : Entity_Id := Base_Type (T);
|
|
Lit : Node_Id;
|
|
|
|
begin
|
|
-- In the case where the literal is of type Character, Wide_Character
|
|
-- or Wide_Wide_Character or of a type derived from them, there needs
|
|
-- to be some special handling since there is no explicit chain of
|
|
-- literals to search. Instead, an N_Character_Literal node is created
|
|
-- with the appropriate Char_Code and Chars fields.
|
|
|
|
if Is_Standard_Character_Type (T) then
|
|
Set_Character_Literal_Name (UI_To_CC (Pos));
|
|
return
|
|
Make_Character_Literal (Loc,
|
|
Chars => Name_Find,
|
|
Char_Literal_Value => Pos);
|
|
|
|
-- For all other cases, we have a complete table of literals, and
|
|
-- we simply iterate through the chain of literal until the one
|
|
-- with the desired position value is found.
|
|
|
|
else
|
|
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
|
|
Btyp := Full_View (Btyp);
|
|
end if;
|
|
|
|
Lit := First_Literal (Btyp);
|
|
for J in 1 .. UI_To_Int (Pos) loop
|
|
Next_Literal (Lit);
|
|
end loop;
|
|
|
|
return New_Occurrence_Of (Lit, Loc);
|
|
end if;
|
|
end Get_Enum_Lit_From_Pos;
|
|
|
|
------------------------
|
|
-- Get_Generic_Entity --
|
|
------------------------
|
|
|
|
function Get_Generic_Entity (N : Node_Id) return Entity_Id is
|
|
Ent : constant Entity_Id := Entity (Name (N));
|
|
begin
|
|
if Present (Renamed_Object (Ent)) then
|
|
return Renamed_Object (Ent);
|
|
else
|
|
return Ent;
|
|
end if;
|
|
end Get_Generic_Entity;
|
|
|
|
-------------------------------------
|
|
-- Get_Incomplete_View_Of_Ancestor --
|
|
-------------------------------------
|
|
|
|
function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
|
|
Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
|
|
Par_Scope : Entity_Id;
|
|
Par_Type : Entity_Id;
|
|
|
|
begin
|
|
-- The incomplete view of an ancestor is only relevant for private
|
|
-- derived types in child units.
|
|
|
|
if not Is_Derived_Type (E)
|
|
or else not Is_Child_Unit (Cur_Unit)
|
|
then
|
|
return Empty;
|
|
|
|
else
|
|
Par_Scope := Scope (Cur_Unit);
|
|
if No (Par_Scope) then
|
|
return Empty;
|
|
end if;
|
|
|
|
Par_Type := Etype (Base_Type (E));
|
|
|
|
-- Traverse list of ancestor types until we find one declared in
|
|
-- a parent or grandparent unit (two levels seem sufficient).
|
|
|
|
while Present (Par_Type) loop
|
|
if Scope (Par_Type) = Par_Scope
|
|
or else Scope (Par_Type) = Scope (Par_Scope)
|
|
then
|
|
return Par_Type;
|
|
|
|
elsif not Is_Derived_Type (Par_Type) then
|
|
return Empty;
|
|
|
|
else
|
|
Par_Type := Etype (Base_Type (Par_Type));
|
|
end if;
|
|
end loop;
|
|
|
|
-- If none found, there is no relevant ancestor type.
|
|
|
|
return Empty;
|
|
end if;
|
|
end Get_Incomplete_View_Of_Ancestor;
|
|
|
|
----------------------
|
|
-- Get_Index_Bounds --
|
|
----------------------
|
|
|
|
procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
|
|
Kind : constant Node_Kind := Nkind (N);
|
|
R : Node_Id;
|
|
|
|
begin
|
|
if Kind = N_Range then
|
|
L := Low_Bound (N);
|
|
H := High_Bound (N);
|
|
|
|
elsif Kind = N_Subtype_Indication then
|
|
R := Range_Expression (Constraint (N));
|
|
|
|
if R = Error then
|
|
L := Error;
|
|
H := Error;
|
|
return;
|
|
|
|
else
|
|
L := Low_Bound (Range_Expression (Constraint (N)));
|
|
H := High_Bound (Range_Expression (Constraint (N)));
|
|
end if;
|
|
|
|
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
|
|
if Error_Posted (Scalar_Range (Entity (N))) then
|
|
L := Error;
|
|
H := Error;
|
|
|
|
elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
|
|
Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
|
|
|
|
else
|
|
L := Low_Bound (Scalar_Range (Entity (N)));
|
|
H := High_Bound (Scalar_Range (Entity (N)));
|
|
end if;
|
|
|
|
else
|
|
-- N is an expression, indicating a range with one value
|
|
|
|
L := N;
|
|
H := N;
|
|
end if;
|
|
end Get_Index_Bounds;
|
|
|
|
---------------------------------
|
|
-- Get_Iterable_Type_Primitive --
|
|
---------------------------------
|
|
|
|
function Get_Iterable_Type_Primitive
|
|
(Typ : Entity_Id;
|
|
Nam : Name_Id) return Entity_Id
|
|
is
|
|
Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
|
|
Assoc : Node_Id;
|
|
|
|
begin
|
|
if No (Funcs) then
|
|
return Empty;
|
|
|
|
else
|
|
Assoc := First (Component_Associations (Funcs));
|
|
while Present (Assoc) loop
|
|
if Chars (First (Choices (Assoc))) = Nam then
|
|
return Entity (Expression (Assoc));
|
|
end if;
|
|
|
|
Assoc := Next (Assoc);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end if;
|
|
end Get_Iterable_Type_Primitive;
|
|
|
|
----------------------------------
|
|
-- Get_Library_Unit_Name_string --
|
|
----------------------------------
|
|
|
|
procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
|
|
Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
|
|
|
|
begin
|
|
Get_Unit_Name_String (Unit_Name_Id);
|
|
|
|
-- Remove seven last character (" (spec)" or " (body)")
|
|
|
|
Name_Len := Name_Len - 7;
|
|
pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
|
|
end Get_Library_Unit_Name_String;
|
|
|
|
--------------------------
|
|
-- Get_Max_Queue_Length --
|
|
--------------------------
|
|
|
|
function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
|
|
Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
|
|
|
|
begin
|
|
-- A value of 0 represents no maximum specified and entries and entry
|
|
-- families with no Max_Queue_Length aspect or pragma defaults to it.
|
|
|
|
if not Has_Max_Queue_Length (Id) or else not Present (Prag) then
|
|
return Uint_0;
|
|
end if;
|
|
|
|
return Intval (Expression (First (Pragma_Argument_Associations (Prag))));
|
|
end Get_Max_Queue_Length;
|
|
|
|
------------------------
|
|
-- Get_Name_Entity_Id --
|
|
------------------------
|
|
|
|
function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
|
|
begin
|
|
return Entity_Id (Get_Name_Table_Int (Id));
|
|
end Get_Name_Entity_Id;
|
|
|
|
------------------------------
|
|
-- Get_Name_From_CTC_Pragma --
|
|
------------------------------
|
|
|
|
function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
|
|
Arg : constant Node_Id :=
|
|
Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
|
|
begin
|
|
return Strval (Expr_Value_S (Arg));
|
|
end Get_Name_From_CTC_Pragma;
|
|
|
|
-----------------------
|
|
-- Get_Parent_Entity --
|
|
-----------------------
|
|
|
|
function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
|
|
begin
|
|
if Nkind (Unit) = N_Package_Body
|
|
and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
|
|
then
|
|
return Defining_Entity
|
|
(Specification (Instance_Spec (Original_Node (Unit))));
|
|
elsif Nkind (Unit) = N_Package_Instantiation then
|
|
return Defining_Entity (Specification (Instance_Spec (Unit)));
|
|
else
|
|
return Defining_Entity (Unit);
|
|
end if;
|
|
end Get_Parent_Entity;
|
|
|
|
-------------------
|
|
-- Get_Pragma_Id --
|
|
-------------------
|
|
|
|
function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
|
|
begin
|
|
return Get_Pragma_Id (Pragma_Name (N));
|
|
end Get_Pragma_Id;
|
|
|
|
------------------------
|
|
-- Get_Qualified_Name --
|
|
------------------------
|
|
|
|
function Get_Qualified_Name
|
|
(Id : Entity_Id;
|
|
Suffix : Entity_Id := Empty) return Name_Id
|
|
is
|
|
Suffix_Nam : Name_Id := No_Name;
|
|
|
|
begin
|
|
if Present (Suffix) then
|
|
Suffix_Nam := Chars (Suffix);
|
|
end if;
|
|
|
|
return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
|
|
end Get_Qualified_Name;
|
|
|
|
function Get_Qualified_Name
|
|
(Nam : Name_Id;
|
|
Suffix : Name_Id := No_Name;
|
|
Scop : Entity_Id := Current_Scope) return Name_Id
|
|
is
|
|
procedure Add_Scope (S : Entity_Id);
|
|
-- Add the fully qualified form of scope S to the name buffer. The
|
|
-- format is:
|
|
-- s-1__s__
|
|
|
|
---------------
|
|
-- Add_Scope --
|
|
---------------
|
|
|
|
procedure Add_Scope (S : Entity_Id) is
|
|
begin
|
|
if S = Empty then
|
|
null;
|
|
|
|
elsif S = Standard_Standard then
|
|
null;
|
|
|
|
else
|
|
Add_Scope (Scope (S));
|
|
Get_Name_String_And_Append (Chars (S));
|
|
Add_Str_To_Name_Buffer ("__");
|
|
end if;
|
|
end Add_Scope;
|
|
|
|
-- Start of processing for Get_Qualified_Name
|
|
|
|
begin
|
|
Name_Len := 0;
|
|
Add_Scope (Scop);
|
|
|
|
-- Append the base name after all scopes have been chained
|
|
|
|
Get_Name_String_And_Append (Nam);
|
|
|
|
-- Append the suffix (if present)
|
|
|
|
if Suffix /= No_Name then
|
|
Add_Str_To_Name_Buffer ("__");
|
|
Get_Name_String_And_Append (Suffix);
|
|
end if;
|
|
|
|
return Name_Find;
|
|
end Get_Qualified_Name;
|
|
|
|
-----------------------
|
|
-- Get_Reason_String --
|
|
-----------------------
|
|
|
|
procedure Get_Reason_String (N : Node_Id) is
|
|
begin
|
|
if Nkind (N) = N_String_Literal then
|
|
Store_String_Chars (Strval (N));
|
|
|
|
elsif Nkind (N) = N_Op_Concat then
|
|
Get_Reason_String (Left_Opnd (N));
|
|
Get_Reason_String (Right_Opnd (N));
|
|
|
|
-- If not of required form, error
|
|
|
|
else
|
|
Error_Msg_N
|
|
("Reason for pragma Warnings has wrong form", N);
|
|
Error_Msg_N
|
|
("\must be string literal or concatenation of string literals", N);
|
|
return;
|
|
end if;
|
|
end Get_Reason_String;
|
|
|
|
--------------------------------
|
|
-- Get_Reference_Discriminant --
|
|
--------------------------------
|
|
|
|
function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
|
|
D : Entity_Id;
|
|
|
|
begin
|
|
D := First_Discriminant (Typ);
|
|
while Present (D) loop
|
|
if Has_Implicit_Dereference (D) then
|
|
return D;
|
|
end if;
|
|
Next_Discriminant (D);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Get_Reference_Discriminant;
|
|
|
|
---------------------------
|
|
-- Get_Referenced_Object --
|
|
---------------------------
|
|
|
|
function Get_Referenced_Object (N : Node_Id) return Node_Id is
|
|
R : Node_Id;
|
|
|
|
begin
|
|
R := N;
|
|
while Is_Entity_Name (R)
|
|
and then Present (Renamed_Object (Entity (R)))
|
|
loop
|
|
R := Renamed_Object (Entity (R));
|
|
end loop;
|
|
|
|
return R;
|
|
end Get_Referenced_Object;
|
|
|
|
------------------------
|
|
-- Get_Renamed_Entity --
|
|
------------------------
|
|
|
|
function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
|
|
R : Entity_Id;
|
|
|
|
begin
|
|
R := E;
|
|
while Present (Renamed_Entity (R)) loop
|
|
R := Renamed_Entity (R);
|
|
end loop;
|
|
|
|
return R;
|
|
end Get_Renamed_Entity;
|
|
|
|
-----------------------
|
|
-- Get_Return_Object --
|
|
-----------------------
|
|
|
|
function Get_Return_Object (N : Node_Id) return Entity_Id is
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
Decl := First (Return_Object_Declarations (N));
|
|
while Present (Decl) loop
|
|
exit when Nkind (Decl) = N_Object_Declaration
|
|
and then Is_Return_Object (Defining_Identifier (Decl));
|
|
Next (Decl);
|
|
end loop;
|
|
|
|
pragma Assert (Present (Decl));
|
|
return Defining_Identifier (Decl);
|
|
end Get_Return_Object;
|
|
|
|
---------------------------
|
|
-- Get_Subprogram_Entity --
|
|
---------------------------
|
|
|
|
function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
|
|
Subp : Node_Id;
|
|
Subp_Id : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Nod) = N_Accept_Statement then
|
|
Subp := Entry_Direct_Name (Nod);
|
|
|
|
elsif Nkind (Nod) = N_Slice then
|
|
Subp := Prefix (Nod);
|
|
|
|
else
|
|
Subp := Name (Nod);
|
|
end if;
|
|
|
|
-- Strip the subprogram call
|
|
|
|
loop
|
|
if Nkind_In (Subp, N_Explicit_Dereference,
|
|
N_Indexed_Component,
|
|
N_Selected_Component)
|
|
then
|
|
Subp := Prefix (Subp);
|
|
|
|
elsif Nkind_In (Subp, N_Type_Conversion,
|
|
N_Unchecked_Type_Conversion)
|
|
then
|
|
Subp := Expression (Subp);
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Extract the entity of the subprogram call
|
|
|
|
if Is_Entity_Name (Subp) then
|
|
Subp_Id := Entity (Subp);
|
|
|
|
if Ekind (Subp_Id) = E_Access_Subprogram_Type then
|
|
Subp_Id := Directly_Designated_Type (Subp_Id);
|
|
end if;
|
|
|
|
if Is_Subprogram (Subp_Id) then
|
|
return Subp_Id;
|
|
else
|
|
return Empty;
|
|
end if;
|
|
|
|
-- The search did not find a construct that denotes a subprogram
|
|
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end Get_Subprogram_Entity;
|
|
|
|
-----------------------------
|
|
-- Get_Task_Body_Procedure --
|
|
-----------------------------
|
|
|
|
function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
|
|
begin
|
|
-- Note: A task type may be the completion of a private type with
|
|
-- discriminants. When performing elaboration checks on a task
|
|
-- declaration, the current view of the type may be the private one,
|
|
-- and the procedure that holds the body of the task is held in its
|
|
-- underlying type.
|
|
|
|
-- This is an odd function, why not have Task_Body_Procedure do
|
|
-- the following digging???
|
|
|
|
return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
|
|
end Get_Task_Body_Procedure;
|
|
|
|
-------------------------
|
|
-- Get_User_Defined_Eq --
|
|
-------------------------
|
|
|
|
function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
|
|
Prim : Elmt_Id;
|
|
Op : Entity_Id;
|
|
|
|
begin
|
|
Prim := First_Elmt (Collect_Primitive_Operations (E));
|
|
while Present (Prim) loop
|
|
Op := Node (Prim);
|
|
|
|
if Chars (Op) = Name_Op_Eq
|
|
and then Etype (Op) = Standard_Boolean
|
|
and then Etype (First_Formal (Op)) = E
|
|
and then Etype (Next_Formal (First_Formal (Op))) = E
|
|
then
|
|
return Op;
|
|
end if;
|
|
|
|
Next_Elmt (Prim);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Get_User_Defined_Eq;
|
|
|
|
---------------
|
|
-- Get_Views --
|
|
---------------
|
|
|
|
procedure Get_Views
|
|
(Typ : Entity_Id;
|
|
Priv_Typ : out Entity_Id;
|
|
Full_Typ : out Entity_Id;
|
|
Full_Base : out Entity_Id;
|
|
CRec_Typ : out Entity_Id)
|
|
is
|
|
begin
|
|
-- Assume that none of the views can be recovered
|
|
|
|
Priv_Typ := Empty;
|
|
Full_Typ := Empty;
|
|
Full_Base := Empty;
|
|
CRec_Typ := Empty;
|
|
|
|
-- The input type is private
|
|
|
|
if Is_Private_Type (Typ) then
|
|
Priv_Typ := Typ;
|
|
Full_Typ := Full_View (Priv_Typ);
|
|
|
|
if Present (Full_Typ) then
|
|
Full_Base := Base_Type (Full_Typ);
|
|
|
|
if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
|
|
CRec_Typ := Corresponding_Record_Type (Full_Typ);
|
|
end if;
|
|
end if;
|
|
|
|
-- The input type is the corresponding record type of a protected or a
|
|
-- task type.
|
|
|
|
elsif Ekind (Typ) = E_Record_Type
|
|
and then Is_Concurrent_Record_Type (Typ)
|
|
then
|
|
CRec_Typ := Typ;
|
|
Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
|
|
Full_Base := Base_Type (Full_Typ);
|
|
Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
|
|
|
|
-- Otherwise the input type could be the full view of a private type
|
|
|
|
else
|
|
Full_Typ := Typ;
|
|
Full_Base := Base_Type (Full_Typ);
|
|
|
|
if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
|
|
CRec_Typ := Corresponding_Record_Type (Full_Typ);
|
|
end if;
|
|
|
|
-- The type is the full view of a private type, obtain the partial
|
|
-- view.
|
|
|
|
if Has_Private_Declaration (Full_Typ)
|
|
and then not Is_Private_Type (Full_Typ)
|
|
then
|
|
Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
|
|
|
|
-- The full view of a private type should always have a partial
|
|
-- view.
|
|
|
|
pragma Assert (Present (Priv_Typ));
|
|
end if;
|
|
end if;
|
|
end Get_Views;
|
|
|
|
-----------------------
|
|
-- Has_Access_Values --
|
|
-----------------------
|
|
|
|
function Has_Access_Values (T : Entity_Id) return Boolean is
|
|
Typ : constant Entity_Id := Underlying_Type (T);
|
|
|
|
begin
|
|
-- Case of a private type which is not completed yet. This can only
|
|
-- happen in the case of a generic format type appearing directly, or
|
|
-- as a component of the type to which this function is being applied
|
|
-- at the top level. Return False in this case, since we certainly do
|
|
-- not know that the type contains access types.
|
|
|
|
if No (Typ) then
|
|
return False;
|
|
|
|
elsif Is_Access_Type (Typ) then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
return Has_Access_Values (Component_Type (Typ));
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
declare
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
-- Loop to Check components
|
|
|
|
Comp := First_Component_Or_Discriminant (Typ);
|
|
while Present (Comp) loop
|
|
|
|
-- Check for access component, tag field does not count, even
|
|
-- though it is implemented internally using an access type.
|
|
|
|
if Has_Access_Values (Etype (Comp))
|
|
and then Chars (Comp) /= Name_uTag
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
end;
|
|
|
|
return False;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Access_Values;
|
|
|
|
------------------------------
|
|
-- Has_Compatible_Alignment --
|
|
------------------------------
|
|
|
|
function Has_Compatible_Alignment
|
|
(Obj : Entity_Id;
|
|
Expr : Node_Id;
|
|
Layout_Done : Boolean) return Alignment_Result
|
|
is
|
|
function Has_Compatible_Alignment_Internal
|
|
(Obj : Entity_Id;
|
|
Expr : Node_Id;
|
|
Layout_Done : Boolean;
|
|
Default : Alignment_Result) return Alignment_Result;
|
|
-- This is the internal recursive function that actually does the work.
|
|
-- There is one additional parameter, which says what the result should
|
|
-- be if no alignment information is found, and there is no definite
|
|
-- indication of compatible alignments. At the outer level, this is set
|
|
-- to Unknown, but for internal recursive calls in the case where types
|
|
-- are known to be correct, it is set to Known_Compatible.
|
|
|
|
---------------------------------------
|
|
-- Has_Compatible_Alignment_Internal --
|
|
---------------------------------------
|
|
|
|
function Has_Compatible_Alignment_Internal
|
|
(Obj : Entity_Id;
|
|
Expr : Node_Id;
|
|
Layout_Done : Boolean;
|
|
Default : Alignment_Result) return Alignment_Result
|
|
is
|
|
Result : Alignment_Result := Known_Compatible;
|
|
-- Holds the current status of the result. Note that once a value of
|
|
-- Known_Incompatible is set, it is sticky and does not get changed
|
|
-- to Unknown (the value in Result only gets worse as we go along,
|
|
-- never better).
|
|
|
|
Offs : Uint := No_Uint;
|
|
-- Set to a factor of the offset from the base object when Expr is a
|
|
-- selected or indexed component, based on Component_Bit_Offset and
|
|
-- Component_Size respectively. A negative value is used to represent
|
|
-- a value which is not known at compile time.
|
|
|
|
procedure Check_Prefix;
|
|
-- Checks the prefix recursively in the case where the expression
|
|
-- is an indexed or selected component.
|
|
|
|
procedure Set_Result (R : Alignment_Result);
|
|
-- If R represents a worse outcome (unknown instead of known
|
|
-- compatible, or known incompatible), then set Result to R.
|
|
|
|
------------------
|
|
-- Check_Prefix --
|
|
------------------
|
|
|
|
procedure Check_Prefix is
|
|
begin
|
|
-- The subtlety here is that in doing a recursive call to check
|
|
-- the prefix, we have to decide what to do in the case where we
|
|
-- don't find any specific indication of an alignment problem.
|
|
|
|
-- At the outer level, we normally set Unknown as the result in
|
|
-- this case, since we can only set Known_Compatible if we really
|
|
-- know that the alignment value is OK, but for the recursive
|
|
-- call, in the case where the types match, and we have not
|
|
-- specified a peculiar alignment for the object, we are only
|
|
-- concerned about suspicious rep clauses, the default case does
|
|
-- not affect us, since the compiler will, in the absence of such
|
|
-- rep clauses, ensure that the alignment is correct.
|
|
|
|
if Default = Known_Compatible
|
|
or else
|
|
(Etype (Obj) = Etype (Expr)
|
|
and then (Unknown_Alignment (Obj)
|
|
or else
|
|
Alignment (Obj) = Alignment (Etype (Obj))))
|
|
then
|
|
Set_Result
|
|
(Has_Compatible_Alignment_Internal
|
|
(Obj, Prefix (Expr), Layout_Done, Known_Compatible));
|
|
|
|
-- In all other cases, we need a full check on the prefix
|
|
|
|
else
|
|
Set_Result
|
|
(Has_Compatible_Alignment_Internal
|
|
(Obj, Prefix (Expr), Layout_Done, Unknown));
|
|
end if;
|
|
end Check_Prefix;
|
|
|
|
----------------
|
|
-- Set_Result --
|
|
----------------
|
|
|
|
procedure Set_Result (R : Alignment_Result) is
|
|
begin
|
|
if R > Result then
|
|
Result := R;
|
|
end if;
|
|
end Set_Result;
|
|
|
|
-- Start of processing for Has_Compatible_Alignment_Internal
|
|
|
|
begin
|
|
-- If Expr is a selected component, we must make sure there is no
|
|
-- potentially troublesome component clause and that the record is
|
|
-- not packed if the layout is not done.
|
|
|
|
if Nkind (Expr) = N_Selected_Component then
|
|
|
|
-- Packing generates unknown alignment if layout is not done
|
|
|
|
if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
|
|
Set_Result (Unknown);
|
|
end if;
|
|
|
|
-- Check prefix and component offset
|
|
|
|
Check_Prefix;
|
|
Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
|
|
|
|
-- If Expr is an indexed component, we must make sure there is no
|
|
-- potentially troublesome Component_Size clause and that the array
|
|
-- is not bit-packed if the layout is not done.
|
|
|
|
elsif Nkind (Expr) = N_Indexed_Component then
|
|
declare
|
|
Typ : constant Entity_Id := Etype (Prefix (Expr));
|
|
|
|
begin
|
|
-- Packing generates unknown alignment if layout is not done
|
|
|
|
if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
|
|
Set_Result (Unknown);
|
|
end if;
|
|
|
|
-- Check prefix and component offset (or at least size)
|
|
|
|
Check_Prefix;
|
|
Offs := Indexed_Component_Bit_Offset (Expr);
|
|
if Offs = No_Uint then
|
|
Offs := Component_Size (Typ);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- If we have a null offset, the result is entirely determined by
|
|
-- the base object and has already been computed recursively.
|
|
|
|
if Offs = Uint_0 then
|
|
null;
|
|
|
|
-- Case where we know the alignment of the object
|
|
|
|
elsif Known_Alignment (Obj) then
|
|
declare
|
|
ObjA : constant Uint := Alignment (Obj);
|
|
ExpA : Uint := No_Uint;
|
|
SizA : Uint := No_Uint;
|
|
|
|
begin
|
|
-- If alignment of Obj is 1, then we are always OK
|
|
|
|
if ObjA = 1 then
|
|
Set_Result (Known_Compatible);
|
|
|
|
-- Alignment of Obj is greater than 1, so we need to check
|
|
|
|
else
|
|
-- If we have an offset, see if it is compatible
|
|
|
|
if Offs /= No_Uint and Offs > Uint_0 then
|
|
if Offs mod (System_Storage_Unit * ObjA) /= 0 then
|
|
Set_Result (Known_Incompatible);
|
|
end if;
|
|
|
|
-- See if Expr is an object with known alignment
|
|
|
|
elsif Is_Entity_Name (Expr)
|
|
and then Known_Alignment (Entity (Expr))
|
|
then
|
|
ExpA := Alignment (Entity (Expr));
|
|
|
|
-- Otherwise, we can use the alignment of the type of
|
|
-- Expr given that we already checked for
|
|
-- discombobulating rep clauses for the cases of indexed
|
|
-- and selected components above.
|
|
|
|
elsif Known_Alignment (Etype (Expr)) then
|
|
ExpA := Alignment (Etype (Expr));
|
|
|
|
-- Otherwise the alignment is unknown
|
|
|
|
else
|
|
Set_Result (Default);
|
|
end if;
|
|
|
|
-- If we got an alignment, see if it is acceptable
|
|
|
|
if ExpA /= No_Uint and then ExpA < ObjA then
|
|
Set_Result (Known_Incompatible);
|
|
end if;
|
|
|
|
-- If Expr is not a piece of a larger object, see if size
|
|
-- is given. If so, check that it is not too small for the
|
|
-- required alignment.
|
|
|
|
if Offs /= No_Uint then
|
|
null;
|
|
|
|
-- See if Expr is an object with known size
|
|
|
|
elsif Is_Entity_Name (Expr)
|
|
and then Known_Static_Esize (Entity (Expr))
|
|
then
|
|
SizA := Esize (Entity (Expr));
|
|
|
|
-- Otherwise, we check the object size of the Expr type
|
|
|
|
elsif Known_Static_Esize (Etype (Expr)) then
|
|
SizA := Esize (Etype (Expr));
|
|
end if;
|
|
|
|
-- If we got a size, see if it is a multiple of the Obj
|
|
-- alignment, if not, then the alignment cannot be
|
|
-- acceptable, since the size is always a multiple of the
|
|
-- alignment.
|
|
|
|
if SizA /= No_Uint then
|
|
if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
|
|
Set_Result (Known_Incompatible);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- If we do not know required alignment, any non-zero offset is a
|
|
-- potential problem (but certainly may be OK, so result is unknown).
|
|
|
|
elsif Offs /= No_Uint then
|
|
Set_Result (Unknown);
|
|
|
|
-- If we can't find the result by direct comparison of alignment
|
|
-- values, then there is still one case that we can determine known
|
|
-- result, and that is when we can determine that the types are the
|
|
-- same, and no alignments are specified. Then we known that the
|
|
-- alignments are compatible, even if we don't know the alignment
|
|
-- value in the front end.
|
|
|
|
elsif Etype (Obj) = Etype (Expr) then
|
|
|
|
-- Types are the same, but we have to check for possible size
|
|
-- and alignments on the Expr object that may make the alignment
|
|
-- different, even though the types are the same.
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
|
|
-- First check alignment of the Expr object. Any alignment less
|
|
-- than Maximum_Alignment is worrisome since this is the case
|
|
-- where we do not know the alignment of Obj.
|
|
|
|
if Known_Alignment (Entity (Expr))
|
|
and then UI_To_Int (Alignment (Entity (Expr))) <
|
|
Ttypes.Maximum_Alignment
|
|
then
|
|
Set_Result (Unknown);
|
|
|
|
-- Now check size of Expr object. Any size that is not an
|
|
-- even multiple of Maximum_Alignment is also worrisome
|
|
-- since it may cause the alignment of the object to be less
|
|
-- than the alignment of the type.
|
|
|
|
elsif Known_Static_Esize (Entity (Expr))
|
|
and then
|
|
(UI_To_Int (Esize (Entity (Expr))) mod
|
|
(Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
|
|
/= 0
|
|
then
|
|
Set_Result (Unknown);
|
|
|
|
-- Otherwise same type is decisive
|
|
|
|
else
|
|
Set_Result (Known_Compatible);
|
|
end if;
|
|
end if;
|
|
|
|
-- Another case to deal with is when there is an explicit size or
|
|
-- alignment clause when the types are not the same. If so, then the
|
|
-- result is Unknown. We don't need to do this test if the Default is
|
|
-- Unknown, since that result will be set in any case.
|
|
|
|
elsif Default /= Unknown
|
|
and then (Has_Size_Clause (Etype (Expr))
|
|
or else
|
|
Has_Alignment_Clause (Etype (Expr)))
|
|
then
|
|
Set_Result (Unknown);
|
|
|
|
-- If no indication found, set default
|
|
|
|
else
|
|
Set_Result (Default);
|
|
end if;
|
|
|
|
-- Return worst result found
|
|
|
|
return Result;
|
|
end Has_Compatible_Alignment_Internal;
|
|
|
|
-- Start of processing for Has_Compatible_Alignment
|
|
|
|
begin
|
|
-- If Obj has no specified alignment, then set alignment from the type
|
|
-- alignment. Perhaps we should always do this, but for sure we should
|
|
-- do it when there is an address clause since we can do more if the
|
|
-- alignment is known.
|
|
|
|
if Unknown_Alignment (Obj) then
|
|
Set_Alignment (Obj, Alignment (Etype (Obj)));
|
|
end if;
|
|
|
|
-- Now do the internal call that does all the work
|
|
|
|
return
|
|
Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
|
|
end Has_Compatible_Alignment;
|
|
|
|
----------------------
|
|
-- Has_Declarations --
|
|
----------------------
|
|
|
|
function Has_Declarations (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind_In (Nkind (N), N_Accept_Statement,
|
|
N_Block_Statement,
|
|
N_Compilation_Unit_Aux,
|
|
N_Entry_Body,
|
|
N_Package_Body,
|
|
N_Protected_Body,
|
|
N_Subprogram_Body,
|
|
N_Task_Body,
|
|
N_Package_Specification);
|
|
end Has_Declarations;
|
|
|
|
---------------------------------
|
|
-- Has_Defaulted_Discriminants --
|
|
---------------------------------
|
|
|
|
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
|
|
begin
|
|
return Has_Discriminants (Typ)
|
|
and then Present (First_Discriminant (Typ))
|
|
and then Present (Discriminant_Default_Value
|
|
(First_Discriminant (Typ)));
|
|
end Has_Defaulted_Discriminants;
|
|
|
|
-------------------
|
|
-- Has_Denormals --
|
|
-------------------
|
|
|
|
function Has_Denormals (E : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Floating_Point_Type (E) and then Denorm_On_Target;
|
|
end Has_Denormals;
|
|
|
|
-------------------------------------------
|
|
-- Has_Discriminant_Dependent_Constraint --
|
|
-------------------------------------------
|
|
|
|
function Has_Discriminant_Dependent_Constraint
|
|
(Comp : Entity_Id) return Boolean
|
|
is
|
|
Comp_Decl : constant Node_Id := Parent (Comp);
|
|
Subt_Indic : Node_Id;
|
|
Constr : Node_Id;
|
|
Assn : Node_Id;
|
|
|
|
begin
|
|
-- Discriminants can't depend on discriminants
|
|
|
|
if Ekind (Comp) = E_Discriminant then
|
|
return False;
|
|
|
|
else
|
|
Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
|
|
|
|
if Nkind (Subt_Indic) = N_Subtype_Indication then
|
|
Constr := Constraint (Subt_Indic);
|
|
|
|
if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
|
|
Assn := First (Constraints (Constr));
|
|
while Present (Assn) loop
|
|
case Nkind (Assn) is
|
|
when N_Subtype_Indication |
|
|
N_Range |
|
|
N_Identifier
|
|
=>
|
|
if Depends_On_Discriminant (Assn) then
|
|
return True;
|
|
end if;
|
|
|
|
when N_Discriminant_Association =>
|
|
if Depends_On_Discriminant (Expression (Assn)) then
|
|
return True;
|
|
end if;
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
Next (Assn);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Discriminant_Dependent_Constraint;
|
|
|
|
--------------------------------------
|
|
-- Has_Effectively_Volatile_Profile --
|
|
--------------------------------------
|
|
|
|
function Has_Effectively_Volatile_Profile
|
|
(Subp_Id : Entity_Id) return Boolean
|
|
is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
-- Inspect the formal parameters looking for an effectively volatile
|
|
-- type.
|
|
|
|
Formal := First_Formal (Subp_Id);
|
|
while Present (Formal) loop
|
|
if Is_Effectively_Volatile (Etype (Formal)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
-- Inspect the return type of functions
|
|
|
|
if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
|
|
and then Is_Effectively_Volatile (Etype (Subp_Id))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Effectively_Volatile_Profile;
|
|
|
|
--------------------------
|
|
-- Has_Enabled_Property --
|
|
--------------------------
|
|
|
|
function Has_Enabled_Property
|
|
(Item_Id : Entity_Id;
|
|
Property : Name_Id) return Boolean
|
|
is
|
|
function State_Has_Enabled_Property return Boolean;
|
|
-- Determine whether a state denoted by Item_Id has the property enabled
|
|
|
|
function Variable_Has_Enabled_Property return Boolean;
|
|
-- Determine whether a variable denoted by Item_Id has the property
|
|
-- enabled.
|
|
|
|
--------------------------------
|
|
-- State_Has_Enabled_Property --
|
|
--------------------------------
|
|
|
|
function State_Has_Enabled_Property return Boolean is
|
|
Decl : constant Node_Id := Parent (Item_Id);
|
|
Opt : Node_Id;
|
|
Opt_Nam : Node_Id;
|
|
Prop : Node_Id;
|
|
Prop_Nam : Node_Id;
|
|
Props : Node_Id;
|
|
|
|
begin
|
|
-- The declaration of an external abstract state appears as an
|
|
-- extension aggregate. If this is not the case, properties can never
|
|
-- be set.
|
|
|
|
if Nkind (Decl) /= N_Extension_Aggregate then
|
|
return False;
|
|
end if;
|
|
|
|
-- When External appears as a simple option, it automatically enables
|
|
-- all properties.
|
|
|
|
Opt := First (Expressions (Decl));
|
|
while Present (Opt) loop
|
|
if Nkind (Opt) = N_Identifier
|
|
and then Chars (Opt) = Name_External
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Opt);
|
|
end loop;
|
|
|
|
-- When External specifies particular properties, inspect those and
|
|
-- find the desired one (if any).
|
|
|
|
Opt := First (Component_Associations (Decl));
|
|
while Present (Opt) loop
|
|
Opt_Nam := First (Choices (Opt));
|
|
|
|
if Nkind (Opt_Nam) = N_Identifier
|
|
and then Chars (Opt_Nam) = Name_External
|
|
then
|
|
Props := Expression (Opt);
|
|
|
|
-- Multiple properties appear as an aggregate
|
|
|
|
if Nkind (Props) = N_Aggregate then
|
|
|
|
-- Simple property form
|
|
|
|
Prop := First (Expressions (Props));
|
|
while Present (Prop) loop
|
|
if Chars (Prop) = Property then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Prop);
|
|
end loop;
|
|
|
|
-- Property with expression form
|
|
|
|
Prop := First (Component_Associations (Props));
|
|
while Present (Prop) loop
|
|
Prop_Nam := First (Choices (Prop));
|
|
|
|
-- The property can be represented in two ways:
|
|
-- others => <value>
|
|
-- <property> => <value>
|
|
|
|
if Nkind (Prop_Nam) = N_Others_Choice
|
|
or else (Nkind (Prop_Nam) = N_Identifier
|
|
and then Chars (Prop_Nam) = Property)
|
|
then
|
|
return Is_True (Expr_Value (Expression (Prop)));
|
|
end if;
|
|
|
|
Next (Prop);
|
|
end loop;
|
|
|
|
-- Single property
|
|
|
|
else
|
|
return Chars (Props) = Property;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Opt);
|
|
end loop;
|
|
|
|
return False;
|
|
end State_Has_Enabled_Property;
|
|
|
|
-----------------------------------
|
|
-- Variable_Has_Enabled_Property --
|
|
-----------------------------------
|
|
|
|
function Variable_Has_Enabled_Property return Boolean is
|
|
function Is_Enabled (Prag : Node_Id) return Boolean;
|
|
-- Determine whether property pragma Prag (if present) denotes an
|
|
-- enabled property.
|
|
|
|
----------------
|
|
-- Is_Enabled --
|
|
----------------
|
|
|
|
function Is_Enabled (Prag : Node_Id) return Boolean is
|
|
Arg1 : Node_Id;
|
|
|
|
begin
|
|
if Present (Prag) then
|
|
Arg1 := First (Pragma_Argument_Associations (Prag));
|
|
|
|
-- The pragma has an optional Boolean expression, the related
|
|
-- property is enabled only when the expression evaluates to
|
|
-- True.
|
|
|
|
if Present (Arg1) then
|
|
return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
|
|
|
|
-- Otherwise the lack of expression enables the property by
|
|
-- default.
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
|
|
-- The property was never set in the first place
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Enabled;
|
|
|
|
-- Local variables
|
|
|
|
AR : constant Node_Id :=
|
|
Get_Pragma (Item_Id, Pragma_Async_Readers);
|
|
AW : constant Node_Id :=
|
|
Get_Pragma (Item_Id, Pragma_Async_Writers);
|
|
ER : constant Node_Id :=
|
|
Get_Pragma (Item_Id, Pragma_Effective_Reads);
|
|
EW : constant Node_Id :=
|
|
Get_Pragma (Item_Id, Pragma_Effective_Writes);
|
|
|
|
-- Start of processing for Variable_Has_Enabled_Property
|
|
|
|
begin
|
|
-- A non-effectively volatile object can never possess external
|
|
-- properties.
|
|
|
|
if not Is_Effectively_Volatile (Item_Id) then
|
|
return False;
|
|
|
|
-- External properties related to variables come in two flavors -
|
|
-- explicit and implicit. The explicit case is characterized by the
|
|
-- presence of a property pragma with an optional Boolean flag. The
|
|
-- property is enabled when the flag evaluates to True or the flag is
|
|
-- missing altogether.
|
|
|
|
elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
|
|
return True;
|
|
|
|
elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
|
|
return True;
|
|
|
|
elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
|
|
return True;
|
|
|
|
elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
|
|
return True;
|
|
|
|
-- The implicit case lacks all property pragmas
|
|
|
|
elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
|
|
return True;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Variable_Has_Enabled_Property;
|
|
|
|
-- Start of processing for Has_Enabled_Property
|
|
|
|
begin
|
|
-- Abstract states and variables have a flexible scheme of specifying
|
|
-- external properties.
|
|
|
|
if Ekind (Item_Id) = E_Abstract_State then
|
|
return State_Has_Enabled_Property;
|
|
|
|
elsif Ekind (Item_Id) = E_Variable then
|
|
return Variable_Has_Enabled_Property;
|
|
|
|
-- Otherwise a property is enabled when the related item is effectively
|
|
-- volatile.
|
|
|
|
else
|
|
return Is_Effectively_Volatile (Item_Id);
|
|
end if;
|
|
end Has_Enabled_Property;
|
|
|
|
-------------------------------------
|
|
-- Has_Full_Default_Initialization --
|
|
-------------------------------------
|
|
|
|
function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
|
|
Arg : Node_Id;
|
|
Comp : Entity_Id;
|
|
Prag : Node_Id;
|
|
|
|
begin
|
|
-- A private type and its full view is fully default initialized when it
|
|
-- is subject to pragma Default_Initial_Condition without an argument or
|
|
-- with a non-null argument. Since any type may act as the full view of
|
|
-- a private type, this check must be performed prior to the specialized
|
|
-- tests below.
|
|
|
|
if Has_Default_Init_Cond (Typ)
|
|
or else Has_Inherited_Default_Init_Cond (Typ)
|
|
then
|
|
Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
|
|
|
|
-- Pragma Default_Initial_Condition must be present if one of the
|
|
-- related entity flags is set.
|
|
|
|
pragma Assert (Present (Prag));
|
|
Arg := First (Pragma_Argument_Associations (Prag));
|
|
|
|
-- A non-null argument guarantees full default initialization
|
|
|
|
if Present (Arg) then
|
|
return Nkind (Arg) /= N_Null;
|
|
|
|
-- Otherwise the missing argument defaults the pragma to "True" which
|
|
-- is considered a non-null argument (see above).
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
-- A scalar type is fully default initialized if it is subject to aspect
|
|
-- Default_Value.
|
|
|
|
if Is_Scalar_Type (Typ) then
|
|
return Has_Default_Aspect (Typ);
|
|
|
|
-- An array type is fully default initialized if its element type is
|
|
-- scalar and the array type carries aspect Default_Component_Value or
|
|
-- the element type is fully default initialized.
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
return
|
|
Has_Default_Aspect (Typ)
|
|
or else Has_Full_Default_Initialization (Component_Type (Typ));
|
|
|
|
-- A protected type, record type, or type extension is fully default
|
|
-- initialized if all its components either carry an initialization
|
|
-- expression or have a type that is fully default initialized. The
|
|
-- parent type of a type extension must be fully default initialized.
|
|
|
|
elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
|
|
|
|
-- Inspect all entities defined in the scope of the type, looking for
|
|
-- uninitialized components.
|
|
|
|
Comp := First_Entity (Typ);
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component
|
|
and then Comes_From_Source (Comp)
|
|
and then No (Expression (Parent (Comp)))
|
|
and then not Has_Full_Default_Initialization (Etype (Comp))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
-- Ensure that the parent type of a type extension is fully default
|
|
-- initialized.
|
|
|
|
if Etype (Typ) /= Typ
|
|
and then not Has_Full_Default_Initialization (Etype (Typ))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- If we get here, then all components and parent portion are fully
|
|
-- default initialized.
|
|
|
|
return True;
|
|
|
|
-- A task type is fully default initialized by default
|
|
|
|
elsif Is_Task_Type (Typ) then
|
|
return True;
|
|
|
|
-- Otherwise the type is not fully default initialized
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Full_Default_Initialization;
|
|
|
|
--------------------
|
|
-- Has_Infinities --
|
|
--------------------
|
|
|
|
function Has_Infinities (E : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Is_Floating_Point_Type (E)
|
|
and then Nkind (Scalar_Range (E)) = N_Range
|
|
and then Includes_Infinities (Scalar_Range (E));
|
|
end Has_Infinities;
|
|
|
|
--------------------
|
|
-- Has_Interfaces --
|
|
--------------------
|
|
|
|
function Has_Interfaces
|
|
(T : Entity_Id;
|
|
Use_Full_View : Boolean := True) return Boolean
|
|
is
|
|
Typ : Entity_Id := Base_Type (T);
|
|
|
|
begin
|
|
-- Handle concurrent types
|
|
|
|
if Is_Concurrent_Type (Typ) then
|
|
Typ := Corresponding_Record_Type (Typ);
|
|
end if;
|
|
|
|
if not Present (Typ)
|
|
or else not Is_Record_Type (Typ)
|
|
or else not Is_Tagged_Type (Typ)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Handle private types
|
|
|
|
if Use_Full_View and then Present (Full_View (Typ)) then
|
|
Typ := Full_View (Typ);
|
|
end if;
|
|
|
|
-- Handle concurrent record types
|
|
|
|
if Is_Concurrent_Record_Type (Typ)
|
|
and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
loop
|
|
if Is_Interface (Typ)
|
|
or else
|
|
(Is_Record_Type (Typ)
|
|
and then Present (Interfaces (Typ))
|
|
and then not Is_Empty_Elmt_List (Interfaces (Typ)))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
exit when Etype (Typ) = Typ
|
|
|
|
-- Handle private types
|
|
|
|
or else (Present (Full_View (Etype (Typ)))
|
|
and then Full_View (Etype (Typ)) = Typ)
|
|
|
|
-- Protect frontend against wrong sources with cyclic derivations
|
|
|
|
or else Etype (Typ) = T;
|
|
|
|
-- Climb to the ancestor type handling private types
|
|
|
|
if Present (Full_View (Etype (Typ))) then
|
|
Typ := Full_View (Etype (Typ));
|
|
else
|
|
Typ := Etype (Typ);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Has_Interfaces;
|
|
|
|
--------------------------
|
|
-- Has_Max_Queue_Length --
|
|
--------------------------
|
|
|
|
function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind (Id) = E_Entry
|
|
and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
|
|
end Has_Max_Queue_Length;
|
|
|
|
---------------------------------
|
|
-- Has_No_Obvious_Side_Effects --
|
|
---------------------------------
|
|
|
|
function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
|
|
begin
|
|
-- For now handle literals, constants, and non-volatile variables and
|
|
-- expressions combining these with operators or short circuit forms.
|
|
|
|
if Nkind (N) in N_Numeric_Or_String_Literal then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Character_Literal then
|
|
return True;
|
|
|
|
elsif Nkind (N) in N_Unary_Op then
|
|
return Has_No_Obvious_Side_Effects (Right_Opnd (N));
|
|
|
|
elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
|
|
return Has_No_Obvious_Side_Effects (Left_Opnd (N))
|
|
and then
|
|
Has_No_Obvious_Side_Effects (Right_Opnd (N));
|
|
|
|
elsif Nkind (N) = N_Expression_With_Actions
|
|
and then Is_Empty_List (Actions (N))
|
|
then
|
|
return Has_No_Obvious_Side_Effects (Expression (N));
|
|
|
|
elsif Nkind (N) in N_Has_Entity then
|
|
return Present (Entity (N))
|
|
and then Ekind_In (Entity (N), E_Variable,
|
|
E_Constant,
|
|
E_Enumeration_Literal,
|
|
E_In_Parameter,
|
|
E_Out_Parameter,
|
|
E_In_Out_Parameter)
|
|
and then not Is_Volatile (Entity (N));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_No_Obvious_Side_Effects;
|
|
|
|
-----------------------------
|
|
-- Has_Non_Null_Refinement --
|
|
-----------------------------
|
|
|
|
function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
|
|
Constits : Elist_Id;
|
|
|
|
begin
|
|
pragma Assert (Ekind (Id) = E_Abstract_State);
|
|
Constits := Refinement_Constituents (Id);
|
|
|
|
-- For a refinement to be non-null, the first constituent must be
|
|
-- anything other than null.
|
|
|
|
return
|
|
Present (Constits)
|
|
and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
|
|
end Has_Non_Null_Refinement;
|
|
|
|
-------------------
|
|
-- Has_Null_Body --
|
|
-------------------
|
|
|
|
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
|
|
Body_Id : Entity_Id;
|
|
Decl : Node_Id;
|
|
Spec : Node_Id;
|
|
Stmt1 : Node_Id;
|
|
Stmt2 : Node_Id;
|
|
|
|
begin
|
|
Spec := Parent (Proc_Id);
|
|
Decl := Parent (Spec);
|
|
|
|
-- Retrieve the entity of the procedure body (e.g. invariant proc).
|
|
|
|
if Nkind (Spec) = N_Procedure_Specification
|
|
and then Nkind (Decl) = N_Subprogram_Declaration
|
|
then
|
|
Body_Id := Corresponding_Body (Decl);
|
|
|
|
-- The body acts as a spec
|
|
|
|
else
|
|
Body_Id := Proc_Id;
|
|
end if;
|
|
|
|
-- The body will be generated later
|
|
|
|
if No (Body_Id) then
|
|
return False;
|
|
end if;
|
|
|
|
Spec := Parent (Body_Id);
|
|
Decl := Parent (Spec);
|
|
|
|
pragma Assert
|
|
(Nkind (Spec) = N_Procedure_Specification
|
|
and then Nkind (Decl) = N_Subprogram_Body);
|
|
|
|
Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
|
|
|
|
-- Look for a null statement followed by an optional return
|
|
-- statement.
|
|
|
|
if Nkind (Stmt1) = N_Null_Statement then
|
|
Stmt2 := Next (Stmt1);
|
|
|
|
if Present (Stmt2) then
|
|
return Nkind (Stmt2) = N_Simple_Return_Statement;
|
|
else
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Null_Body;
|
|
|
|
------------------------
|
|
-- Has_Null_Exclusion --
|
|
------------------------
|
|
|
|
function Has_Null_Exclusion (N : Node_Id) return Boolean is
|
|
begin
|
|
case Nkind (N) is
|
|
when N_Access_Definition |
|
|
N_Access_Function_Definition |
|
|
N_Access_Procedure_Definition |
|
|
N_Access_To_Object_Definition |
|
|
N_Allocator |
|
|
N_Derived_Type_Definition |
|
|
N_Function_Specification |
|
|
N_Subtype_Declaration =>
|
|
return Null_Exclusion_Present (N);
|
|
|
|
when N_Component_Definition |
|
|
N_Formal_Object_Declaration |
|
|
N_Object_Renaming_Declaration =>
|
|
if Present (Subtype_Mark (N)) then
|
|
return Null_Exclusion_Present (N);
|
|
else pragma Assert (Present (Access_Definition (N)));
|
|
return Null_Exclusion_Present (Access_Definition (N));
|
|
end if;
|
|
|
|
when N_Discriminant_Specification =>
|
|
if Nkind (Discriminant_Type (N)) = N_Access_Definition then
|
|
return Null_Exclusion_Present (Discriminant_Type (N));
|
|
else
|
|
return Null_Exclusion_Present (N);
|
|
end if;
|
|
|
|
when N_Object_Declaration =>
|
|
if Nkind (Object_Definition (N)) = N_Access_Definition then
|
|
return Null_Exclusion_Present (Object_Definition (N));
|
|
else
|
|
return Null_Exclusion_Present (N);
|
|
end if;
|
|
|
|
when N_Parameter_Specification =>
|
|
if Nkind (Parameter_Type (N)) = N_Access_Definition then
|
|
return Null_Exclusion_Present (Parameter_Type (N));
|
|
else
|
|
return Null_Exclusion_Present (N);
|
|
end if;
|
|
|
|
when others =>
|
|
return False;
|
|
|
|
end case;
|
|
end Has_Null_Exclusion;
|
|
|
|
------------------------
|
|
-- Has_Null_Extension --
|
|
------------------------
|
|
|
|
function Has_Null_Extension (T : Entity_Id) return Boolean is
|
|
B : constant Entity_Id := Base_Type (T);
|
|
Comps : Node_Id;
|
|
Ext : Node_Id;
|
|
|
|
begin
|
|
if Nkind (Parent (B)) = N_Full_Type_Declaration
|
|
and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
|
|
then
|
|
Ext := Record_Extension_Part (Type_Definition (Parent (B)));
|
|
|
|
if Present (Ext) then
|
|
if Null_Present (Ext) then
|
|
return True;
|
|
else
|
|
Comps := Component_List (Ext);
|
|
|
|
-- The null component list is rewritten during analysis to
|
|
-- include the parent component. Any other component indicates
|
|
-- that the extension was not originally null.
|
|
|
|
return Null_Present (Comps)
|
|
or else No (Next (First (Component_Items (Comps))));
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Null_Extension;
|
|
|
|
-------------------------
|
|
-- Has_Null_Refinement --
|
|
-------------------------
|
|
|
|
function Has_Null_Refinement (Id : Entity_Id) return Boolean is
|
|
Constits : Elist_Id;
|
|
|
|
begin
|
|
pragma Assert (Ekind (Id) = E_Abstract_State);
|
|
Constits := Refinement_Constituents (Id);
|
|
|
|
-- For a refinement to be null, the state's sole constituent must be a
|
|
-- null.
|
|
|
|
return
|
|
Present (Constits)
|
|
and then Nkind (Node (First_Elmt (Constits))) = N_Null;
|
|
end Has_Null_Refinement;
|
|
|
|
-------------------------------
|
|
-- Has_Overriding_Initialize --
|
|
-------------------------------
|
|
|
|
function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
|
|
BT : constant Entity_Id := Base_Type (T);
|
|
P : Elmt_Id;
|
|
|
|
begin
|
|
if Is_Controlled (BT) then
|
|
if Is_RTU (Scope (BT), Ada_Finalization) then
|
|
return False;
|
|
|
|
elsif Present (Primitive_Operations (BT)) then
|
|
P := First_Elmt (Primitive_Operations (BT));
|
|
while Present (P) loop
|
|
declare
|
|
Init : constant Entity_Id := Node (P);
|
|
Formal : constant Entity_Id := First_Formal (Init);
|
|
begin
|
|
if Ekind (Init) = E_Procedure
|
|
and then Chars (Init) = Name_Initialize
|
|
and then Comes_From_Source (Init)
|
|
and then Present (Formal)
|
|
and then Etype (Formal) = BT
|
|
and then No (Next_Formal (Formal))
|
|
and then (Ada_Version < Ada_2012
|
|
or else not Null_Present (Parent (Init)))
|
|
then
|
|
return True;
|
|
end if;
|
|
end;
|
|
|
|
Next_Elmt (P);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Here if type itself does not have a non-null Initialize operation:
|
|
-- check immediate ancestor.
|
|
|
|
if Is_Derived_Type (BT)
|
|
and then Has_Overriding_Initialize (Etype (BT))
|
|
then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Overriding_Initialize;
|
|
|
|
--------------------------------------
|
|
-- Has_Preelaborable_Initialization --
|
|
--------------------------------------
|
|
|
|
function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
|
|
Has_PE : Boolean;
|
|
|
|
procedure Check_Components (E : Entity_Id);
|
|
-- Check component/discriminant chain, sets Has_PE False if a component
|
|
-- or discriminant does not meet the preelaborable initialization rules.
|
|
|
|
----------------------
|
|
-- Check_Components --
|
|
----------------------
|
|
|
|
procedure Check_Components (E : Entity_Id) is
|
|
Ent : Entity_Id;
|
|
Exp : Node_Id;
|
|
|
|
function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
|
|
-- Returns True if and only if the expression denoted by N does not
|
|
-- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
|
|
|
|
---------------------------------
|
|
-- Is_Preelaborable_Expression --
|
|
---------------------------------
|
|
|
|
function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
|
|
Exp : Node_Id;
|
|
Assn : Node_Id;
|
|
Choice : Node_Id;
|
|
Comp_Type : Entity_Id;
|
|
Is_Array_Aggr : Boolean;
|
|
|
|
begin
|
|
if Is_OK_Static_Expression (N) then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Null then
|
|
return True;
|
|
|
|
-- Attributes are allowed in general, even if their prefix is a
|
|
-- formal type. (It seems that certain attributes known not to be
|
|
-- static might not be allowed, but there are no rules to prevent
|
|
-- them.)
|
|
|
|
elsif Nkind (N) = N_Attribute_Reference then
|
|
return True;
|
|
|
|
-- The name of a discriminant evaluated within its parent type is
|
|
-- defined to be preelaborable (10.2.1(8)). Note that we test for
|
|
-- names that denote discriminals as well as discriminants to
|
|
-- catch references occurring within init procs.
|
|
|
|
elsif Is_Entity_Name (N)
|
|
and then
|
|
(Ekind (Entity (N)) = E_Discriminant
|
|
or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
|
|
and then Present (Discriminal_Link (Entity (N)))))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Qualified_Expression then
|
|
return Is_Preelaborable_Expression (Expression (N));
|
|
|
|
-- For aggregates we have to check that each of the associations
|
|
-- is preelaborable.
|
|
|
|
elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
|
|
Is_Array_Aggr := Is_Array_Type (Etype (N));
|
|
|
|
if Is_Array_Aggr then
|
|
Comp_Type := Component_Type (Etype (N));
|
|
end if;
|
|
|
|
-- Check the ancestor part of extension aggregates, which must
|
|
-- be either the name of a type that has preelaborable init or
|
|
-- an expression that is preelaborable.
|
|
|
|
if Nkind (N) = N_Extension_Aggregate then
|
|
declare
|
|
Anc_Part : constant Node_Id := Ancestor_Part (N);
|
|
|
|
begin
|
|
if Is_Entity_Name (Anc_Part)
|
|
and then Is_Type (Entity (Anc_Part))
|
|
then
|
|
if not Has_Preelaborable_Initialization
|
|
(Entity (Anc_Part))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
elsif not Is_Preelaborable_Expression (Anc_Part) then
|
|
return False;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Check positional associations
|
|
|
|
Exp := First (Expressions (N));
|
|
while Present (Exp) loop
|
|
if not Is_Preelaborable_Expression (Exp) then
|
|
return False;
|
|
end if;
|
|
|
|
Next (Exp);
|
|
end loop;
|
|
|
|
-- Check named associations
|
|
|
|
Assn := First (Component_Associations (N));
|
|
while Present (Assn) loop
|
|
Choice := First (Choices (Assn));
|
|
while Present (Choice) loop
|
|
if Is_Array_Aggr then
|
|
if Nkind (Choice) = N_Others_Choice then
|
|
null;
|
|
|
|
elsif Nkind (Choice) = N_Range then
|
|
if not Is_OK_Static_Range (Choice) then
|
|
return False;
|
|
end if;
|
|
|
|
elsif not Is_OK_Static_Expression (Choice) then
|
|
return False;
|
|
end if;
|
|
|
|
else
|
|
Comp_Type := Etype (Choice);
|
|
end if;
|
|
|
|
Next (Choice);
|
|
end loop;
|
|
|
|
-- If the association has a <> at this point, then we have
|
|
-- to check whether the component's type has preelaborable
|
|
-- initialization. Note that this only occurs when the
|
|
-- association's corresponding component does not have a
|
|
-- default expression, the latter case having already been
|
|
-- expanded as an expression for the association.
|
|
|
|
if Box_Present (Assn) then
|
|
if not Has_Preelaborable_Initialization (Comp_Type) then
|
|
return False;
|
|
end if;
|
|
|
|
-- In the expression case we check whether the expression
|
|
-- is preelaborable.
|
|
|
|
elsif
|
|
not Is_Preelaborable_Expression (Expression (Assn))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Next (Assn);
|
|
end loop;
|
|
|
|
-- If we get here then aggregate as a whole is preelaborable
|
|
|
|
return True;
|
|
|
|
-- All other cases are not preelaborable
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Preelaborable_Expression;
|
|
|
|
-- Start of processing for Check_Components
|
|
|
|
begin
|
|
-- Loop through entities of record or protected type
|
|
|
|
Ent := E;
|
|
while Present (Ent) loop
|
|
|
|
-- We are interested only in components and discriminants
|
|
|
|
Exp := Empty;
|
|
|
|
case Ekind (Ent) is
|
|
when E_Component =>
|
|
|
|
-- Get default expression if any. If there is no declaration
|
|
-- node, it means we have an internal entity. The parent and
|
|
-- tag fields are examples of such entities. For such cases,
|
|
-- we just test the type of the entity.
|
|
|
|
if Present (Declaration_Node (Ent)) then
|
|
Exp := Expression (Declaration_Node (Ent));
|
|
end if;
|
|
|
|
when E_Discriminant =>
|
|
|
|
-- Note: for a renamed discriminant, the Declaration_Node
|
|
-- may point to the one from the ancestor, and have a
|
|
-- different expression, so use the proper attribute to
|
|
-- retrieve the expression from the derived constraint.
|
|
|
|
Exp := Discriminant_Default_Value (Ent);
|
|
|
|
when others =>
|
|
goto Check_Next_Entity;
|
|
end case;
|
|
|
|
-- A component has PI if it has no default expression and the
|
|
-- component type has PI.
|
|
|
|
if No (Exp) then
|
|
if not Has_Preelaborable_Initialization (Etype (Ent)) then
|
|
Has_PE := False;
|
|
exit;
|
|
end if;
|
|
|
|
-- Require the default expression to be preelaborable
|
|
|
|
elsif not Is_Preelaborable_Expression (Exp) then
|
|
Has_PE := False;
|
|
exit;
|
|
end if;
|
|
|
|
<<Check_Next_Entity>>
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
end Check_Components;
|
|
|
|
-- Start of processing for Has_Preelaborable_Initialization
|
|
|
|
begin
|
|
-- Immediate return if already marked as known preelaborable init. This
|
|
-- covers types for which this function has already been called once
|
|
-- and returned True (in which case the result is cached), and also
|
|
-- types to which a pragma Preelaborable_Initialization applies.
|
|
|
|
if Known_To_Have_Preelab_Init (E) then
|
|
return True;
|
|
end if;
|
|
|
|
-- If the type is a subtype representing a generic actual type, then
|
|
-- test whether its base type has preelaborable initialization since
|
|
-- the subtype representing the actual does not inherit this attribute
|
|
-- from the actual or formal. (but maybe it should???)
|
|
|
|
if Is_Generic_Actual_Type (E) then
|
|
return Has_Preelaborable_Initialization (Base_Type (E));
|
|
end if;
|
|
|
|
-- All elementary types have preelaborable initialization
|
|
|
|
if Is_Elementary_Type (E) then
|
|
Has_PE := True;
|
|
|
|
-- Array types have PI if the component type has PI
|
|
|
|
elsif Is_Array_Type (E) then
|
|
Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
|
|
|
|
-- A derived type has preelaborable initialization if its parent type
|
|
-- has preelaborable initialization and (in the case of a derived record
|
|
-- extension) if the non-inherited components all have preelaborable
|
|
-- initialization. However, a user-defined controlled type with an
|
|
-- overriding Initialize procedure does not have preelaborable
|
|
-- initialization.
|
|
|
|
elsif Is_Derived_Type (E) then
|
|
|
|
-- If the derived type is a private extension then it doesn't have
|
|
-- preelaborable initialization.
|
|
|
|
if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
|
|
return False;
|
|
end if;
|
|
|
|
-- First check whether ancestor type has preelaborable initialization
|
|
|
|
Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
|
|
|
|
-- If OK, check extension components (if any)
|
|
|
|
if Has_PE and then Is_Record_Type (E) then
|
|
Check_Components (First_Entity (E));
|
|
end if;
|
|
|
|
-- Check specifically for 10.2.1(11.4/2) exception: a controlled type
|
|
-- with a user defined Initialize procedure does not have PI. If
|
|
-- the type is untagged, the control primitives come from a component
|
|
-- that has already been checked.
|
|
|
|
if Has_PE
|
|
and then Is_Controlled (E)
|
|
and then Is_Tagged_Type (E)
|
|
and then Has_Overriding_Initialize (E)
|
|
then
|
|
Has_PE := False;
|
|
end if;
|
|
|
|
-- Private types not derived from a type having preelaborable init and
|
|
-- that are not marked with pragma Preelaborable_Initialization do not
|
|
-- have preelaborable initialization.
|
|
|
|
elsif Is_Private_Type (E) then
|
|
return False;
|
|
|
|
-- Record type has PI if it is non private and all components have PI
|
|
|
|
elsif Is_Record_Type (E) then
|
|
Has_PE := True;
|
|
Check_Components (First_Entity (E));
|
|
|
|
-- Protected types must not have entries, and components must meet
|
|
-- same set of rules as for record components.
|
|
|
|
elsif Is_Protected_Type (E) then
|
|
if Has_Entries (E) then
|
|
Has_PE := False;
|
|
else
|
|
Has_PE := True;
|
|
Check_Components (First_Entity (E));
|
|
Check_Components (First_Private_Entity (E));
|
|
end if;
|
|
|
|
-- Type System.Address always has preelaborable initialization
|
|
|
|
elsif Is_RTE (E, RE_Address) then
|
|
Has_PE := True;
|
|
|
|
-- In all other cases, type does not have preelaborable initialization
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- If type has preelaborable initialization, cache result
|
|
|
|
if Has_PE then
|
|
Set_Known_To_Have_Preelab_Init (E);
|
|
end if;
|
|
|
|
return Has_PE;
|
|
end Has_Preelaborable_Initialization;
|
|
|
|
---------------------------
|
|
-- Has_Private_Component --
|
|
---------------------------
|
|
|
|
function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
|
|
Btype : Entity_Id := Base_Type (Type_Id);
|
|
Component : Entity_Id;
|
|
|
|
begin
|
|
if Error_Posted (Type_Id)
|
|
or else Error_Posted (Btype)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
if Is_Class_Wide_Type (Btype) then
|
|
Btype := Root_Type (Btype);
|
|
end if;
|
|
|
|
if Is_Private_Type (Btype) then
|
|
declare
|
|
UT : constant Entity_Id := Underlying_Type (Btype);
|
|
begin
|
|
if No (UT) then
|
|
if No (Full_View (Btype)) then
|
|
return not Is_Generic_Type (Btype)
|
|
and then
|
|
not Is_Generic_Type (Root_Type (Btype));
|
|
else
|
|
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
|
|
end if;
|
|
else
|
|
return not Is_Frozen (UT) and then Has_Private_Component (UT);
|
|
end if;
|
|
end;
|
|
|
|
elsif Is_Array_Type (Btype) then
|
|
return Has_Private_Component (Component_Type (Btype));
|
|
|
|
elsif Is_Record_Type (Btype) then
|
|
Component := First_Component (Btype);
|
|
while Present (Component) loop
|
|
if Has_Private_Component (Etype (Component)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Component (Component);
|
|
end loop;
|
|
|
|
return False;
|
|
|
|
elsif Is_Protected_Type (Btype)
|
|
and then Present (Corresponding_Record_Type (Btype))
|
|
then
|
|
return Has_Private_Component (Corresponding_Record_Type (Btype));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Private_Component;
|
|
|
|
----------------------
|
|
-- Has_Signed_Zeros --
|
|
----------------------
|
|
|
|
function Has_Signed_Zeros (E : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
|
|
end Has_Signed_Zeros;
|
|
|
|
------------------------------
|
|
-- Has_Significant_Contract --
|
|
------------------------------
|
|
|
|
function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
|
|
Subp_Nam : constant Name_Id := Chars (Subp_Id);
|
|
|
|
begin
|
|
-- _Finalizer procedure
|
|
|
|
if Subp_Nam = Name_uFinalizer then
|
|
return False;
|
|
|
|
-- _Postconditions procedure
|
|
|
|
elsif Subp_Nam = Name_uPostconditions then
|
|
return False;
|
|
|
|
-- Predicate function
|
|
|
|
elsif Ekind (Subp_Id) = E_Function
|
|
and then Is_Predicate_Function (Subp_Id)
|
|
then
|
|
return False;
|
|
|
|
-- TSS subprogram
|
|
|
|
elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
|
|
return False;
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Has_Significant_Contract;
|
|
|
|
-----------------------------
|
|
-- Has_Static_Array_Bounds --
|
|
-----------------------------
|
|
|
|
function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
|
|
Ndims : constant Nat := Number_Dimensions (Typ);
|
|
|
|
Index : Node_Id;
|
|
Low : Node_Id;
|
|
High : Node_Id;
|
|
|
|
begin
|
|
-- Unconstrained types do not have static bounds
|
|
|
|
if not Is_Constrained (Typ) then
|
|
return False;
|
|
end if;
|
|
|
|
-- First treat string literals specially, as the lower bound and length
|
|
-- of string literals are not stored like those of arrays.
|
|
|
|
-- A string literal always has static bounds
|
|
|
|
if Ekind (Typ) = E_String_Literal_Subtype then
|
|
return True;
|
|
end if;
|
|
|
|
-- Treat all dimensions in turn
|
|
|
|
Index := First_Index (Typ);
|
|
for Indx in 1 .. Ndims loop
|
|
|
|
-- In case of an illegal index which is not a discrete type, return
|
|
-- that the type is not static.
|
|
|
|
if not Is_Discrete_Type (Etype (Index))
|
|
or else Etype (Index) = Any_Type
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Get_Index_Bounds (Index, Low, High);
|
|
|
|
if Error_Posted (Low) or else Error_Posted (High) then
|
|
return False;
|
|
end if;
|
|
|
|
if Is_OK_Static_Expression (Low)
|
|
and then
|
|
Is_OK_Static_Expression (High)
|
|
then
|
|
null;
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
Next (Index);
|
|
end loop;
|
|
|
|
-- If we fall through the loop, all indexes matched
|
|
|
|
return True;
|
|
end Has_Static_Array_Bounds;
|
|
|
|
----------------
|
|
-- Has_Stream --
|
|
----------------
|
|
|
|
function Has_Stream (T : Entity_Id) return Boolean is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
if No (T) then
|
|
return False;
|
|
|
|
elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (T) then
|
|
return Has_Stream (Component_Type (T));
|
|
|
|
elsif Is_Record_Type (T) then
|
|
E := First_Component (T);
|
|
while Present (E) loop
|
|
if Has_Stream (Etype (E)) then
|
|
return True;
|
|
else
|
|
Next_Component (E);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
|
|
elsif Is_Private_Type (T) then
|
|
return Has_Stream (Underlying_Type (T));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Stream;
|
|
|
|
----------------
|
|
-- Has_Suffix --
|
|
----------------
|
|
|
|
function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
|
|
begin
|
|
Get_Name_String (Chars (E));
|
|
return Name_Buffer (Name_Len) = Suffix;
|
|
end Has_Suffix;
|
|
|
|
----------------
|
|
-- Add_Suffix --
|
|
----------------
|
|
|
|
function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
|
|
begin
|
|
Get_Name_String (Chars (E));
|
|
Add_Char_To_Name_Buffer (Suffix);
|
|
return Name_Find;
|
|
end Add_Suffix;
|
|
|
|
-------------------
|
|
-- Remove_Suffix --
|
|
-------------------
|
|
|
|
function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
|
|
begin
|
|
pragma Assert (Has_Suffix (E, Suffix));
|
|
Get_Name_String (Chars (E));
|
|
Name_Len := Name_Len - 1;
|
|
return Name_Find;
|
|
end Remove_Suffix;
|
|
|
|
----------------------------------
|
|
-- Replace_Null_By_Null_Address --
|
|
----------------------------------
|
|
|
|
procedure Replace_Null_By_Null_Address (N : Node_Id) is
|
|
procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
|
|
-- Replace operand Op with a reference to Null_Address when the operand
|
|
-- denotes a null Address. Other_Op denotes the other operand.
|
|
|
|
--------------------------
|
|
-- Replace_Null_Operand --
|
|
--------------------------
|
|
|
|
procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
|
|
begin
|
|
-- Check the type of the complementary operand since the N_Null node
|
|
-- has not been decorated yet.
|
|
|
|
if Nkind (Op) = N_Null
|
|
and then Is_Descendant_Of_Address (Etype (Other_Op))
|
|
then
|
|
Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
|
|
end if;
|
|
end Replace_Null_Operand;
|
|
|
|
-- Start of processing for Replace_Null_By_Null_Address
|
|
|
|
begin
|
|
pragma Assert (Relaxed_RM_Semantics);
|
|
pragma Assert (Nkind_In (N, N_Null,
|
|
N_Op_Eq,
|
|
N_Op_Ge,
|
|
N_Op_Gt,
|
|
N_Op_Le,
|
|
N_Op_Lt,
|
|
N_Op_Ne));
|
|
|
|
if Nkind (N) = N_Null then
|
|
Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
|
|
|
|
else
|
|
declare
|
|
L : constant Node_Id := Left_Opnd (N);
|
|
R : constant Node_Id := Right_Opnd (N);
|
|
|
|
begin
|
|
Replace_Null_Operand (L, Other_Op => R);
|
|
Replace_Null_Operand (R, Other_Op => L);
|
|
end;
|
|
end if;
|
|
end Replace_Null_By_Null_Address;
|
|
|
|
--------------------------
|
|
-- Has_Tagged_Component --
|
|
--------------------------
|
|
|
|
function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
|
|
return Has_Tagged_Component (Underlying_Type (Typ));
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
return Has_Tagged_Component (Component_Type (Typ));
|
|
|
|
elsif Is_Tagged_Type (Typ) then
|
|
return True;
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
Comp := First_Component (Typ);
|
|
while Present (Comp) loop
|
|
if Has_Tagged_Component (Etype (Comp)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Component (Comp);
|
|
end loop;
|
|
|
|
return False;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Tagged_Component;
|
|
|
|
-----------------------------
|
|
-- Has_Undefined_Reference --
|
|
-----------------------------
|
|
|
|
function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
|
|
Has_Undef_Ref : Boolean := False;
|
|
-- Flag set when expression Expr contains at least one undefined
|
|
-- reference.
|
|
|
|
function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
|
|
-- Determine whether N denotes a reference and if it does, whether it is
|
|
-- undefined.
|
|
|
|
----------------------------
|
|
-- Is_Undefined_Reference --
|
|
----------------------------
|
|
|
|
function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if Is_Entity_Name (N)
|
|
and then Present (Entity (N))
|
|
and then Entity (N) = Any_Id
|
|
then
|
|
Has_Undef_Ref := True;
|
|
return Abandon;
|
|
end if;
|
|
|
|
return OK;
|
|
end Is_Undefined_Reference;
|
|
|
|
procedure Find_Undefined_References is
|
|
new Traverse_Proc (Is_Undefined_Reference);
|
|
|
|
-- Start of processing for Has_Undefined_Reference
|
|
|
|
begin
|
|
Find_Undefined_References (Expr);
|
|
|
|
return Has_Undef_Ref;
|
|
end Has_Undefined_Reference;
|
|
|
|
----------------------------
|
|
-- Has_Volatile_Component --
|
|
----------------------------
|
|
|
|
function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
if Has_Volatile_Components (Typ) then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
return Is_Volatile (Component_Type (Typ));
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
Comp := First_Component (Typ);
|
|
while Present (Comp) loop
|
|
if Is_Volatile_Object (Comp) then
|
|
return True;
|
|
end if;
|
|
|
|
Comp := Next_Component (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Volatile_Component;
|
|
|
|
-------------------------
|
|
-- Implementation_Kind --
|
|
-------------------------
|
|
|
|
function Implementation_Kind (Subp : Entity_Id) return Name_Id is
|
|
Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
|
|
Arg : Node_Id;
|
|
begin
|
|
pragma Assert (Present (Impl_Prag));
|
|
Arg := Last (Pragma_Argument_Associations (Impl_Prag));
|
|
return Chars (Get_Pragma_Arg (Arg));
|
|
end Implementation_Kind;
|
|
|
|
--------------------------
|
|
-- Implements_Interface --
|
|
--------------------------
|
|
|
|
function Implements_Interface
|
|
(Typ_Ent : Entity_Id;
|
|
Iface_Ent : Entity_Id;
|
|
Exclude_Parents : Boolean := False) return Boolean
|
|
is
|
|
Ifaces_List : Elist_Id;
|
|
Elmt : Elmt_Id;
|
|
Iface : Entity_Id := Base_Type (Iface_Ent);
|
|
Typ : Entity_Id := Base_Type (Typ_Ent);
|
|
|
|
begin
|
|
if Is_Class_Wide_Type (Typ) then
|
|
Typ := Root_Type (Typ);
|
|
end if;
|
|
|
|
if not Has_Interfaces (Typ) then
|
|
return False;
|
|
end if;
|
|
|
|
if Is_Class_Wide_Type (Iface) then
|
|
Iface := Root_Type (Iface);
|
|
end if;
|
|
|
|
Collect_Interfaces (Typ, Ifaces_List);
|
|
|
|
Elmt := First_Elmt (Ifaces_List);
|
|
while Present (Elmt) loop
|
|
if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
|
|
and then Exclude_Parents
|
|
then
|
|
null;
|
|
|
|
elsif Node (Elmt) = Iface then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
return False;
|
|
end Implements_Interface;
|
|
|
|
------------------------------------
|
|
-- In_Assertion_Expression_Pragma --
|
|
------------------------------------
|
|
|
|
function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
|
|
Par : Node_Id;
|
|
Prag : Node_Id := Empty;
|
|
|
|
begin
|
|
-- Climb the parent chain looking for an enclosing pragma
|
|
|
|
Par := N;
|
|
while Present (Par) loop
|
|
if Nkind (Par) = N_Pragma then
|
|
Prag := Par;
|
|
exit;
|
|
|
|
-- Precondition-like pragmas are expanded into if statements, check
|
|
-- the original node instead.
|
|
|
|
elsif Nkind (Original_Node (Par)) = N_Pragma then
|
|
Prag := Original_Node (Par);
|
|
exit;
|
|
|
|
-- The expansion of attribute 'Old generates a constant to capture
|
|
-- the result of the prefix. If the parent traversal reaches
|
|
-- one of these constants, then the node technically came from a
|
|
-- postcondition-like pragma. Note that the Ekind is not tested here
|
|
-- because N may be the expression of an object declaration which is
|
|
-- currently being analyzed. Such objects carry Ekind of E_Void.
|
|
|
|
elsif Nkind (Par) = N_Object_Declaration
|
|
and then Constant_Present (Par)
|
|
and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
|
|
then
|
|
return True;
|
|
|
|
-- Prevent the search from going too far
|
|
|
|
elsif Is_Body_Or_Package_Declaration (Par) then
|
|
return False;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
return
|
|
Present (Prag)
|
|
and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
|
|
end In_Assertion_Expression_Pragma;
|
|
|
|
-----------------
|
|
-- In_Instance --
|
|
-----------------
|
|
|
|
function In_Instance return Boolean is
|
|
Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind_In (S, E_Function, E_Package, E_Procedure)
|
|
and then Is_Generic_Instance (S)
|
|
then
|
|
-- A child instance is always compiled in the context of a parent
|
|
-- instance. Nevertheless, the actuals are not analyzed in an
|
|
-- instance context. We detect this case by examining the current
|
|
-- compilation unit, which must be a child instance, and checking
|
|
-- that it is not currently on the scope stack.
|
|
|
|
if Is_Child_Unit (Curr_Unit)
|
|
and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
|
|
N_Package_Instantiation
|
|
and then not In_Open_Scopes (Curr_Unit)
|
|
then
|
|
return False;
|
|
else
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Instance;
|
|
|
|
----------------------
|
|
-- In_Instance_Body --
|
|
----------------------
|
|
|
|
function In_Instance_Body return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind_In (S, E_Function, E_Procedure)
|
|
and then Is_Generic_Instance (S)
|
|
then
|
|
return True;
|
|
|
|
elsif Ekind (S) = E_Package
|
|
and then In_Package_Body (S)
|
|
and then Is_Generic_Instance (S)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Instance_Body;
|
|
|
|
-----------------------------
|
|
-- In_Instance_Not_Visible --
|
|
-----------------------------
|
|
|
|
function In_Instance_Not_Visible return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind_In (S, E_Function, E_Procedure)
|
|
and then Is_Generic_Instance (S)
|
|
then
|
|
return True;
|
|
|
|
elsif Ekind (S) = E_Package
|
|
and then (In_Package_Body (S) or else In_Private_Part (S))
|
|
and then Is_Generic_Instance (S)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Instance_Not_Visible;
|
|
|
|
------------------------------
|
|
-- In_Instance_Visible_Part --
|
|
------------------------------
|
|
|
|
function In_Instance_Visible_Part return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind (S) = E_Package
|
|
and then Is_Generic_Instance (S)
|
|
and then not In_Package_Body (S)
|
|
and then not In_Private_Part (S)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Instance_Visible_Part;
|
|
|
|
---------------------
|
|
-- In_Package_Body --
|
|
---------------------
|
|
|
|
function In_Package_Body return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Ekind (S) = E_Package and then In_Package_Body (S) then
|
|
return True;
|
|
else
|
|
S := Scope (S);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Package_Body;
|
|
|
|
--------------------------------
|
|
-- In_Parameter_Specification --
|
|
--------------------------------
|
|
|
|
function In_Parameter_Specification (N : Node_Id) return Boolean is
|
|
PN : Node_Id;
|
|
|
|
begin
|
|
PN := Parent (N);
|
|
while Present (PN) loop
|
|
if Nkind (PN) = N_Parameter_Specification then
|
|
return True;
|
|
end if;
|
|
|
|
PN := Parent (PN);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Parameter_Specification;
|
|
|
|
--------------------------
|
|
-- In_Pragma_Expression --
|
|
--------------------------
|
|
|
|
function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
|
|
P : Node_Id;
|
|
begin
|
|
P := Parent (N);
|
|
loop
|
|
if No (P) then
|
|
return False;
|
|
elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
|
|
return True;
|
|
else
|
|
P := Parent (P);
|
|
end if;
|
|
end loop;
|
|
end In_Pragma_Expression;
|
|
|
|
---------------------------
|
|
-- In_Pre_Post_Condition --
|
|
---------------------------
|
|
|
|
function In_Pre_Post_Condition (N : Node_Id) return Boolean is
|
|
Par : Node_Id;
|
|
Prag : Node_Id := Empty;
|
|
Prag_Id : Pragma_Id;
|
|
|
|
begin
|
|
-- Climb the parent chain looking for an enclosing pragma
|
|
|
|
Par := N;
|
|
while Present (Par) loop
|
|
if Nkind (Par) = N_Pragma then
|
|
Prag := Par;
|
|
exit;
|
|
|
|
-- Prevent the search from going too far
|
|
|
|
elsif Is_Body_Or_Package_Declaration (Par) then
|
|
exit;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
if Present (Prag) then
|
|
Prag_Id := Get_Pragma_Id (Prag);
|
|
|
|
return
|
|
Prag_Id = Pragma_Post
|
|
or else Prag_Id = Pragma_Post_Class
|
|
or else Prag_Id = Pragma_Postcondition
|
|
or else Prag_Id = Pragma_Pre
|
|
or else Prag_Id = Pragma_Pre_Class
|
|
or else Prag_Id = Pragma_Precondition;
|
|
|
|
-- Otherwise the node is not enclosed by a pre/postcondition pragma
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end In_Pre_Post_Condition;
|
|
|
|
-------------------------------------
|
|
-- In_Reverse_Storage_Order_Object --
|
|
-------------------------------------
|
|
|
|
function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
|
|
Pref : Node_Id;
|
|
Btyp : Entity_Id := Empty;
|
|
|
|
begin
|
|
-- Climb up indexed components
|
|
|
|
Pref := N;
|
|
loop
|
|
case Nkind (Pref) is
|
|
when N_Selected_Component =>
|
|
Pref := Prefix (Pref);
|
|
exit;
|
|
|
|
when N_Indexed_Component =>
|
|
Pref := Prefix (Pref);
|
|
|
|
when others =>
|
|
Pref := Empty;
|
|
exit;
|
|
end case;
|
|
end loop;
|
|
|
|
if Present (Pref) then
|
|
Btyp := Base_Type (Etype (Pref));
|
|
end if;
|
|
|
|
return Present (Btyp)
|
|
and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
|
|
and then Reverse_Storage_Order (Btyp);
|
|
end In_Reverse_Storage_Order_Object;
|
|
|
|
--------------------------------------
|
|
-- In_Subprogram_Or_Concurrent_Unit --
|
|
--------------------------------------
|
|
|
|
function In_Subprogram_Or_Concurrent_Unit return Boolean is
|
|
E : Entity_Id;
|
|
K : Entity_Kind;
|
|
|
|
begin
|
|
-- Use scope chain to check successively outer scopes
|
|
|
|
E := Current_Scope;
|
|
loop
|
|
K := Ekind (E);
|
|
|
|
if K in Subprogram_Kind
|
|
or else K in Concurrent_Kind
|
|
or else K in Generic_Subprogram_Kind
|
|
then
|
|
return True;
|
|
|
|
elsif E = Standard_Standard then
|
|
return False;
|
|
end if;
|
|
|
|
E := Scope (E);
|
|
end loop;
|
|
end In_Subprogram_Or_Concurrent_Unit;
|
|
|
|
---------------------
|
|
-- In_Visible_Part --
|
|
---------------------
|
|
|
|
function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Package_Or_Generic_Package (Scope_Id)
|
|
and then In_Open_Scopes (Scope_Id)
|
|
and then not In_Package_Body (Scope_Id)
|
|
and then not In_Private_Part (Scope_Id);
|
|
end In_Visible_Part;
|
|
|
|
--------------------------------
|
|
-- Incomplete_Or_Partial_View --
|
|
--------------------------------
|
|
|
|
function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
|
|
function Inspect_Decls
|
|
(Decls : List_Id;
|
|
Taft : Boolean := False) return Entity_Id;
|
|
-- Check whether a declarative region contains the incomplete or partial
|
|
-- view of Id.
|
|
|
|
-------------------
|
|
-- Inspect_Decls --
|
|
-------------------
|
|
|
|
function Inspect_Decls
|
|
(Decls : List_Id;
|
|
Taft : Boolean := False) return Entity_Id
|
|
is
|
|
Decl : Node_Id;
|
|
Match : Node_Id;
|
|
|
|
begin
|
|
Decl := First (Decls);
|
|
while Present (Decl) loop
|
|
Match := Empty;
|
|
|
|
-- The partial view of a Taft-amendment type is an incomplete
|
|
-- type.
|
|
|
|
if Taft then
|
|
if Nkind (Decl) = N_Incomplete_Type_Declaration then
|
|
Match := Defining_Identifier (Decl);
|
|
end if;
|
|
|
|
-- Otherwise look for a private type whose full view matches the
|
|
-- input type. Note that this checks full_type_declaration nodes
|
|
-- to account for derivations from a private type where the type
|
|
-- declaration hold the partial view and the full view is an
|
|
-- itype.
|
|
|
|
elsif Nkind_In (Decl, N_Full_Type_Declaration,
|
|
N_Private_Extension_Declaration,
|
|
N_Private_Type_Declaration)
|
|
then
|
|
Match := Defining_Identifier (Decl);
|
|
end if;
|
|
|
|
-- Guard against unanalyzed entities
|
|
|
|
if Present (Match)
|
|
and then Is_Type (Match)
|
|
and then Present (Full_View (Match))
|
|
and then Full_View (Match) = Id
|
|
then
|
|
return Match;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end Inspect_Decls;
|
|
|
|
-- Local variables
|
|
|
|
Prev : Entity_Id;
|
|
|
|
-- Start of processing for Incomplete_Or_Partial_View
|
|
|
|
begin
|
|
-- Deferred constant or incomplete type case
|
|
|
|
Prev := Current_Entity_In_Scope (Id);
|
|
|
|
if Present (Prev)
|
|
and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
|
|
and then Present (Full_View (Prev))
|
|
and then Full_View (Prev) = Id
|
|
then
|
|
return Prev;
|
|
end if;
|
|
|
|
-- Private or Taft amendment type case
|
|
|
|
declare
|
|
Pkg : constant Entity_Id := Scope (Id);
|
|
Pkg_Decl : Node_Id := Pkg;
|
|
|
|
begin
|
|
if Present (Pkg)
|
|
and then Ekind_In (Pkg, E_Generic_Package, E_Package)
|
|
then
|
|
while Nkind (Pkg_Decl) /= N_Package_Specification loop
|
|
Pkg_Decl := Parent (Pkg_Decl);
|
|
end loop;
|
|
|
|
-- It is knows that Typ has a private view, look for it in the
|
|
-- visible declarations of the enclosing scope. A special case
|
|
-- of this is when the two views have been exchanged - the full
|
|
-- appears earlier than the private.
|
|
|
|
if Has_Private_Declaration (Id) then
|
|
Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
|
|
|
|
-- Exchanged view case, look in the private declarations
|
|
|
|
if No (Prev) then
|
|
Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
|
|
end if;
|
|
|
|
return Prev;
|
|
|
|
-- Otherwise if this is the package body, then Typ is a potential
|
|
-- Taft amendment type. The incomplete view should be located in
|
|
-- the private declarations of the enclosing scope.
|
|
|
|
elsif In_Package_Body (Pkg) then
|
|
return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- The type has no incomplete or private view
|
|
|
|
return Empty;
|
|
end Incomplete_Or_Partial_View;
|
|
|
|
----------------------------------
|
|
-- Indexed_Component_Bit_Offset --
|
|
----------------------------------
|
|
|
|
function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
|
|
Exp : constant Node_Id := First (Expressions (N));
|
|
Typ : constant Entity_Id := Etype (Prefix (N));
|
|
Off : constant Uint := Component_Size (Typ);
|
|
Ind : Node_Id;
|
|
|
|
begin
|
|
-- Return early if the component size is not known or variable
|
|
|
|
if Off = No_Uint or else Off < Uint_0 then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
-- Deal with the degenerate case of an empty component
|
|
|
|
if Off = Uint_0 then
|
|
return Off;
|
|
end if;
|
|
|
|
-- Check that both the index value and the low bound are known
|
|
|
|
if not Compile_Time_Known_Value (Exp) then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
Ind := First_Index (Typ);
|
|
if No (Ind) then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
if Nkind (Ind) = N_Subtype_Indication then
|
|
Ind := Constraint (Ind);
|
|
|
|
if Nkind (Ind) = N_Range_Constraint then
|
|
Ind := Range_Expression (Ind);
|
|
end if;
|
|
end if;
|
|
|
|
if Nkind (Ind) /= N_Range
|
|
or else not Compile_Time_Known_Value (Low_Bound (Ind))
|
|
then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
-- Return the scaled offset
|
|
|
|
return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
|
|
end Indexed_Component_Bit_Offset;
|
|
|
|
-----------------------------------------
|
|
-- Inherit_Default_Init_Cond_Procedure --
|
|
-----------------------------------------
|
|
|
|
procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id) is
|
|
Par_Typ : constant Entity_Id := Etype (Typ);
|
|
|
|
begin
|
|
-- A derived type inherits the default initial condition procedure of
|
|
-- its parent type.
|
|
|
|
if No (Default_Init_Cond_Procedure (Typ)) then
|
|
Set_Default_Init_Cond_Procedure
|
|
(Typ, Default_Init_Cond_Procedure (Par_Typ));
|
|
end if;
|
|
end Inherit_Default_Init_Cond_Procedure;
|
|
|
|
----------------------------
|
|
-- Inherit_Rep_Item_Chain --
|
|
----------------------------
|
|
|
|
procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
|
|
Item : Node_Id;
|
|
Next_Item : Node_Id;
|
|
|
|
begin
|
|
-- There are several inheritance scenarios to consider depending on
|
|
-- whether both types have rep item chains and whether the destination
|
|
-- type already inherits part of the source type's rep item chain.
|
|
|
|
-- 1) The source type lacks a rep item chain
|
|
-- From_Typ ---> Empty
|
|
--
|
|
-- Typ --------> Item (or Empty)
|
|
|
|
-- In this case inheritance cannot take place because there are no items
|
|
-- to inherit.
|
|
|
|
-- 2) The destination type lacks a rep item chain
|
|
-- From_Typ ---> Item ---> ...
|
|
--
|
|
-- Typ --------> Empty
|
|
|
|
-- Inheritance takes place by setting the First_Rep_Item of the
|
|
-- destination type to the First_Rep_Item of the source type.
|
|
-- From_Typ ---> Item ---> ...
|
|
-- ^
|
|
-- Typ -----------+
|
|
|
|
-- 3.1) Both source and destination types have at least one rep item.
|
|
-- The destination type does NOT inherit a rep item from the source
|
|
-- type.
|
|
-- From_Typ ---> Item ---> Item
|
|
--
|
|
-- Typ --------> Item ---> Item
|
|
|
|
-- Inheritance takes place by setting the Next_Rep_Item of the last item
|
|
-- of the destination type to the First_Rep_Item of the source type.
|
|
-- From_Typ -------------------> Item ---> Item
|
|
-- ^
|
|
-- Typ --------> Item ---> Item --+
|
|
|
|
-- 3.2) Both source and destination types have at least one rep item.
|
|
-- The destination type DOES inherit part of the rep item chain of the
|
|
-- source type.
|
|
-- From_Typ ---> Item ---> Item ---> Item
|
|
-- ^
|
|
-- Typ --------> Item ------+
|
|
|
|
-- This rare case arises when the full view of a private extension must
|
|
-- inherit the rep item chain from the full view of its parent type and
|
|
-- the full view of the parent type contains extra rep items. Currently
|
|
-- only invariants may lead to such form of inheritance.
|
|
|
|
-- type From_Typ is tagged private
|
|
-- with Type_Invariant'Class => Item_2;
|
|
|
|
-- type Typ is new From_Typ with private
|
|
-- with Type_Invariant => Item_4;
|
|
|
|
-- At this point the rep item chains contain the following items
|
|
|
|
-- From_Typ -----------> Item_2 ---> Item_3
|
|
-- ^
|
|
-- Typ --------> Item_4 --+
|
|
|
|
-- The full views of both types may introduce extra invariants
|
|
|
|
-- type From_Typ is tagged null record
|
|
-- with Type_Invariant => Item_1;
|
|
|
|
-- type Typ is new From_Typ with null record;
|
|
|
|
-- The full view of Typ would have to inherit any new rep items added to
|
|
-- the full view of From_Typ.
|
|
|
|
-- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
|
|
-- ^
|
|
-- Typ --------> Item_4 --+
|
|
|
|
-- To achieve this form of inheritance, the destination type must first
|
|
-- sever the link between its own rep chain and that of the source type,
|
|
-- then inheritance 3.1 takes place.
|
|
|
|
-- Case 1: The source type lacks a rep item chain
|
|
|
|
if No (First_Rep_Item (From_Typ)) then
|
|
return;
|
|
|
|
-- Case 2: The destination type lacks a rep item chain
|
|
|
|
elsif No (First_Rep_Item (Typ)) then
|
|
Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
|
|
|
|
-- Case 3: Both the source and destination types have at least one rep
|
|
-- item. Traverse the rep item chain of the destination type to find the
|
|
-- last rep item.
|
|
|
|
else
|
|
Item := Empty;
|
|
Next_Item := First_Rep_Item (Typ);
|
|
while Present (Next_Item) loop
|
|
|
|
-- Detect a link between the destination type's rep chain and that
|
|
-- of the source type. There are two possibilities:
|
|
|
|
-- Variant 1
|
|
-- Next_Item
|
|
-- V
|
|
-- From_Typ ---> Item_1 --->
|
|
-- ^
|
|
-- Typ -----------+
|
|
--
|
|
-- Item is Empty
|
|
|
|
-- Variant 2
|
|
-- Next_Item
|
|
-- V
|
|
-- From_Typ ---> Item_1 ---> Item_2 --->
|
|
-- ^
|
|
-- Typ --------> Item_3 ------+
|
|
-- ^
|
|
-- Item
|
|
|
|
if Has_Rep_Item (From_Typ, Next_Item) then
|
|
exit;
|
|
end if;
|
|
|
|
Item := Next_Item;
|
|
Next_Item := Next_Rep_Item (Next_Item);
|
|
end loop;
|
|
|
|
-- Inherit the source type's rep item chain
|
|
|
|
if Present (Item) then
|
|
Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
|
|
else
|
|
Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
|
|
end if;
|
|
end if;
|
|
end Inherit_Rep_Item_Chain;
|
|
|
|
---------------------------------
|
|
-- Insert_Explicit_Dereference --
|
|
---------------------------------
|
|
|
|
procedure Insert_Explicit_Dereference (N : Node_Id) is
|
|
New_Prefix : constant Node_Id := Relocate_Node (N);
|
|
Ent : Entity_Id := Empty;
|
|
Pref : Node_Id;
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
Save_Interps (N, New_Prefix);
|
|
|
|
Rewrite (N,
|
|
Make_Explicit_Dereference (Sloc (Parent (N)),
|
|
Prefix => New_Prefix));
|
|
|
|
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
|
|
|
|
if Is_Overloaded (New_Prefix) then
|
|
|
|
-- The dereference is also overloaded, and its interpretations are
|
|
-- the designated types of the interpretations of the original node.
|
|
|
|
Set_Etype (N, Any_Type);
|
|
|
|
Get_First_Interp (New_Prefix, I, It);
|
|
while Present (It.Nam) loop
|
|
T := It.Typ;
|
|
|
|
if Is_Access_Type (T) then
|
|
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
|
|
End_Interp_List;
|
|
|
|
else
|
|
-- Prefix is unambiguous: mark the original prefix (which might
|
|
-- Come_From_Source) as a reference, since the new (relocated) one
|
|
-- won't be taken into account.
|
|
|
|
if Is_Entity_Name (New_Prefix) then
|
|
Ent := Entity (New_Prefix);
|
|
Pref := New_Prefix;
|
|
|
|
-- For a retrieval of a subcomponent of some composite object,
|
|
-- retrieve the ultimate entity if there is one.
|
|
|
|
elsif Nkind_In (New_Prefix, N_Selected_Component,
|
|
N_Indexed_Component)
|
|
then
|
|
Pref := Prefix (New_Prefix);
|
|
while Present (Pref)
|
|
and then Nkind_In (Pref, N_Selected_Component,
|
|
N_Indexed_Component)
|
|
loop
|
|
Pref := Prefix (Pref);
|
|
end loop;
|
|
|
|
if Present (Pref) and then Is_Entity_Name (Pref) then
|
|
Ent := Entity (Pref);
|
|
end if;
|
|
end if;
|
|
|
|
-- Place the reference on the entity node
|
|
|
|
if Present (Ent) then
|
|
Generate_Reference (Ent, Pref);
|
|
end if;
|
|
end if;
|
|
end Insert_Explicit_Dereference;
|
|
|
|
------------------------------------------
|
|
-- Inspect_Deferred_Constant_Completion --
|
|
------------------------------------------
|
|
|
|
procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
Decl := First (Decls);
|
|
while Present (Decl) loop
|
|
|
|
-- Deferred constant signature
|
|
|
|
if Nkind (Decl) = N_Object_Declaration
|
|
and then Constant_Present (Decl)
|
|
and then No (Expression (Decl))
|
|
|
|
-- No need to check internally generated constants
|
|
|
|
and then Comes_From_Source (Decl)
|
|
|
|
-- The constant is not completed. A full object declaration or a
|
|
-- pragma Import complete a deferred constant.
|
|
|
|
and then not Has_Completion (Defining_Identifier (Decl))
|
|
then
|
|
Error_Msg_N
|
|
("constant declaration requires initialization expression",
|
|
Defining_Identifier (Decl));
|
|
end if;
|
|
|
|
Decl := Next (Decl);
|
|
end loop;
|
|
end Inspect_Deferred_Constant_Completion;
|
|
|
|
-----------------------------
|
|
-- Install_Generic_Formals --
|
|
-----------------------------
|
|
|
|
procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
pragma Assert (Is_Generic_Subprogram (Subp_Id));
|
|
|
|
E := First_Entity (Subp_Id);
|
|
while Present (E) loop
|
|
Install_Entity (E);
|
|
Next_Entity (E);
|
|
end loop;
|
|
end Install_Generic_Formals;
|
|
|
|
-----------------------------
|
|
-- Is_Actual_Out_Parameter --
|
|
-----------------------------
|
|
|
|
function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
|
|
Formal : Entity_Id;
|
|
Call : Node_Id;
|
|
begin
|
|
Find_Actual (N, Formal, Call);
|
|
return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
|
|
end Is_Actual_Out_Parameter;
|
|
|
|
-------------------------
|
|
-- Is_Actual_Parameter --
|
|
-------------------------
|
|
|
|
function Is_Actual_Parameter (N : Node_Id) return Boolean is
|
|
PK : constant Node_Kind := Nkind (Parent (N));
|
|
|
|
begin
|
|
case PK is
|
|
when N_Parameter_Association =>
|
|
return N = Explicit_Actual_Parameter (Parent (N));
|
|
|
|
when N_Subprogram_Call =>
|
|
return Is_List_Member (N)
|
|
and then
|
|
List_Containing (N) = Parameter_Associations (Parent (N));
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end Is_Actual_Parameter;
|
|
|
|
--------------------------------
|
|
-- Is_Actual_Tagged_Parameter --
|
|
--------------------------------
|
|
|
|
function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
|
|
Formal : Entity_Id;
|
|
Call : Node_Id;
|
|
begin
|
|
Find_Actual (N, Formal, Call);
|
|
return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
|
|
end Is_Actual_Tagged_Parameter;
|
|
|
|
---------------------
|
|
-- Is_Aliased_View --
|
|
---------------------
|
|
|
|
function Is_Aliased_View (Obj : Node_Id) return Boolean is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
if Is_Entity_Name (Obj) then
|
|
E := Entity (Obj);
|
|
|
|
return
|
|
(Is_Object (E)
|
|
and then
|
|
(Is_Aliased (E)
|
|
or else (Present (Renamed_Object (E))
|
|
and then Is_Aliased_View (Renamed_Object (E)))))
|
|
|
|
or else ((Is_Formal (E)
|
|
or else Ekind_In (E, E_Generic_In_Out_Parameter,
|
|
E_Generic_In_Parameter))
|
|
and then Is_Tagged_Type (Etype (E)))
|
|
|
|
or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
|
|
|
|
-- Current instance of type, either directly or as rewritten
|
|
-- reference to the current object.
|
|
|
|
or else (Is_Entity_Name (Original_Node (Obj))
|
|
and then Present (Entity (Original_Node (Obj)))
|
|
and then Is_Type (Entity (Original_Node (Obj))))
|
|
|
|
or else (Is_Type (E) and then E = Current_Scope)
|
|
|
|
or else (Is_Incomplete_Or_Private_Type (E)
|
|
and then Full_View (E) = Current_Scope)
|
|
|
|
-- Ada 2012 AI05-0053: the return object of an extended return
|
|
-- statement is aliased if its type is immutably limited.
|
|
|
|
or else (Is_Return_Object (E)
|
|
and then Is_Limited_View (Etype (E)));
|
|
|
|
elsif Nkind (Obj) = N_Selected_Component then
|
|
return Is_Aliased (Entity (Selector_Name (Obj)));
|
|
|
|
elsif Nkind (Obj) = N_Indexed_Component then
|
|
return Has_Aliased_Components (Etype (Prefix (Obj)))
|
|
or else
|
|
(Is_Access_Type (Etype (Prefix (Obj)))
|
|
and then Has_Aliased_Components
|
|
(Designated_Type (Etype (Prefix (Obj)))));
|
|
|
|
elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
|
|
return Is_Tagged_Type (Etype (Obj))
|
|
and then Is_Aliased_View (Expression (Obj));
|
|
|
|
elsif Nkind (Obj) = N_Explicit_Dereference then
|
|
return Nkind (Original_Node (Obj)) /= N_Function_Call;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Aliased_View;
|
|
|
|
-------------------------
|
|
-- Is_Ancestor_Package --
|
|
-------------------------
|
|
|
|
function Is_Ancestor_Package
|
|
(E1 : Entity_Id;
|
|
E2 : Entity_Id) return Boolean
|
|
is
|
|
Par : Entity_Id;
|
|
|
|
begin
|
|
Par := E2;
|
|
while Present (Par) and then Par /= Standard_Standard loop
|
|
if Par = E1 then
|
|
return True;
|
|
end if;
|
|
|
|
Par := Scope (Par);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Ancestor_Package;
|
|
|
|
----------------------
|
|
-- Is_Atomic_Object --
|
|
----------------------
|
|
|
|
function Is_Atomic_Object (N : Node_Id) return Boolean is
|
|
|
|
function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
|
|
-- Determines if given object has atomic components
|
|
|
|
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
|
|
-- If prefix is an implicit dereference, examine designated type
|
|
|
|
----------------------
|
|
-- Is_Atomic_Prefix --
|
|
----------------------
|
|
|
|
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Access_Type (Etype (N)) then
|
|
return
|
|
Has_Atomic_Components (Designated_Type (Etype (N)));
|
|
else
|
|
return Object_Has_Atomic_Components (N);
|
|
end if;
|
|
end Is_Atomic_Prefix;
|
|
|
|
----------------------------------
|
|
-- Object_Has_Atomic_Components --
|
|
----------------------------------
|
|
|
|
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
|
|
begin
|
|
if Has_Atomic_Components (Etype (N))
|
|
or else Is_Atomic (Etype (N))
|
|
then
|
|
return True;
|
|
|
|
elsif Is_Entity_Name (N)
|
|
and then (Has_Atomic_Components (Entity (N))
|
|
or else Is_Atomic (Entity (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Selected_Component
|
|
and then Is_Atomic (Entity (Selector_Name (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Indexed_Component
|
|
or else Nkind (N) = N_Selected_Component
|
|
then
|
|
return Is_Atomic_Prefix (Prefix (N));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Object_Has_Atomic_Components;
|
|
|
|
-- Start of processing for Is_Atomic_Object
|
|
|
|
begin
|
|
-- Predicate is not relevant to subprograms
|
|
|
|
if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
|
|
return False;
|
|
|
|
elsif Is_Atomic (Etype (N))
|
|
or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Selected_Component
|
|
and then Is_Atomic (Entity (Selector_Name (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Indexed_Component
|
|
or else Nkind (N) = N_Selected_Component
|
|
then
|
|
return Is_Atomic_Prefix (Prefix (N));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Atomic_Object;
|
|
|
|
-----------------------------
|
|
-- Is_Atomic_Or_VFA_Object --
|
|
-----------------------------
|
|
|
|
function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
|
|
begin
|
|
return Is_Atomic_Object (N)
|
|
or else (Is_Object_Reference (N)
|
|
and then Is_Entity_Name (N)
|
|
and then (Is_Volatile_Full_Access (Entity (N))
|
|
or else
|
|
Is_Volatile_Full_Access (Etype (Entity (N)))));
|
|
end Is_Atomic_Or_VFA_Object;
|
|
|
|
-------------------------
|
|
-- Is_Attribute_Result --
|
|
-------------------------
|
|
|
|
function Is_Attribute_Result (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Attribute_Reference
|
|
and then Attribute_Name (N) = Name_Result;
|
|
end Is_Attribute_Result;
|
|
|
|
-------------------------
|
|
-- Is_Attribute_Update --
|
|
-------------------------
|
|
|
|
function Is_Attribute_Update (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Attribute_Reference
|
|
and then Attribute_Name (N) = Name_Update;
|
|
end Is_Attribute_Update;
|
|
|
|
------------------------------------
|
|
-- Is_Body_Or_Package_Declaration --
|
|
------------------------------------
|
|
|
|
function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind_In (N, N_Entry_Body,
|
|
N_Package_Body,
|
|
N_Package_Declaration,
|
|
N_Protected_Body,
|
|
N_Subprogram_Body,
|
|
N_Task_Body);
|
|
end Is_Body_Or_Package_Declaration;
|
|
|
|
-----------------------
|
|
-- Is_Bounded_String --
|
|
-----------------------
|
|
|
|
function Is_Bounded_String (T : Entity_Id) return Boolean is
|
|
Under : constant Entity_Id := Underlying_Type (Root_Type (T));
|
|
|
|
begin
|
|
-- Check whether T is ultimately derived from Ada.Strings.Superbounded.
|
|
-- Super_String, or one of the [Wide_]Wide_ versions. This will
|
|
-- be True for all the Bounded_String types in instances of the
|
|
-- Generic_Bounded_Length generics, and for types derived from those.
|
|
|
|
return Present (Under)
|
|
and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
|
|
Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
|
|
Is_RTE (Root_Type (Under), RO_WW_Super_String));
|
|
end Is_Bounded_String;
|
|
|
|
-------------------------
|
|
-- Is_Child_Or_Sibling --
|
|
-------------------------
|
|
|
|
function Is_Child_Or_Sibling
|
|
(Pack_1 : Entity_Id;
|
|
Pack_2 : Entity_Id) return Boolean
|
|
is
|
|
function Distance_From_Standard (Pack : Entity_Id) return Nat;
|
|
-- Given an arbitrary package, return the number of "climbs" necessary
|
|
-- to reach scope Standard_Standard.
|
|
|
|
procedure Equalize_Depths
|
|
(Pack : in out Entity_Id;
|
|
Depth : in out Nat;
|
|
Depth_To_Reach : Nat);
|
|
-- Given an arbitrary package, its depth and a target depth to reach,
|
|
-- climb the scope chain until the said depth is reached. The pointer
|
|
-- to the package and its depth a modified during the climb.
|
|
|
|
----------------------------
|
|
-- Distance_From_Standard --
|
|
----------------------------
|
|
|
|
function Distance_From_Standard (Pack : Entity_Id) return Nat is
|
|
Dist : Nat;
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Dist := 0;
|
|
Scop := Pack;
|
|
while Present (Scop) and then Scop /= Standard_Standard loop
|
|
Dist := Dist + 1;
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
return Dist;
|
|
end Distance_From_Standard;
|
|
|
|
---------------------
|
|
-- Equalize_Depths --
|
|
---------------------
|
|
|
|
procedure Equalize_Depths
|
|
(Pack : in out Entity_Id;
|
|
Depth : in out Nat;
|
|
Depth_To_Reach : Nat)
|
|
is
|
|
begin
|
|
-- The package must be at a greater or equal depth
|
|
|
|
if Depth < Depth_To_Reach then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Climb the scope chain until the desired depth is reached
|
|
|
|
while Present (Pack) and then Depth /= Depth_To_Reach loop
|
|
Pack := Scope (Pack);
|
|
Depth := Depth - 1;
|
|
end loop;
|
|
end Equalize_Depths;
|
|
|
|
-- Local variables
|
|
|
|
P_1 : Entity_Id := Pack_1;
|
|
P_1_Child : Boolean := False;
|
|
P_1_Depth : Nat := Distance_From_Standard (P_1);
|
|
P_2 : Entity_Id := Pack_2;
|
|
P_2_Child : Boolean := False;
|
|
P_2_Depth : Nat := Distance_From_Standard (P_2);
|
|
|
|
-- Start of processing for Is_Child_Or_Sibling
|
|
|
|
begin
|
|
pragma Assert
|
|
(Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
|
|
|
|
-- Both packages denote the same entity, therefore they cannot be
|
|
-- children or siblings.
|
|
|
|
if P_1 = P_2 then
|
|
return False;
|
|
|
|
-- One of the packages is at a deeper level than the other. Note that
|
|
-- both may still come from differen hierarchies.
|
|
|
|
-- (root) P_2
|
|
-- / \ :
|
|
-- X P_2 or X
|
|
-- : :
|
|
-- P_1 P_1
|
|
|
|
elsif P_1_Depth > P_2_Depth then
|
|
Equalize_Depths
|
|
(Pack => P_1,
|
|
Depth => P_1_Depth,
|
|
Depth_To_Reach => P_2_Depth);
|
|
P_1_Child := True;
|
|
|
|
-- (root) P_1
|
|
-- / \ :
|
|
-- P_1 X or X
|
|
-- : :
|
|
-- P_2 P_2
|
|
|
|
elsif P_2_Depth > P_1_Depth then
|
|
Equalize_Depths
|
|
(Pack => P_2,
|
|
Depth => P_2_Depth,
|
|
Depth_To_Reach => P_1_Depth);
|
|
P_2_Child := True;
|
|
end if;
|
|
|
|
-- At this stage the package pointers have been elevated to the same
|
|
-- depth. If the related entities are the same, then one package is a
|
|
-- potential child of the other:
|
|
|
|
-- P_1
|
|
-- :
|
|
-- X became P_1 P_2 or vica versa
|
|
-- :
|
|
-- P_2
|
|
|
|
if P_1 = P_2 then
|
|
if P_1_Child then
|
|
return Is_Child_Unit (Pack_1);
|
|
|
|
else pragma Assert (P_2_Child);
|
|
return Is_Child_Unit (Pack_2);
|
|
end if;
|
|
|
|
-- The packages may come from the same package chain or from entirely
|
|
-- different hierarcies. To determine this, climb the scope stack until
|
|
-- a common root is found.
|
|
|
|
-- (root) (root 1) (root 2)
|
|
-- / \ | |
|
|
-- P_1 P_2 P_1 P_2
|
|
|
|
else
|
|
while Present (P_1) and then Present (P_2) loop
|
|
|
|
-- The two packages may be siblings
|
|
|
|
if P_1 = P_2 then
|
|
return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
|
|
end if;
|
|
|
|
P_1 := Scope (P_1);
|
|
P_2 := Scope (P_2);
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Child_Or_Sibling;
|
|
|
|
-----------------------------
|
|
-- Is_Concurrent_Interface --
|
|
-----------------------------
|
|
|
|
function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Interface (T)
|
|
and then
|
|
(Is_Protected_Interface (T)
|
|
or else Is_Synchronized_Interface (T)
|
|
or else Is_Task_Interface (T));
|
|
end Is_Concurrent_Interface;
|
|
|
|
-----------------------
|
|
-- Is_Constant_Bound --
|
|
-----------------------
|
|
|
|
function Is_Constant_Bound (Exp : Node_Id) return Boolean is
|
|
begin
|
|
if Compile_Time_Known_Value (Exp) then
|
|
return True;
|
|
|
|
elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
|
|
return Is_Constant_Object (Entity (Exp))
|
|
or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
|
|
|
|
elsif Nkind (Exp) in N_Binary_Op then
|
|
return Is_Constant_Bound (Left_Opnd (Exp))
|
|
and then Is_Constant_Bound (Right_Opnd (Exp))
|
|
and then Scope (Entity (Exp)) = Standard_Standard;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Constant_Bound;
|
|
|
|
---------------------------
|
|
-- Is_Container_Element --
|
|
---------------------------
|
|
|
|
function Is_Container_Element (Exp : Node_Id) return Boolean is
|
|
Loc : constant Source_Ptr := Sloc (Exp);
|
|
Pref : constant Node_Id := Prefix (Exp);
|
|
|
|
Call : Node_Id;
|
|
-- Call to an indexing aspect
|
|
|
|
Cont_Typ : Entity_Id;
|
|
-- The type of the container being accessed
|
|
|
|
Elem_Typ : Entity_Id;
|
|
-- Its element type
|
|
|
|
Indexing : Entity_Id;
|
|
Is_Const : Boolean;
|
|
-- Indicates that constant indexing is used, and the element is thus
|
|
-- a constant.
|
|
|
|
Ref_Typ : Entity_Id;
|
|
-- The reference type returned by the indexing operation
|
|
|
|
begin
|
|
-- If C is a container, in a context that imposes the element type of
|
|
-- that container, the indexing notation C (X) is rewritten as:
|
|
|
|
-- Indexing (C, X).Discr.all
|
|
|
|
-- where Indexing is one of the indexing aspects of the container.
|
|
-- If the context does not require a reference, the construct can be
|
|
-- rewritten as
|
|
|
|
-- Element (C, X)
|
|
|
|
-- First, verify that the construct has the proper form
|
|
|
|
if not Expander_Active then
|
|
return False;
|
|
|
|
elsif Nkind (Pref) /= N_Selected_Component then
|
|
return False;
|
|
|
|
elsif Nkind (Prefix (Pref)) /= N_Function_Call then
|
|
return False;
|
|
|
|
else
|
|
Call := Prefix (Pref);
|
|
Ref_Typ := Etype (Call);
|
|
end if;
|
|
|
|
if not Has_Implicit_Dereference (Ref_Typ)
|
|
or else No (First (Parameter_Associations (Call)))
|
|
or else not Is_Entity_Name (Name (Call))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Retrieve type of container object, and its iterator aspects
|
|
|
|
Cont_Typ := Etype (First (Parameter_Associations (Call)));
|
|
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
|
|
Is_Const := False;
|
|
|
|
if No (Indexing) then
|
|
|
|
-- Container should have at least one indexing operation
|
|
|
|
return False;
|
|
|
|
elsif Entity (Name (Call)) /= Entity (Indexing) then
|
|
|
|
-- This may be a variable indexing operation
|
|
|
|
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
|
|
|
|
if No (Indexing)
|
|
or else Entity (Name (Call)) /= Entity (Indexing)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
else
|
|
Is_Const := True;
|
|
end if;
|
|
|
|
Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
|
|
|
|
if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that the expression is not the target of an assignment, in
|
|
-- which case the rewriting is not possible.
|
|
|
|
if not Is_Const then
|
|
declare
|
|
Par : Node_Id;
|
|
|
|
begin
|
|
Par := Exp;
|
|
while Present (Par)
|
|
loop
|
|
if Nkind (Parent (Par)) = N_Assignment_Statement
|
|
and then Par = Name (Parent (Par))
|
|
then
|
|
return False;
|
|
|
|
-- A renaming produces a reference, and the transformation
|
|
-- does not apply.
|
|
|
|
elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
|
|
return False;
|
|
|
|
elsif Nkind_In
|
|
(Nkind (Parent (Par)), N_Function_Call,
|
|
N_Procedure_Call_Statement,
|
|
N_Entry_Call_Statement)
|
|
then
|
|
-- Check that the element is not part of an actual for an
|
|
-- in-out parameter.
|
|
|
|
declare
|
|
F : Entity_Id;
|
|
A : Node_Id;
|
|
|
|
begin
|
|
F := First_Formal (Entity (Name (Parent (Par))));
|
|
A := First (Parameter_Associations (Parent (Par)));
|
|
while Present (F) loop
|
|
if A = Par and then Ekind (F) /= E_In_Parameter then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Formal (F);
|
|
Next (A);
|
|
end loop;
|
|
end;
|
|
|
|
-- E_In_Parameter in a call: element is not modified.
|
|
|
|
exit;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- The expression has the proper form and the context requires the
|
|
-- element type. Retrieve the Element function of the container and
|
|
-- rewrite the construct as a call to it.
|
|
|
|
declare
|
|
Op : Elmt_Id;
|
|
|
|
begin
|
|
Op := First_Elmt (Primitive_Operations (Cont_Typ));
|
|
while Present (Op) loop
|
|
exit when Chars (Node (Op)) = Name_Element;
|
|
Next_Elmt (Op);
|
|
end loop;
|
|
|
|
if No (Op) then
|
|
return False;
|
|
|
|
else
|
|
Rewrite (Exp,
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Node (Op), Loc),
|
|
Parameter_Associations => Parameter_Associations (Call)));
|
|
Analyze_And_Resolve (Exp, Entity (Elem_Typ));
|
|
return True;
|
|
end if;
|
|
end;
|
|
end Is_Container_Element;
|
|
|
|
----------------------------
|
|
-- Is_Contract_Annotation --
|
|
----------------------------
|
|
|
|
function Is_Contract_Annotation (Item : Node_Id) return Boolean is
|
|
begin
|
|
return Is_Package_Contract_Annotation (Item)
|
|
or else
|
|
Is_Subprogram_Contract_Annotation (Item);
|
|
end Is_Contract_Annotation;
|
|
|
|
--------------------------------------
|
|
-- Is_Controlling_Limited_Procedure --
|
|
--------------------------------------
|
|
|
|
function Is_Controlling_Limited_Procedure
|
|
(Proc_Nam : Entity_Id) return Boolean
|
|
is
|
|
Param_Typ : Entity_Id := Empty;
|
|
|
|
begin
|
|
if Ekind (Proc_Nam) = E_Procedure
|
|
and then Present (Parameter_Specifications (Parent (Proc_Nam)))
|
|
then
|
|
Param_Typ := Etype (Parameter_Type (First (
|
|
Parameter_Specifications (Parent (Proc_Nam)))));
|
|
|
|
-- In this case where an Itype was created, the procedure call has been
|
|
-- rewritten.
|
|
|
|
elsif Present (Associated_Node_For_Itype (Proc_Nam))
|
|
and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
|
|
and then
|
|
Present (Parameter_Associations
|
|
(Associated_Node_For_Itype (Proc_Nam)))
|
|
then
|
|
Param_Typ :=
|
|
Etype (First (Parameter_Associations
|
|
(Associated_Node_For_Itype (Proc_Nam))));
|
|
end if;
|
|
|
|
if Present (Param_Typ) then
|
|
return
|
|
Is_Interface (Param_Typ)
|
|
and then Is_Limited_Record (Param_Typ);
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Controlling_Limited_Procedure;
|
|
|
|
-----------------------------
|
|
-- Is_CPP_Constructor_Call --
|
|
-----------------------------
|
|
|
|
function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Function_Call
|
|
and then Is_CPP_Class (Etype (Etype (N)))
|
|
and then Is_Constructor (Entity (Name (N)))
|
|
and then Is_Imported (Entity (Name (N)));
|
|
end Is_CPP_Constructor_Call;
|
|
|
|
-------------------------
|
|
-- Is_Current_Instance --
|
|
-------------------------
|
|
|
|
function Is_Current_Instance (N : Node_Id) return Boolean is
|
|
Typ : constant Entity_Id := Entity (N);
|
|
P : Node_Id;
|
|
|
|
begin
|
|
-- Simplest case: entity is a concurrent type and we are currently
|
|
-- inside the body. This will eventually be expanded into a
|
|
-- call to Self (for tasks) or _object (for protected objects).
|
|
|
|
if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
|
|
return True;
|
|
|
|
else
|
|
-- Check whether the context is a (sub)type declaration for the
|
|
-- type entity.
|
|
|
|
P := Parent (N);
|
|
while Present (P) loop
|
|
if Nkind_In (P, N_Full_Type_Declaration,
|
|
N_Private_Type_Declaration,
|
|
N_Subtype_Declaration)
|
|
and then Comes_From_Source (P)
|
|
and then Defining_Entity (P) = Typ
|
|
then
|
|
return True;
|
|
|
|
-- A subtype name may appear in an aspect specification for a
|
|
-- Predicate_Failure aspect, for which we do not construct a
|
|
-- wrapper procedure. The subtype will be replaced by the
|
|
-- expression being tested when the corresponding predicate
|
|
-- check is expanded.
|
|
|
|
elsif Nkind (P) = N_Aspect_Specification
|
|
and then Nkind (Parent (P)) = N_Subtype_Declaration
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (P) = N_Pragma
|
|
and then
|
|
Get_Pragma_Id (Pragma_Name (P)) = Pragma_Predicate_Failure
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
end loop;
|
|
end if;
|
|
|
|
-- In any other context this is not a current occurrence
|
|
|
|
return False;
|
|
end Is_Current_Instance;
|
|
|
|
--------------------
|
|
-- Is_Declaration --
|
|
--------------------
|
|
|
|
function Is_Declaration (N : Node_Id) return Boolean is
|
|
begin
|
|
case Nkind (N) is
|
|
when N_Abstract_Subprogram_Declaration |
|
|
N_Exception_Declaration |
|
|
N_Exception_Renaming_Declaration |
|
|
N_Full_Type_Declaration |
|
|
N_Generic_Function_Renaming_Declaration |
|
|
N_Generic_Package_Declaration |
|
|
N_Generic_Package_Renaming_Declaration |
|
|
N_Generic_Procedure_Renaming_Declaration |
|
|
N_Generic_Subprogram_Declaration |
|
|
N_Number_Declaration |
|
|
N_Object_Declaration |
|
|
N_Object_Renaming_Declaration |
|
|
N_Package_Declaration |
|
|
N_Package_Renaming_Declaration |
|
|
N_Private_Extension_Declaration |
|
|
N_Private_Type_Declaration |
|
|
N_Subprogram_Declaration |
|
|
N_Subprogram_Renaming_Declaration |
|
|
N_Subtype_Declaration =>
|
|
return True;
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end Is_Declaration;
|
|
|
|
--------------------------------
|
|
-- Is_Declared_Within_Variant --
|
|
--------------------------------
|
|
|
|
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
|
|
Comp_Decl : constant Node_Id := Parent (Comp);
|
|
Comp_List : constant Node_Id := Parent (Comp_Decl);
|
|
begin
|
|
return Nkind (Parent (Comp_List)) = N_Variant;
|
|
end Is_Declared_Within_Variant;
|
|
|
|
----------------------------------------------
|
|
-- Is_Dependent_Component_Of_Mutable_Object --
|
|
----------------------------------------------
|
|
|
|
function Is_Dependent_Component_Of_Mutable_Object
|
|
(Object : Node_Id) return Boolean
|
|
is
|
|
P : Node_Id;
|
|
Prefix_Type : Entity_Id;
|
|
P_Aliased : Boolean := False;
|
|
Comp : Entity_Id;
|
|
|
|
Deref : Node_Id := Object;
|
|
-- Dereference node, in something like X.all.Y(2)
|
|
|
|
-- Start of processing for Is_Dependent_Component_Of_Mutable_Object
|
|
|
|
begin
|
|
-- Find the dereference node if any
|
|
|
|
while Nkind_In (Deref, N_Indexed_Component,
|
|
N_Selected_Component,
|
|
N_Slice)
|
|
loop
|
|
Deref := Prefix (Deref);
|
|
end loop;
|
|
|
|
-- Ada 2005: If we have a component or slice of a dereference,
|
|
-- something like X.all.Y (2), and the type of X is access-to-constant,
|
|
-- Is_Variable will return False, because it is indeed a constant
|
|
-- view. But it might be a view of a variable object, so we want the
|
|
-- following condition to be True in that case.
|
|
|
|
if Is_Variable (Object)
|
|
or else (Ada_Version >= Ada_2005
|
|
and then Nkind (Deref) = N_Explicit_Dereference)
|
|
then
|
|
if Nkind (Object) = N_Selected_Component then
|
|
P := Prefix (Object);
|
|
Prefix_Type := Etype (P);
|
|
|
|
if Is_Entity_Name (P) then
|
|
if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
|
|
Prefix_Type := Base_Type (Prefix_Type);
|
|
end if;
|
|
|
|
if Is_Aliased (Entity (P)) then
|
|
P_Aliased := True;
|
|
end if;
|
|
|
|
-- A discriminant check on a selected component may be expanded
|
|
-- into a dereference when removing side-effects. Recover the
|
|
-- original node and its type, which may be unconstrained.
|
|
|
|
elsif Nkind (P) = N_Explicit_Dereference
|
|
and then not (Comes_From_Source (P))
|
|
then
|
|
P := Original_Node (P);
|
|
Prefix_Type := Etype (P);
|
|
|
|
else
|
|
-- Check for prefix being an aliased component???
|
|
|
|
null;
|
|
|
|
end if;
|
|
|
|
-- A heap object is constrained by its initial value
|
|
|
|
-- Ada 2005 (AI-363): Always assume the object could be mutable in
|
|
-- the dereferenced case, since the access value might denote an
|
|
-- unconstrained aliased object, whereas in Ada 95 the designated
|
|
-- object is guaranteed to be constrained. A worst-case assumption
|
|
-- has to apply in Ada 2005 because we can't tell at compile
|
|
-- time whether the object is "constrained by its initial value"
|
|
-- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
|
|
-- rules (these rules are acknowledged to need fixing).
|
|
|
|
if Ada_Version < Ada_2005 then
|
|
if Is_Access_Type (Prefix_Type)
|
|
or else Nkind (P) = N_Explicit_Dereference
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
else pragma Assert (Ada_Version >= Ada_2005);
|
|
if Is_Access_Type (Prefix_Type) then
|
|
|
|
-- If the access type is pool-specific, and there is no
|
|
-- constrained partial view of the designated type, then the
|
|
-- designated object is known to be constrained.
|
|
|
|
if Ekind (Prefix_Type) = E_Access_Type
|
|
and then not Object_Type_Has_Constrained_Partial_View
|
|
(Typ => Designated_Type (Prefix_Type),
|
|
Scop => Current_Scope)
|
|
then
|
|
return False;
|
|
|
|
-- Otherwise (general access type, or there is a constrained
|
|
-- partial view of the designated type), we need to check
|
|
-- based on the designated type.
|
|
|
|
else
|
|
Prefix_Type := Designated_Type (Prefix_Type);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Comp :=
|
|
Original_Record_Component (Entity (Selector_Name (Object)));
|
|
|
|
-- As per AI-0017, the renaming is illegal in a generic body, even
|
|
-- if the subtype is indefinite.
|
|
|
|
-- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
|
|
|
|
if not Is_Constrained (Prefix_Type)
|
|
and then (Is_Definite_Subtype (Prefix_Type)
|
|
or else
|
|
(Is_Generic_Type (Prefix_Type)
|
|
and then Ekind (Current_Scope) = E_Generic_Package
|
|
and then In_Package_Body (Current_Scope)))
|
|
|
|
and then (Is_Declared_Within_Variant (Comp)
|
|
or else Has_Discriminant_Dependent_Constraint (Comp))
|
|
and then (not P_Aliased or else Ada_Version >= Ada_2005)
|
|
then
|
|
return True;
|
|
|
|
-- If the prefix is of an access type at this point, then we want
|
|
-- to return False, rather than calling this function recursively
|
|
-- on the access object (which itself might be a discriminant-
|
|
-- dependent component of some other object, but that isn't
|
|
-- relevant to checking the object passed to us). This avoids
|
|
-- issuing wrong errors when compiling with -gnatc, where there
|
|
-- can be implicit dereferences that have not been expanded.
|
|
|
|
elsif Is_Access_Type (Etype (Prefix (Object))) then
|
|
return False;
|
|
|
|
else
|
|
return
|
|
Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
|
|
end if;
|
|
|
|
elsif Nkind (Object) = N_Indexed_Component
|
|
or else Nkind (Object) = N_Slice
|
|
then
|
|
return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
|
|
|
|
-- A type conversion that Is_Variable is a view conversion:
|
|
-- go back to the denoted object.
|
|
|
|
elsif Nkind (Object) = N_Type_Conversion then
|
|
return
|
|
Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Dependent_Component_Of_Mutable_Object;
|
|
|
|
---------------------
|
|
-- Is_Dereferenced --
|
|
---------------------
|
|
|
|
function Is_Dereferenced (N : Node_Id) return Boolean is
|
|
P : constant Node_Id := Parent (N);
|
|
begin
|
|
return Nkind_In (P, N_Selected_Component,
|
|
N_Explicit_Dereference,
|
|
N_Indexed_Component,
|
|
N_Slice)
|
|
and then Prefix (P) = N;
|
|
end Is_Dereferenced;
|
|
|
|
----------------------
|
|
-- Is_Descendant_Of --
|
|
----------------------
|
|
|
|
function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
|
|
T : Entity_Id;
|
|
Etyp : Entity_Id;
|
|
|
|
begin
|
|
pragma Assert (Nkind (T1) in N_Entity);
|
|
pragma Assert (Nkind (T2) in N_Entity);
|
|
|
|
T := Base_Type (T1);
|
|
|
|
-- Immediate return if the types match
|
|
|
|
if T = T2 then
|
|
return True;
|
|
|
|
-- Comment needed here ???
|
|
|
|
elsif Ekind (T) = E_Class_Wide_Type then
|
|
return Etype (T) = T2;
|
|
|
|
-- All other cases
|
|
|
|
else
|
|
loop
|
|
Etyp := Etype (T);
|
|
|
|
-- Done if we found the type we are looking for
|
|
|
|
if Etyp = T2 then
|
|
return True;
|
|
|
|
-- Done if no more derivations to check
|
|
|
|
elsif T = T1
|
|
or else T = Etyp
|
|
then
|
|
return False;
|
|
|
|
-- Following test catches error cases resulting from prev errors
|
|
|
|
elsif No (Etyp) then
|
|
return False;
|
|
|
|
elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
|
|
return False;
|
|
|
|
elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
|
|
return False;
|
|
end if;
|
|
|
|
T := Base_Type (Etyp);
|
|
end loop;
|
|
end if;
|
|
end Is_Descendant_Of;
|
|
|
|
----------------------------------------
|
|
-- Is_Descendant_Of_Suspension_Object --
|
|
----------------------------------------
|
|
|
|
function Is_Descendant_Of_Suspension_Object
|
|
(Typ : Entity_Id) return Boolean
|
|
is
|
|
Cur_Typ : Entity_Id;
|
|
Par_Typ : Entity_Id;
|
|
|
|
begin
|
|
-- Climb the type derivation chain checking each parent type against
|
|
-- Suspension_Object.
|
|
|
|
Cur_Typ := Base_Type (Typ);
|
|
while Present (Cur_Typ) loop
|
|
Par_Typ := Etype (Cur_Typ);
|
|
|
|
-- The current type is a match
|
|
|
|
if Is_Suspension_Object (Cur_Typ) then
|
|
return True;
|
|
|
|
-- Stop the traversal once the root of the derivation chain has been
|
|
-- reached. In that case the current type is its own base type.
|
|
|
|
elsif Cur_Typ = Par_Typ then
|
|
exit;
|
|
end if;
|
|
|
|
Cur_Typ := Base_Type (Par_Typ);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Descendant_Of_Suspension_Object;
|
|
|
|
---------------------------------------------
|
|
-- Is_Double_Precision_Floating_Point_Type --
|
|
---------------------------------------------
|
|
|
|
function Is_Double_Precision_Floating_Point_Type
|
|
(E : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Floating_Point_Type (E)
|
|
and then Machine_Radix_Value (E) = Uint_2
|
|
and then Machine_Mantissa_Value (E) = UI_From_Int (53)
|
|
and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
|
|
and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
|
|
end Is_Double_Precision_Floating_Point_Type;
|
|
|
|
-----------------------------
|
|
-- Is_Effectively_Volatile --
|
|
-----------------------------
|
|
|
|
function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
|
|
begin
|
|
if Is_Type (Id) then
|
|
|
|
-- An arbitrary type is effectively volatile when it is subject to
|
|
-- pragma Atomic or Volatile.
|
|
|
|
if Is_Volatile (Id) then
|
|
return True;
|
|
|
|
-- An array type is effectively volatile when it is subject to pragma
|
|
-- Atomic_Components or Volatile_Components or its component type is
|
|
-- effectively volatile.
|
|
|
|
elsif Is_Array_Type (Id) then
|
|
return
|
|
Has_Volatile_Components (Id)
|
|
or else
|
|
Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
|
|
|
|
-- A protected type is always volatile
|
|
|
|
elsif Is_Protected_Type (Id) then
|
|
return True;
|
|
|
|
-- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
|
|
-- automatically volatile.
|
|
|
|
elsif Is_Descendant_Of_Suspension_Object (Id) then
|
|
return True;
|
|
|
|
-- Otherwise the type is not effectively volatile
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- Otherwise Id denotes an object
|
|
|
|
else
|
|
return
|
|
Is_Volatile (Id)
|
|
or else Has_Volatile_Components (Id)
|
|
or else Is_Effectively_Volatile (Etype (Id));
|
|
end if;
|
|
end Is_Effectively_Volatile;
|
|
|
|
------------------------------------
|
|
-- Is_Effectively_Volatile_Object --
|
|
------------------------------------
|
|
|
|
function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Entity_Name (N) then
|
|
return Is_Effectively_Volatile (Entity (N));
|
|
|
|
elsif Nkind (N) = N_Indexed_Component then
|
|
return Is_Effectively_Volatile_Object (Prefix (N));
|
|
|
|
elsif Nkind (N) = N_Selected_Component then
|
|
return
|
|
Is_Effectively_Volatile_Object (Prefix (N))
|
|
or else
|
|
Is_Effectively_Volatile_Object (Selector_Name (N));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Effectively_Volatile_Object;
|
|
|
|
-------------------
|
|
-- Is_Entry_Body --
|
|
-------------------
|
|
|
|
function Is_Entry_Body (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind_In (Id, E_Entry, E_Entry_Family)
|
|
and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
|
|
end Is_Entry_Body;
|
|
|
|
--------------------------
|
|
-- Is_Entry_Declaration --
|
|
--------------------------
|
|
|
|
function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind_In (Id, E_Entry, E_Entry_Family)
|
|
and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
|
|
end Is_Entry_Declaration;
|
|
|
|
------------------------------------
|
|
-- Is_Expanded_Priority_Attribute --
|
|
------------------------------------
|
|
|
|
function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Nkind (E) = N_Function_Call
|
|
and then not Configurable_Run_Time_Mode
|
|
and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
|
|
or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
|
|
end Is_Expanded_Priority_Attribute;
|
|
|
|
----------------------------
|
|
-- Is_Expression_Function --
|
|
----------------------------
|
|
|
|
function Is_Expression_Function (Subp : Entity_Id) return Boolean is
|
|
begin
|
|
if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
|
|
return
|
|
Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
|
|
N_Expression_Function;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Expression_Function;
|
|
|
|
------------------------------------------
|
|
-- Is_Expression_Function_Or_Completion --
|
|
------------------------------------------
|
|
|
|
function Is_Expression_Function_Or_Completion
|
|
(Subp : Entity_Id) return Boolean
|
|
is
|
|
Subp_Decl : Node_Id;
|
|
|
|
begin
|
|
if Ekind (Subp) = E_Function then
|
|
Subp_Decl := Unit_Declaration_Node (Subp);
|
|
|
|
-- The function declaration is either an expression function or is
|
|
-- completed by an expression function body.
|
|
|
|
return
|
|
Is_Expression_Function (Subp)
|
|
or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
|
|
and then Present (Corresponding_Body (Subp_Decl))
|
|
and then Is_Expression_Function
|
|
(Corresponding_Body (Subp_Decl)));
|
|
|
|
elsif Ekind (Subp) = E_Subprogram_Body then
|
|
return Is_Expression_Function (Subp);
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Expression_Function_Or_Completion;
|
|
|
|
-----------------------
|
|
-- Is_EVF_Expression --
|
|
-----------------------
|
|
|
|
function Is_EVF_Expression (N : Node_Id) return Boolean is
|
|
Orig_N : constant Node_Id := Original_Node (N);
|
|
Alt : Node_Id;
|
|
Expr : Node_Id;
|
|
Id : Entity_Id;
|
|
|
|
begin
|
|
-- Detect a reference to a formal parameter of a specific tagged type
|
|
-- whose related subprogram is subject to pragma Expresions_Visible with
|
|
-- value "False".
|
|
|
|
if Is_Entity_Name (N) and then Present (Entity (N)) then
|
|
Id := Entity (N);
|
|
|
|
return
|
|
Is_Formal (Id)
|
|
and then Is_Specific_Tagged_Type (Etype (Id))
|
|
and then Extensions_Visible_Status (Id) =
|
|
Extensions_Visible_False;
|
|
|
|
-- A case expression is an EVF expression when it contains at least one
|
|
-- EVF dependent_expression. Note that a case expression may have been
|
|
-- expanded, hence the use of Original_Node.
|
|
|
|
elsif Nkind (Orig_N) = N_Case_Expression then
|
|
Alt := First (Alternatives (Orig_N));
|
|
while Present (Alt) loop
|
|
if Is_EVF_Expression (Expression (Alt)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Alt);
|
|
end loop;
|
|
|
|
-- An if expression is an EVF expression when it contains at least one
|
|
-- EVF dependent_expression. Note that an if expression may have been
|
|
-- expanded, hence the use of Original_Node.
|
|
|
|
elsif Nkind (Orig_N) = N_If_Expression then
|
|
Expr := Next (First (Expressions (Orig_N)));
|
|
while Present (Expr) loop
|
|
if Is_EVF_Expression (Expr) then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Expr);
|
|
end loop;
|
|
|
|
-- A qualified expression or a type conversion is an EVF expression when
|
|
-- its operand is an EVF expression.
|
|
|
|
elsif Nkind_In (N, N_Qualified_Expression,
|
|
N_Unchecked_Type_Conversion,
|
|
N_Type_Conversion)
|
|
then
|
|
return Is_EVF_Expression (Expression (N));
|
|
|
|
-- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
|
|
-- their prefix denotes an EVF expression.
|
|
|
|
elsif Nkind (N) = N_Attribute_Reference
|
|
and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
|
|
Name_Old,
|
|
Name_Update)
|
|
then
|
|
return Is_EVF_Expression (Prefix (N));
|
|
end if;
|
|
|
|
return False;
|
|
end Is_EVF_Expression;
|
|
|
|
--------------
|
|
-- Is_False --
|
|
--------------
|
|
|
|
function Is_False (U : Uint) return Boolean is
|
|
begin
|
|
return (U = 0);
|
|
end Is_False;
|
|
|
|
---------------------------
|
|
-- Is_Fixed_Model_Number --
|
|
---------------------------
|
|
|
|
function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
|
|
S : constant Ureal := Small_Value (T);
|
|
M : Urealp.Save_Mark;
|
|
R : Boolean;
|
|
begin
|
|
M := Urealp.Mark;
|
|
R := (U = UR_Trunc (U / S) * S);
|
|
Urealp.Release (M);
|
|
return R;
|
|
end Is_Fixed_Model_Number;
|
|
|
|
-------------------------------
|
|
-- Is_Fully_Initialized_Type --
|
|
-------------------------------
|
|
|
|
function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
|
|
begin
|
|
-- Scalar types
|
|
|
|
if Is_Scalar_Type (Typ) then
|
|
|
|
-- A scalar type with an aspect Default_Value is fully initialized
|
|
|
|
-- Note: Iniitalize/Normalize_Scalars also ensure full initialization
|
|
-- of a scalar type, but we don't take that into account here, since
|
|
-- we don't want these to affect warnings.
|
|
|
|
return Has_Default_Aspect (Typ);
|
|
|
|
elsif Is_Access_Type (Typ) then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
if Is_Fully_Initialized_Type (Component_Type (Typ))
|
|
or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- An interesting case, if we have a constrained type one of whose
|
|
-- bounds is known to be null, then there are no elements to be
|
|
-- initialized, so all the elements are initialized.
|
|
|
|
if Is_Constrained (Typ) then
|
|
declare
|
|
Indx : Node_Id;
|
|
Indx_Typ : Entity_Id;
|
|
Lbd, Hbd : Node_Id;
|
|
|
|
begin
|
|
Indx := First_Index (Typ);
|
|
while Present (Indx) loop
|
|
if Etype (Indx) = Any_Type then
|
|
return False;
|
|
|
|
-- If index is a range, use directly
|
|
|
|
elsif Nkind (Indx) = N_Range then
|
|
Lbd := Low_Bound (Indx);
|
|
Hbd := High_Bound (Indx);
|
|
|
|
else
|
|
Indx_Typ := Etype (Indx);
|
|
|
|
if Is_Private_Type (Indx_Typ) then
|
|
Indx_Typ := Full_View (Indx_Typ);
|
|
end if;
|
|
|
|
if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
|
|
return False;
|
|
else
|
|
Lbd := Type_Low_Bound (Indx_Typ);
|
|
Hbd := Type_High_Bound (Indx_Typ);
|
|
end if;
|
|
end if;
|
|
|
|
if Compile_Time_Known_Value (Lbd)
|
|
and then
|
|
Compile_Time_Known_Value (Hbd)
|
|
then
|
|
if Expr_Value (Hbd) < Expr_Value (Lbd) then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Index (Indx);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- If no null indexes, then type is not fully initialized
|
|
|
|
return False;
|
|
|
|
-- Record types
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
if Has_Discriminants (Typ)
|
|
and then
|
|
Present (Discriminant_Default_Value (First_Discriminant (Typ)))
|
|
and then Is_Fully_Initialized_Variant (Typ)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- We consider bounded string types to be fully initialized, because
|
|
-- otherwise we get false alarms when the Data component is not
|
|
-- default-initialized.
|
|
|
|
if Is_Bounded_String (Typ) then
|
|
return True;
|
|
end if;
|
|
|
|
-- Controlled records are considered to be fully initialized if
|
|
-- there is a user defined Initialize routine. This may not be
|
|
-- entirely correct, but as the spec notes, we are guessing here
|
|
-- what is best from the point of view of issuing warnings.
|
|
|
|
if Is_Controlled (Typ) then
|
|
declare
|
|
Utyp : constant Entity_Id := Underlying_Type (Typ);
|
|
|
|
begin
|
|
if Present (Utyp) then
|
|
declare
|
|
Init : constant Entity_Id :=
|
|
(Find_Optional_Prim_Op
|
|
(Underlying_Type (Typ), Name_Initialize));
|
|
|
|
begin
|
|
if Present (Init)
|
|
and then Comes_From_Source (Init)
|
|
and then not
|
|
Is_Predefined_File_Name
|
|
(File_Name (Get_Source_File_Index (Sloc (Init))))
|
|
then
|
|
return True;
|
|
|
|
elsif Has_Null_Extension (Typ)
|
|
and then
|
|
Is_Fully_Initialized_Type
|
|
(Etype (Base_Type (Typ)))
|
|
then
|
|
return True;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Otherwise see if all record components are initialized
|
|
|
|
declare
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
Ent := First_Entity (Typ);
|
|
while Present (Ent) loop
|
|
if Ekind (Ent) = E_Component
|
|
and then (No (Parent (Ent))
|
|
or else No (Expression (Parent (Ent))))
|
|
and then not Is_Fully_Initialized_Type (Etype (Ent))
|
|
|
|
-- Special VM case for tag components, which need to be
|
|
-- defined in this case, but are never initialized as VMs
|
|
-- are using other dispatching mechanisms. Ignore this
|
|
-- uninitialized case. Note that this applies both to the
|
|
-- uTag entry and the main vtable pointer (CPP_Class case).
|
|
|
|
and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
end;
|
|
|
|
-- No uninitialized components, so type is fully initialized.
|
|
-- Note that this catches the case of no components as well.
|
|
|
|
return True;
|
|
|
|
elsif Is_Concurrent_Type (Typ) then
|
|
return True;
|
|
|
|
elsif Is_Private_Type (Typ) then
|
|
declare
|
|
U : constant Entity_Id := Underlying_Type (Typ);
|
|
|
|
begin
|
|
if No (U) then
|
|
return False;
|
|
else
|
|
return Is_Fully_Initialized_Type (U);
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Fully_Initialized_Type;
|
|
|
|
----------------------------------
|
|
-- Is_Fully_Initialized_Variant --
|
|
----------------------------------
|
|
|
|
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Constraints : constant List_Id := New_List;
|
|
Components : constant Elist_Id := New_Elmt_List;
|
|
Comp_Elmt : Elmt_Id;
|
|
Comp_Id : Node_Id;
|
|
Comp_List : Node_Id;
|
|
Discr : Entity_Id;
|
|
Discr_Val : Node_Id;
|
|
|
|
Report_Errors : Boolean;
|
|
pragma Warnings (Off, Report_Errors);
|
|
|
|
begin
|
|
if Serious_Errors_Detected > 0 then
|
|
return False;
|
|
end if;
|
|
|
|
if Is_Record_Type (Typ)
|
|
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
|
|
and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
|
|
then
|
|
Comp_List := Component_List (Type_Definition (Parent (Typ)));
|
|
|
|
Discr := First_Discriminant (Typ);
|
|
while Present (Discr) loop
|
|
if Nkind (Parent (Discr)) = N_Discriminant_Specification then
|
|
Discr_Val := Expression (Parent (Discr));
|
|
|
|
if Present (Discr_Val)
|
|
and then Is_OK_Static_Expression (Discr_Val)
|
|
then
|
|
Append_To (Constraints,
|
|
Make_Component_Association (Loc,
|
|
Choices => New_List (New_Occurrence_Of (Discr, Loc)),
|
|
Expression => New_Copy (Discr_Val)));
|
|
else
|
|
return False;
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
Next_Discriminant (Discr);
|
|
end loop;
|
|
|
|
Gather_Components
|
|
(Typ => Typ,
|
|
Comp_List => Comp_List,
|
|
Governed_By => Constraints,
|
|
Into => Components,
|
|
Report_Errors => Report_Errors);
|
|
|
|
-- Check that each component present is fully initialized
|
|
|
|
Comp_Elmt := First_Elmt (Components);
|
|
while Present (Comp_Elmt) loop
|
|
Comp_Id := Node (Comp_Elmt);
|
|
|
|
if Ekind (Comp_Id) = E_Component
|
|
and then (No (Parent (Comp_Id))
|
|
or else No (Expression (Parent (Comp_Id))))
|
|
and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Elmt (Comp_Elmt);
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
elsif Is_Private_Type (Typ) then
|
|
declare
|
|
U : constant Entity_Id := Underlying_Type (Typ);
|
|
|
|
begin
|
|
if No (U) then
|
|
return False;
|
|
else
|
|
return Is_Fully_Initialized_Variant (U);
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Fully_Initialized_Variant;
|
|
|
|
------------------------------------
|
|
-- Is_Generic_Declaration_Or_Body --
|
|
------------------------------------
|
|
|
|
function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
|
|
Spec_Decl : Node_Id;
|
|
|
|
begin
|
|
-- Package/subprogram body
|
|
|
|
if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
|
|
and then Present (Corresponding_Spec (Decl))
|
|
then
|
|
Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
|
|
|
|
-- Package/subprogram body stub
|
|
|
|
elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
|
|
and then Present (Corresponding_Spec_Of_Stub (Decl))
|
|
then
|
|
Spec_Decl :=
|
|
Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
|
|
|
|
-- All other cases
|
|
|
|
else
|
|
Spec_Decl := Decl;
|
|
end if;
|
|
|
|
-- Rather than inspecting the defining entity of the spec declaration,
|
|
-- look at its Nkind. This takes care of the case where the analysis of
|
|
-- a generic body modifies the Ekind of its spec to allow for recursive
|
|
-- calls.
|
|
|
|
return
|
|
Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
|
|
N_Generic_Subprogram_Declaration);
|
|
end Is_Generic_Declaration_Or_Body;
|
|
|
|
----------------------------
|
|
-- Is_Inherited_Operation --
|
|
----------------------------
|
|
|
|
function Is_Inherited_Operation (E : Entity_Id) return Boolean is
|
|
pragma Assert (Is_Overloadable (E));
|
|
Kind : constant Node_Kind := Nkind (Parent (E));
|
|
begin
|
|
return Kind = N_Full_Type_Declaration
|
|
or else Kind = N_Private_Extension_Declaration
|
|
or else Kind = N_Subtype_Declaration
|
|
or else (Ekind (E) = E_Enumeration_Literal
|
|
and then Is_Derived_Type (Etype (E)));
|
|
end Is_Inherited_Operation;
|
|
|
|
-------------------------------------
|
|
-- Is_Inherited_Operation_For_Type --
|
|
-------------------------------------
|
|
|
|
function Is_Inherited_Operation_For_Type
|
|
(E : Entity_Id;
|
|
Typ : Entity_Id) return Boolean
|
|
is
|
|
begin
|
|
-- Check that the operation has been created by the type declaration
|
|
|
|
return Is_Inherited_Operation (E)
|
|
and then Defining_Identifier (Parent (E)) = Typ;
|
|
end Is_Inherited_Operation_For_Type;
|
|
|
|
-----------------
|
|
-- Is_Iterator --
|
|
-----------------
|
|
|
|
function Is_Iterator (Typ : Entity_Id) return Boolean is
|
|
function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
|
|
-- Determine whether type Iter_Typ is a predefined forward or reversible
|
|
-- iterator.
|
|
|
|
----------------------
|
|
-- Denotes_Iterator --
|
|
----------------------
|
|
|
|
function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
|
|
begin
|
|
-- Check that the name matches, and that the ultimate ancestor is in
|
|
-- a predefined unit, i.e the one that declares iterator interfaces.
|
|
|
|
return
|
|
Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
|
|
Name_Reversible_Iterator)
|
|
and then Is_Predefined_File_Name
|
|
(Unit_File_Name (Get_Source_Unit (Root_Type (Iter_Typ))));
|
|
end Denotes_Iterator;
|
|
|
|
-- Local variables
|
|
|
|
Iface_Elmt : Elmt_Id;
|
|
Ifaces : Elist_Id;
|
|
|
|
-- Start of processing for Is_Iterator
|
|
|
|
begin
|
|
-- The type may be a subtype of a descendant of the proper instance of
|
|
-- the predefined interface type, so we must use the root type of the
|
|
-- given type. The same is done for Is_Reversible_Iterator.
|
|
|
|
if Is_Class_Wide_Type (Typ)
|
|
and then Denotes_Iterator (Root_Type (Typ))
|
|
then
|
|
return True;
|
|
|
|
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
|
|
return False;
|
|
|
|
elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
|
|
return True;
|
|
|
|
else
|
|
Collect_Interfaces (Typ, Ifaces);
|
|
|
|
Iface_Elmt := First_Elmt (Ifaces);
|
|
while Present (Iface_Elmt) loop
|
|
if Denotes_Iterator (Node (Iface_Elmt)) then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Elmt (Iface_Elmt);
|
|
end loop;
|
|
|
|
return False;
|
|
end if;
|
|
end Is_Iterator;
|
|
|
|
----------------------------
|
|
-- Is_Iterator_Over_Array --
|
|
----------------------------
|
|
|
|
function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
|
|
Container : constant Node_Id := Name (N);
|
|
Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
|
|
begin
|
|
return Is_Array_Type (Container_Typ);
|
|
end Is_Iterator_Over_Array;
|
|
|
|
------------
|
|
-- Is_LHS --
|
|
------------
|
|
|
|
-- We seem to have a lot of overlapping functions that do similar things
|
|
-- (testing for left hand sides or lvalues???).
|
|
|
|
function Is_LHS (N : Node_Id) return Is_LHS_Result is
|
|
P : constant Node_Id := Parent (N);
|
|
|
|
begin
|
|
-- Return True if we are the left hand side of an assignment statement
|
|
|
|
if Nkind (P) = N_Assignment_Statement then
|
|
if Name (P) = N then
|
|
return Yes;
|
|
else
|
|
return No;
|
|
end if;
|
|
|
|
-- Case of prefix of indexed or selected component or slice
|
|
|
|
elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
|
|
and then N = Prefix (P)
|
|
then
|
|
-- Here we have the case where the parent P is N.Q or N(Q .. R).
|
|
-- If P is an LHS, then N is also effectively an LHS, but there
|
|
-- is an important exception. If N is of an access type, then
|
|
-- what we really have is N.all.Q (or N.all(Q .. R)). In either
|
|
-- case this makes N.all a left hand side but not N itself.
|
|
|
|
-- If we don't know the type yet, this is the case where we return
|
|
-- Unknown, since the answer depends on the type which is unknown.
|
|
|
|
if No (Etype (N)) then
|
|
return Unknown;
|
|
|
|
-- We have an Etype set, so we can check it
|
|
|
|
elsif Is_Access_Type (Etype (N)) then
|
|
return No;
|
|
|
|
-- OK, not access type case, so just test whole expression
|
|
|
|
else
|
|
return Is_LHS (P);
|
|
end if;
|
|
|
|
-- All other cases are not left hand sides
|
|
|
|
else
|
|
return No;
|
|
end if;
|
|
end Is_LHS;
|
|
|
|
-----------------------------
|
|
-- Is_Library_Level_Entity --
|
|
-----------------------------
|
|
|
|
function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
|
|
begin
|
|
-- The following is a small optimization, and it also properly handles
|
|
-- discriminals, which in task bodies might appear in expressions before
|
|
-- the corresponding procedure has been created, and which therefore do
|
|
-- not have an assigned scope.
|
|
|
|
if Is_Formal (E) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Normal test is simply that the enclosing dynamic scope is Standard
|
|
|
|
return Enclosing_Dynamic_Scope (E) = Standard_Standard;
|
|
end Is_Library_Level_Entity;
|
|
|
|
--------------------------------
|
|
-- Is_Limited_Class_Wide_Type --
|
|
--------------------------------
|
|
|
|
function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Is_Class_Wide_Type (Typ)
|
|
and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
|
|
end Is_Limited_Class_Wide_Type;
|
|
|
|
---------------------------------
|
|
-- Is_Local_Variable_Reference --
|
|
---------------------------------
|
|
|
|
function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
|
|
begin
|
|
if not Is_Entity_Name (Expr) then
|
|
return False;
|
|
|
|
else
|
|
declare
|
|
Ent : constant Entity_Id := Entity (Expr);
|
|
Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
|
|
begin
|
|
if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
|
|
return False;
|
|
else
|
|
return Present (Sub) and then Sub = Current_Subprogram;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Is_Local_Variable_Reference;
|
|
|
|
-----------------------------------------------
|
|
-- Is_Nontrivial_Default_Init_Cond_Procedure --
|
|
-----------------------------------------------
|
|
|
|
function Is_Nontrivial_Default_Init_Cond_Procedure
|
|
(Id : Entity_Id) return Boolean
|
|
is
|
|
Body_Decl : Node_Id;
|
|
Stmt : Node_Id;
|
|
|
|
begin
|
|
if Ekind (Id) = E_Procedure
|
|
and then Is_Default_Init_Cond_Procedure (Id)
|
|
then
|
|
Body_Decl :=
|
|
Unit_Declaration_Node
|
|
(Corresponding_Body (Unit_Declaration_Node (Id)));
|
|
|
|
-- The body of the Default_Initial_Condition procedure must contain
|
|
-- at least one statement, otherwise the generation of the subprogram
|
|
-- body failed.
|
|
|
|
pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
|
|
|
|
-- To qualify as nontrivial, the first statement of the procedure
|
|
-- must be a check in the form of an if statement. If the original
|
|
-- Default_Initial_Condition expression was folded, then the first
|
|
-- statement is not a check.
|
|
|
|
Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
|
|
|
|
return
|
|
Nkind (Stmt) = N_If_Statement
|
|
and then Nkind (Original_Node (Stmt)) = N_Pragma;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Nontrivial_Default_Init_Cond_Procedure;
|
|
|
|
-------------------------
|
|
-- Is_Null_Record_Type --
|
|
-------------------------
|
|
|
|
function Is_Null_Record_Type (T : Entity_Id) return Boolean is
|
|
Decl : constant Node_Id := Parent (T);
|
|
begin
|
|
return Nkind (Decl) = N_Full_Type_Declaration
|
|
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
|
|
and then
|
|
(No (Component_List (Type_Definition (Decl)))
|
|
or else Null_Present (Component_List (Type_Definition (Decl))));
|
|
end Is_Null_Record_Type;
|
|
|
|
-------------------------
|
|
-- Is_Object_Reference --
|
|
-------------------------
|
|
|
|
function Is_Object_Reference (N : Node_Id) return Boolean is
|
|
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
|
|
-- Determine whether N is the name of an internally-generated renaming
|
|
|
|
--------------------------------------
|
|
-- Is_Internally_Generated_Renaming --
|
|
--------------------------------------
|
|
|
|
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
|
|
P : Node_Id;
|
|
|
|
begin
|
|
P := N;
|
|
while Present (P) loop
|
|
if Nkind (P) = N_Object_Renaming_Declaration then
|
|
return not Comes_From_Source (P);
|
|
elsif Is_List_Member (P) then
|
|
return False;
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Internally_Generated_Renaming;
|
|
|
|
-- Start of processing for Is_Object_Reference
|
|
|
|
begin
|
|
if Is_Entity_Name (N) then
|
|
return Present (Entity (N)) and then Is_Object (Entity (N));
|
|
|
|
else
|
|
case Nkind (N) is
|
|
when N_Indexed_Component | N_Slice =>
|
|
return
|
|
Is_Object_Reference (Prefix (N))
|
|
or else Is_Access_Type (Etype (Prefix (N)));
|
|
|
|
-- In Ada 95, a function call is a constant object; a procedure
|
|
-- call is not.
|
|
|
|
when N_Function_Call =>
|
|
return Etype (N) /= Standard_Void_Type;
|
|
|
|
-- Attributes 'Input, 'Loop_Entry, 'Old, and 'Result produce
|
|
-- objects.
|
|
|
|
when N_Attribute_Reference =>
|
|
return
|
|
Nam_In (Attribute_Name (N), Name_Input,
|
|
Name_Loop_Entry,
|
|
Name_Old,
|
|
Name_Result);
|
|
|
|
when N_Selected_Component =>
|
|
return
|
|
Is_Object_Reference (Selector_Name (N))
|
|
and then
|
|
(Is_Object_Reference (Prefix (N))
|
|
or else Is_Access_Type (Etype (Prefix (N))));
|
|
|
|
when N_Explicit_Dereference =>
|
|
return True;
|
|
|
|
-- A view conversion of a tagged object is an object reference
|
|
|
|
when N_Type_Conversion =>
|
|
return Is_Tagged_Type (Etype (Subtype_Mark (N)))
|
|
and then Is_Tagged_Type (Etype (Expression (N)))
|
|
and then Is_Object_Reference (Expression (N));
|
|
|
|
-- An unchecked type conversion is considered to be an object if
|
|
-- the operand is an object (this construction arises only as a
|
|
-- result of expansion activities).
|
|
|
|
when N_Unchecked_Type_Conversion =>
|
|
return True;
|
|
|
|
-- Allow string literals to act as objects as long as they appear
|
|
-- in internally-generated renamings. The expansion of iterators
|
|
-- may generate such renamings when the range involves a string
|
|
-- literal.
|
|
|
|
when N_String_Literal =>
|
|
return Is_Internally_Generated_Renaming (Parent (N));
|
|
|
|
-- AI05-0003: In Ada 2012 a qualified expression is a name.
|
|
-- This allows disambiguation of function calls and the use
|
|
-- of aggregates in more contexts.
|
|
|
|
when N_Qualified_Expression =>
|
|
if Ada_Version < Ada_2012 then
|
|
return False;
|
|
else
|
|
return Is_Object_Reference (Expression (N))
|
|
or else Nkind (Expression (N)) = N_Aggregate;
|
|
end if;
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end if;
|
|
end Is_Object_Reference;
|
|
|
|
-----------------------------------
|
|
-- Is_OK_Variable_For_Out_Formal --
|
|
-----------------------------------
|
|
|
|
function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
|
|
begin
|
|
Note_Possible_Modification (AV, Sure => True);
|
|
|
|
-- We must reject parenthesized variable names. Comes_From_Source is
|
|
-- checked because there are currently cases where the compiler violates
|
|
-- this rule (e.g. passing a task object to its controlled Initialize
|
|
-- routine). This should be properly documented in sinfo???
|
|
|
|
if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
|
|
return False;
|
|
|
|
-- A variable is always allowed
|
|
|
|
elsif Is_Variable (AV) then
|
|
return True;
|
|
|
|
-- Generalized indexing operations are rewritten as explicit
|
|
-- dereferences, and it is only during resolution that we can
|
|
-- check whether the context requires an access_to_variable type.
|
|
|
|
elsif Nkind (AV) = N_Explicit_Dereference
|
|
and then Ada_Version >= Ada_2012
|
|
and then Nkind (Original_Node (AV)) = N_Indexed_Component
|
|
and then Present (Etype (Original_Node (AV)))
|
|
and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
|
|
then
|
|
return not Is_Access_Constant (Etype (Prefix (AV)));
|
|
|
|
-- Unchecked conversions are allowed only if they come from the
|
|
-- generated code, which sometimes uses unchecked conversions for out
|
|
-- parameters in cases where code generation is unaffected. We tell
|
|
-- source unchecked conversions by seeing if they are rewrites of
|
|
-- an original Unchecked_Conversion function call, or of an explicit
|
|
-- conversion of a function call or an aggregate (as may happen in the
|
|
-- expansion of a packed array aggregate).
|
|
|
|
elsif Nkind (AV) = N_Unchecked_Type_Conversion then
|
|
if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
|
|
return False;
|
|
|
|
elsif Comes_From_Source (AV)
|
|
and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
|
|
then
|
|
return False;
|
|
|
|
elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
|
|
return Is_OK_Variable_For_Out_Formal (Expression (AV));
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
|
|
-- Normal type conversions are allowed if argument is a variable
|
|
|
|
elsif Nkind (AV) = N_Type_Conversion then
|
|
if Is_Variable (Expression (AV))
|
|
and then Paren_Count (Expression (AV)) = 0
|
|
then
|
|
Note_Possible_Modification (Expression (AV), Sure => True);
|
|
return True;
|
|
|
|
-- We also allow a non-parenthesized expression that raises
|
|
-- constraint error if it rewrites what used to be a variable
|
|
|
|
elsif Raises_Constraint_Error (Expression (AV))
|
|
and then Paren_Count (Expression (AV)) = 0
|
|
and then Is_Variable (Original_Node (Expression (AV)))
|
|
then
|
|
return True;
|
|
|
|
-- Type conversion of something other than a variable
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- If this node is rewritten, then test the original form, if that is
|
|
-- OK, then we consider the rewritten node OK (for example, if the
|
|
-- original node is a conversion, then Is_Variable will not be true
|
|
-- but we still want to allow the conversion if it converts a variable).
|
|
|
|
elsif Original_Node (AV) /= AV then
|
|
|
|
-- In Ada 2012, the explicit dereference may be a rewritten call to a
|
|
-- Reference function.
|
|
|
|
if Ada_Version >= Ada_2012
|
|
and then Nkind (Original_Node (AV)) = N_Function_Call
|
|
and then
|
|
Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
|
|
then
|
|
|
|
-- Check that this is not a constant reference.
|
|
|
|
return not Is_Access_Constant (Etype (Prefix (AV)));
|
|
|
|
elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
|
|
return
|
|
not Is_Access_Constant (Etype
|
|
(Get_Reference_Discriminant (Etype (Original_Node (AV)))));
|
|
|
|
else
|
|
return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
|
|
end if;
|
|
|
|
-- All other non-variables are rejected
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_OK_Variable_For_Out_Formal;
|
|
|
|
----------------------------
|
|
-- Is_OK_Volatile_Context --
|
|
----------------------------
|
|
|
|
function Is_OK_Volatile_Context
|
|
(Context : Node_Id;
|
|
Obj_Ref : Node_Id) return Boolean
|
|
is
|
|
function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
|
|
-- Determine whether an arbitrary node denotes a call to a protected
|
|
-- entry, function, or procedure in prefixed form where the prefix is
|
|
-- Obj_Ref.
|
|
|
|
function Within_Check (Nod : Node_Id) return Boolean;
|
|
-- Determine whether an arbitrary node appears in a check node
|
|
|
|
function Within_Subprogram_Call (Nod : Node_Id) return Boolean;
|
|
-- Determine whether an arbitrary node appears in an entry, function, or
|
|
-- procedure call.
|
|
|
|
function Within_Volatile_Function (Id : Entity_Id) return Boolean;
|
|
-- Determine whether an arbitrary entity appears in a volatile function
|
|
|
|
---------------------------------
|
|
-- Is_Protected_Operation_Call --
|
|
---------------------------------
|
|
|
|
function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
|
|
Pref : Node_Id;
|
|
Subp : Node_Id;
|
|
|
|
begin
|
|
-- A call to a protected operations retains its selected component
|
|
-- form as opposed to other prefixed calls that are transformed in
|
|
-- expanded names.
|
|
|
|
if Nkind (Nod) = N_Selected_Component then
|
|
Pref := Prefix (Nod);
|
|
Subp := Selector_Name (Nod);
|
|
|
|
return
|
|
Pref = Obj_Ref
|
|
and then Present (Etype (Pref))
|
|
and then Is_Protected_Type (Etype (Pref))
|
|
and then Is_Entity_Name (Subp)
|
|
and then Present (Entity (Subp))
|
|
and then Ekind_In (Entity (Subp), E_Entry,
|
|
E_Entry_Family,
|
|
E_Function,
|
|
E_Procedure);
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Protected_Operation_Call;
|
|
|
|
------------------
|
|
-- Within_Check --
|
|
------------------
|
|
|
|
function Within_Check (Nod : Node_Id) return Boolean is
|
|
Par : Node_Id;
|
|
|
|
begin
|
|
-- Climb the parent chain looking for a check node
|
|
|
|
Par := Nod;
|
|
while Present (Par) loop
|
|
if Nkind (Par) in N_Raise_xxx_Error then
|
|
return True;
|
|
|
|
-- Prevent the search from going too far
|
|
|
|
elsif Is_Body_Or_Package_Declaration (Par) then
|
|
exit;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
return False;
|
|
end Within_Check;
|
|
|
|
----------------------------
|
|
-- Within_Subprogram_Call --
|
|
----------------------------
|
|
|
|
function Within_Subprogram_Call (Nod : Node_Id) return Boolean is
|
|
Par : Node_Id;
|
|
|
|
begin
|
|
-- Climb the parent chain looking for a function or procedure call
|
|
|
|
Par := Nod;
|
|
while Present (Par) loop
|
|
if Nkind_In (Par, N_Entry_Call_Statement,
|
|
N_Function_Call,
|
|
N_Procedure_Call_Statement)
|
|
then
|
|
return True;
|
|
|
|
-- Prevent the search from going too far
|
|
|
|
elsif Is_Body_Or_Package_Declaration (Par) then
|
|
exit;
|
|
end if;
|
|
|
|
Par := Parent (Par);
|
|
end loop;
|
|
|
|
return False;
|
|
end Within_Subprogram_Call;
|
|
|
|
------------------------------
|
|
-- Within_Volatile_Function --
|
|
------------------------------
|
|
|
|
function Within_Volatile_Function (Id : Entity_Id) return Boolean is
|
|
Func_Id : Entity_Id;
|
|
|
|
begin
|
|
-- Traverse the scope stack looking for a [generic] function
|
|
|
|
Func_Id := Id;
|
|
while Present (Func_Id) and then Func_Id /= Standard_Standard loop
|
|
if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
|
|
return Is_Volatile_Function (Func_Id);
|
|
end if;
|
|
|
|
Func_Id := Scope (Func_Id);
|
|
end loop;
|
|
|
|
return False;
|
|
end Within_Volatile_Function;
|
|
|
|
-- Local variables
|
|
|
|
Obj_Id : Entity_Id;
|
|
|
|
-- Start of processing for Is_OK_Volatile_Context
|
|
|
|
begin
|
|
-- The volatile object appears on either side of an assignment
|
|
|
|
if Nkind (Context) = N_Assignment_Statement then
|
|
return True;
|
|
|
|
-- The volatile object is part of the initialization expression of
|
|
-- another object.
|
|
|
|
elsif Nkind (Context) = N_Object_Declaration
|
|
and then Present (Expression (Context))
|
|
and then Expression (Context) = Obj_Ref
|
|
then
|
|
Obj_Id := Defining_Entity (Context);
|
|
|
|
-- The volatile object acts as the initialization expression of an
|
|
-- extended return statement. This is valid context as long as the
|
|
-- function is volatile.
|
|
|
|
if Is_Return_Object (Obj_Id) then
|
|
return Within_Volatile_Function (Obj_Id);
|
|
|
|
-- Otherwise this is a normal object initialization
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
|
|
-- The volatile object acts as the name of a renaming declaration
|
|
|
|
elsif Nkind (Context) = N_Object_Renaming_Declaration
|
|
and then Name (Context) = Obj_Ref
|
|
then
|
|
return True;
|
|
|
|
-- The volatile object appears as an actual parameter in a call to an
|
|
-- instance of Unchecked_Conversion whose result is renamed.
|
|
|
|
elsif Nkind (Context) = N_Function_Call
|
|
and then Is_Entity_Name (Name (Context))
|
|
and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
|
|
and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
|
|
then
|
|
return True;
|
|
|
|
-- The volatile object is actually the prefix in a protected entry,
|
|
-- function, or procedure call.
|
|
|
|
elsif Is_Protected_Operation_Call (Context) then
|
|
return True;
|
|
|
|
-- The volatile object appears as the expression of a simple return
|
|
-- statement that applies to a volatile function.
|
|
|
|
elsif Nkind (Context) = N_Simple_Return_Statement
|
|
and then Expression (Context) = Obj_Ref
|
|
then
|
|
return
|
|
Within_Volatile_Function (Return_Statement_Entity (Context));
|
|
|
|
-- The volatile object appears as the prefix of a name occurring in a
|
|
-- non-interfering context.
|
|
|
|
elsif Nkind_In (Context, N_Attribute_Reference,
|
|
N_Explicit_Dereference,
|
|
N_Indexed_Component,
|
|
N_Selected_Component,
|
|
N_Slice)
|
|
and then Prefix (Context) = Obj_Ref
|
|
and then Is_OK_Volatile_Context
|
|
(Context => Parent (Context),
|
|
Obj_Ref => Context)
|
|
then
|
|
return True;
|
|
|
|
-- The volatile object appears as the prefix of attributes Address,
|
|
-- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
|
|
-- Storage_Size.
|
|
|
|
elsif Nkind (Context) = N_Attribute_Reference
|
|
and then Prefix (Context) = Obj_Ref
|
|
and then Nam_In (Attribute_Name (Context), Name_Address,
|
|
Name_Alignment,
|
|
Name_Component_Size,
|
|
Name_First_Bit,
|
|
Name_Last_Bit,
|
|
Name_Position,
|
|
Name_Size,
|
|
Name_Storage_Size)
|
|
then
|
|
return True;
|
|
|
|
-- The volatile object appears as the expression of a type conversion
|
|
-- occurring in a non-interfering context.
|
|
|
|
elsif Nkind_In (Context, N_Type_Conversion,
|
|
N_Unchecked_Type_Conversion)
|
|
and then Expression (Context) = Obj_Ref
|
|
and then Is_OK_Volatile_Context
|
|
(Context => Parent (Context),
|
|
Obj_Ref => Context)
|
|
then
|
|
return True;
|
|
|
|
-- Allow references to volatile objects in various checks. This is not a
|
|
-- direct SPARK 2014 requirement.
|
|
|
|
elsif Within_Check (Context) then
|
|
return True;
|
|
|
|
-- Assume that references to effectively volatile objects that appear
|
|
-- as actual parameters in a subprogram call are always legal. A full
|
|
-- legality check is done when the actuals are resolved (see routine
|
|
-- Resolve_Actuals).
|
|
|
|
elsif Within_Subprogram_Call (Context) then
|
|
return True;
|
|
|
|
-- Otherwise the context is not suitable for an effectively volatile
|
|
-- object.
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_OK_Volatile_Context;
|
|
|
|
------------------------------------
|
|
-- Is_Package_Contract_Annotation --
|
|
------------------------------------
|
|
|
|
function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
|
|
Nam : Name_Id;
|
|
|
|
begin
|
|
if Nkind (Item) = N_Aspect_Specification then
|
|
Nam := Chars (Identifier (Item));
|
|
|
|
else pragma Assert (Nkind (Item) = N_Pragma);
|
|
Nam := Pragma_Name (Item);
|
|
end if;
|
|
|
|
return Nam = Name_Abstract_State
|
|
or else Nam = Name_Initial_Condition
|
|
or else Nam = Name_Initializes
|
|
or else Nam = Name_Refined_State;
|
|
end Is_Package_Contract_Annotation;
|
|
|
|
-----------------------------------
|
|
-- Is_Partially_Initialized_Type --
|
|
-----------------------------------
|
|
|
|
function Is_Partially_Initialized_Type
|
|
(Typ : Entity_Id;
|
|
Include_Implicit : Boolean := True) return Boolean
|
|
is
|
|
begin
|
|
if Is_Scalar_Type (Typ) then
|
|
return False;
|
|
|
|
elsif Is_Access_Type (Typ) then
|
|
return Include_Implicit;
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
|
|
-- If component type is partially initialized, so is array type
|
|
|
|
if Is_Partially_Initialized_Type
|
|
(Component_Type (Typ), Include_Implicit)
|
|
then
|
|
return True;
|
|
|
|
-- Otherwise we are only partially initialized if we are fully
|
|
-- initialized (this is the empty array case, no point in us
|
|
-- duplicating that code here).
|
|
|
|
else
|
|
return Is_Fully_Initialized_Type (Typ);
|
|
end if;
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
|
|
-- A discriminated type is always partially initialized if in
|
|
-- all mode
|
|
|
|
if Has_Discriminants (Typ) and then Include_Implicit then
|
|
return True;
|
|
|
|
-- A tagged type is always partially initialized
|
|
|
|
elsif Is_Tagged_Type (Typ) then
|
|
return True;
|
|
|
|
-- Case of non-discriminated record
|
|
|
|
else
|
|
declare
|
|
Ent : Entity_Id;
|
|
|
|
Component_Present : Boolean := False;
|
|
-- Set True if at least one component is present. If no
|
|
-- components are present, then record type is fully
|
|
-- initialized (another odd case, like the null array).
|
|
|
|
begin
|
|
-- Loop through components
|
|
|
|
Ent := First_Entity (Typ);
|
|
while Present (Ent) loop
|
|
if Ekind (Ent) = E_Component then
|
|
Component_Present := True;
|
|
|
|
-- If a component has an initialization expression then
|
|
-- the enclosing record type is partially initialized
|
|
|
|
if Present (Parent (Ent))
|
|
and then Present (Expression (Parent (Ent)))
|
|
then
|
|
return True;
|
|
|
|
-- If a component is of a type which is itself partially
|
|
-- initialized, then the enclosing record type is also.
|
|
|
|
elsif Is_Partially_Initialized_Type
|
|
(Etype (Ent), Include_Implicit)
|
|
then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
|
|
-- No initialized components found. If we found any components
|
|
-- they were all uninitialized so the result is false.
|
|
|
|
if Component_Present then
|
|
return False;
|
|
|
|
-- But if we found no components, then all the components are
|
|
-- initialized so we consider the type to be initialized.
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Concurrent types are always fully initialized
|
|
|
|
elsif Is_Concurrent_Type (Typ) then
|
|
return True;
|
|
|
|
-- For a private type, go to underlying type. If there is no underlying
|
|
-- type then just assume this partially initialized. Not clear if this
|
|
-- can happen in a non-error case, but no harm in testing for this.
|
|
|
|
elsif Is_Private_Type (Typ) then
|
|
declare
|
|
U : constant Entity_Id := Underlying_Type (Typ);
|
|
begin
|
|
if No (U) then
|
|
return True;
|
|
else
|
|
return Is_Partially_Initialized_Type (U, Include_Implicit);
|
|
end if;
|
|
end;
|
|
|
|
-- For any other type (are there any?) assume partially initialized
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Is_Partially_Initialized_Type;
|
|
|
|
------------------------------------
|
|
-- Is_Potentially_Persistent_Type --
|
|
------------------------------------
|
|
|
|
function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
|
|
Comp : Entity_Id;
|
|
Indx : Node_Id;
|
|
|
|
begin
|
|
-- For private type, test corresponding full type
|
|
|
|
if Is_Private_Type (T) then
|
|
return Is_Potentially_Persistent_Type (Full_View (T));
|
|
|
|
-- Scalar types are potentially persistent
|
|
|
|
elsif Is_Scalar_Type (T) then
|
|
return True;
|
|
|
|
-- Record type is potentially persistent if not tagged and the types of
|
|
-- all it components are potentially persistent, and no component has
|
|
-- an initialization expression.
|
|
|
|
elsif Is_Record_Type (T)
|
|
and then not Is_Tagged_Type (T)
|
|
and then not Is_Partially_Initialized_Type (T)
|
|
then
|
|
Comp := First_Component (T);
|
|
while Present (Comp) loop
|
|
if not Is_Potentially_Persistent_Type (Etype (Comp)) then
|
|
return False;
|
|
else
|
|
Next_Entity (Comp);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
-- Array type is potentially persistent if its component type is
|
|
-- potentially persistent and if all its constraints are static.
|
|
|
|
elsif Is_Array_Type (T) then
|
|
if not Is_Potentially_Persistent_Type (Component_Type (T)) then
|
|
return False;
|
|
end if;
|
|
|
|
Indx := First_Index (T);
|
|
while Present (Indx) loop
|
|
if not Is_OK_Static_Subtype (Etype (Indx)) then
|
|
return False;
|
|
else
|
|
Next_Index (Indx);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
-- All other types are not potentially persistent
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Potentially_Persistent_Type;
|
|
|
|
--------------------------------
|
|
-- Is_Potentially_Unevaluated --
|
|
--------------------------------
|
|
|
|
function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
|
|
Par : Node_Id;
|
|
Expr : Node_Id;
|
|
|
|
begin
|
|
Expr := N;
|
|
Par := Parent (N);
|
|
|
|
-- A postcondition whose expression is a short-circuit is broken down
|
|
-- into individual aspects for better exception reporting. The original
|
|
-- short-circuit expression is rewritten as the second operand, and an
|
|
-- occurrence of 'Old in that operand is potentially unevaluated.
|
|
-- See Sem_ch13.adb for details of this transformation.
|
|
|
|
if Nkind (Original_Node (Par)) = N_And_Then then
|
|
return True;
|
|
end if;
|
|
|
|
while not Nkind_In (Par, N_If_Expression,
|
|
N_Case_Expression,
|
|
N_And_Then,
|
|
N_Or_Else,
|
|
N_In,
|
|
N_Not_In)
|
|
loop
|
|
Expr := Par;
|
|
Par := Parent (Par);
|
|
|
|
-- If the context is not an expression, or if is the result of
|
|
-- expansion of an enclosing construct (such as another attribute)
|
|
-- the predicate does not apply.
|
|
|
|
if Nkind (Par) not in N_Subexpr
|
|
or else not Comes_From_Source (Par)
|
|
then
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
|
|
if Nkind (Par) = N_If_Expression then
|
|
return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
|
|
|
|
elsif Nkind (Par) = N_Case_Expression then
|
|
return Expr /= Expression (Par);
|
|
|
|
elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
|
|
return Expr = Right_Opnd (Par);
|
|
|
|
elsif Nkind_In (Par, N_In, N_Not_In) then
|
|
return Expr /= Left_Opnd (Par);
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Potentially_Unevaluated;
|
|
|
|
---------------------------------
|
|
-- Is_Protected_Self_Reference --
|
|
---------------------------------
|
|
|
|
function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
|
|
|
|
function In_Access_Definition (N : Node_Id) return Boolean;
|
|
-- Returns true if N belongs to an access definition
|
|
|
|
--------------------------
|
|
-- In_Access_Definition --
|
|
--------------------------
|
|
|
|
function In_Access_Definition (N : Node_Id) return Boolean is
|
|
P : Node_Id;
|
|
|
|
begin
|
|
P := Parent (N);
|
|
while Present (P) loop
|
|
if Nkind (P) = N_Access_Definition then
|
|
return True;
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Access_Definition;
|
|
|
|
-- Start of processing for Is_Protected_Self_Reference
|
|
|
|
begin
|
|
-- Verify that prefix is analyzed and has the proper form. Note that
|
|
-- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
|
|
-- produce the address of an entity, do not analyze their prefix
|
|
-- because they denote entities that are not necessarily visible.
|
|
-- Neither of them can apply to a protected type.
|
|
|
|
return Ada_Version >= Ada_2005
|
|
and then Is_Entity_Name (N)
|
|
and then Present (Entity (N))
|
|
and then Is_Protected_Type (Entity (N))
|
|
and then In_Open_Scopes (Entity (N))
|
|
and then not In_Access_Definition (N);
|
|
end Is_Protected_Self_Reference;
|
|
|
|
-----------------------------
|
|
-- Is_RCI_Pkg_Spec_Or_Body --
|
|
-----------------------------
|
|
|
|
function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
|
|
|
|
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
|
|
-- Return True if the unit of Cunit is an RCI package declaration
|
|
|
|
---------------------------
|
|
-- Is_RCI_Pkg_Decl_Cunit --
|
|
---------------------------
|
|
|
|
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
|
|
The_Unit : constant Node_Id := Unit (Cunit);
|
|
|
|
begin
|
|
if Nkind (The_Unit) /= N_Package_Declaration then
|
|
return False;
|
|
end if;
|
|
|
|
return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
|
|
end Is_RCI_Pkg_Decl_Cunit;
|
|
|
|
-- Start of processing for Is_RCI_Pkg_Spec_Or_Body
|
|
|
|
begin
|
|
return Is_RCI_Pkg_Decl_Cunit (Cunit)
|
|
or else
|
|
(Nkind (Unit (Cunit)) = N_Package_Body
|
|
and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
|
|
end Is_RCI_Pkg_Spec_Or_Body;
|
|
|
|
-----------------------------------------
|
|
-- Is_Remote_Access_To_Class_Wide_Type --
|
|
-----------------------------------------
|
|
|
|
function Is_Remote_Access_To_Class_Wide_Type
|
|
(E : Entity_Id) return Boolean
|
|
is
|
|
begin
|
|
-- A remote access to class-wide type is a general access to object type
|
|
-- declared in the visible part of a Remote_Types or Remote_Call_
|
|
-- Interface unit.
|
|
|
|
return Ekind (E) = E_General_Access_Type
|
|
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
|
|
end Is_Remote_Access_To_Class_Wide_Type;
|
|
|
|
-----------------------------------------
|
|
-- Is_Remote_Access_To_Subprogram_Type --
|
|
-----------------------------------------
|
|
|
|
function Is_Remote_Access_To_Subprogram_Type
|
|
(E : Entity_Id) return Boolean
|
|
is
|
|
begin
|
|
return (Ekind (E) = E_Access_Subprogram_Type
|
|
or else (Ekind (E) = E_Record_Type
|
|
and then Present (Corresponding_Remote_Type (E))))
|
|
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
|
|
end Is_Remote_Access_To_Subprogram_Type;
|
|
|
|
--------------------
|
|
-- Is_Remote_Call --
|
|
--------------------
|
|
|
|
function Is_Remote_Call (N : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (N) not in N_Subprogram_Call then
|
|
|
|
-- An entry call cannot be remote
|
|
|
|
return False;
|
|
|
|
elsif Nkind (Name (N)) in N_Has_Entity
|
|
and then Is_Remote_Call_Interface (Entity (Name (N)))
|
|
then
|
|
-- A subprogram declared in the spec of a RCI package is remote
|
|
|
|
return True;
|
|
|
|
elsif Nkind (Name (N)) = N_Explicit_Dereference
|
|
and then Is_Remote_Access_To_Subprogram_Type
|
|
(Etype (Prefix (Name (N))))
|
|
then
|
|
-- The dereference of a RAS is a remote call
|
|
|
|
return True;
|
|
|
|
elsif Present (Controlling_Argument (N))
|
|
and then Is_Remote_Access_To_Class_Wide_Type
|
|
(Etype (Controlling_Argument (N)))
|
|
then
|
|
-- Any primitive operation call with a controlling argument of
|
|
-- a RACW type is a remote call.
|
|
|
|
return True;
|
|
end if;
|
|
|
|
-- All other calls are local calls
|
|
|
|
return False;
|
|
end Is_Remote_Call;
|
|
|
|
----------------------
|
|
-- Is_Renamed_Entry --
|
|
----------------------
|
|
|
|
function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
|
|
Orig_Node : Node_Id := Empty;
|
|
Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
|
|
|
|
function Is_Entry (Nam : Node_Id) return Boolean;
|
|
-- Determine whether Nam is an entry. Traverse selectors if there are
|
|
-- nested selected components.
|
|
|
|
--------------
|
|
-- Is_Entry --
|
|
--------------
|
|
|
|
function Is_Entry (Nam : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (Nam) = N_Selected_Component then
|
|
return Is_Entry (Selector_Name (Nam));
|
|
end if;
|
|
|
|
return Ekind (Entity (Nam)) = E_Entry;
|
|
end Is_Entry;
|
|
|
|
-- Start of processing for Is_Renamed_Entry
|
|
|
|
begin
|
|
if Present (Alias (Proc_Nam)) then
|
|
Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
|
|
end if;
|
|
|
|
-- Look for a rewritten subprogram renaming declaration
|
|
|
|
if Nkind (Subp_Decl) = N_Subprogram_Declaration
|
|
and then Present (Original_Node (Subp_Decl))
|
|
then
|
|
Orig_Node := Original_Node (Subp_Decl);
|
|
end if;
|
|
|
|
-- The rewritten subprogram is actually an entry
|
|
|
|
if Present (Orig_Node)
|
|
and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
|
|
and then Is_Entry (Name (Orig_Node))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Renamed_Entry;
|
|
|
|
-----------------------------
|
|
-- Is_Renaming_Declaration --
|
|
-----------------------------
|
|
|
|
function Is_Renaming_Declaration (N : Node_Id) return Boolean is
|
|
begin
|
|
case Nkind (N) is
|
|
when N_Exception_Renaming_Declaration |
|
|
N_Generic_Function_Renaming_Declaration |
|
|
N_Generic_Package_Renaming_Declaration |
|
|
N_Generic_Procedure_Renaming_Declaration |
|
|
N_Object_Renaming_Declaration |
|
|
N_Package_Renaming_Declaration |
|
|
N_Subprogram_Renaming_Declaration =>
|
|
return True;
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end Is_Renaming_Declaration;
|
|
|
|
----------------------------
|
|
-- Is_Reversible_Iterator --
|
|
----------------------------
|
|
|
|
function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
|
|
Ifaces_List : Elist_Id;
|
|
Iface_Elmt : Elmt_Id;
|
|
Iface : Entity_Id;
|
|
|
|
begin
|
|
if Is_Class_Wide_Type (Typ)
|
|
and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
|
|
and then Is_Predefined_File_Name
|
|
(Unit_File_Name (Get_Source_Unit (Root_Type (Typ))))
|
|
then
|
|
return True;
|
|
|
|
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
|
|
return False;
|
|
|
|
else
|
|
Collect_Interfaces (Typ, Ifaces_List);
|
|
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
|
while Present (Iface_Elmt) loop
|
|
Iface := Node (Iface_Elmt);
|
|
if Chars (Iface) = Name_Reversible_Iterator
|
|
and then
|
|
Is_Predefined_File_Name
|
|
(Unit_File_Name (Get_Source_Unit (Iface)))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Elmt (Iface_Elmt);
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Reversible_Iterator;
|
|
|
|
----------------------
|
|
-- Is_Selector_Name --
|
|
----------------------
|
|
|
|
function Is_Selector_Name (N : Node_Id) return Boolean is
|
|
begin
|
|
if not Is_List_Member (N) then
|
|
declare
|
|
P : constant Node_Id := Parent (N);
|
|
begin
|
|
return Nkind_In (P, N_Expanded_Name,
|
|
N_Generic_Association,
|
|
N_Parameter_Association,
|
|
N_Selected_Component)
|
|
and then Selector_Name (P) = N;
|
|
end;
|
|
|
|
else
|
|
declare
|
|
L : constant List_Id := List_Containing (N);
|
|
P : constant Node_Id := Parent (L);
|
|
begin
|
|
return (Nkind (P) = N_Discriminant_Association
|
|
and then Selector_Names (P) = L)
|
|
or else
|
|
(Nkind (P) = N_Component_Association
|
|
and then Choices (P) = L);
|
|
end;
|
|
end if;
|
|
end Is_Selector_Name;
|
|
|
|
---------------------------------
|
|
-- Is_Single_Concurrent_Object --
|
|
---------------------------------
|
|
|
|
function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
|
|
end Is_Single_Concurrent_Object;
|
|
|
|
-------------------------------
|
|
-- Is_Single_Concurrent_Type --
|
|
-------------------------------
|
|
|
|
function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind_In (Id, E_Protected_Type, E_Task_Type)
|
|
and then Is_Single_Concurrent_Type_Declaration
|
|
(Declaration_Node (Id));
|
|
end Is_Single_Concurrent_Type;
|
|
|
|
-------------------------------------------
|
|
-- Is_Single_Concurrent_Type_Declaration --
|
|
-------------------------------------------
|
|
|
|
function Is_Single_Concurrent_Type_Declaration
|
|
(N : Node_Id) return Boolean
|
|
is
|
|
begin
|
|
return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
|
|
N_Single_Task_Declaration);
|
|
end Is_Single_Concurrent_Type_Declaration;
|
|
|
|
---------------------------------------------
|
|
-- Is_Single_Precision_Floating_Point_Type --
|
|
---------------------------------------------
|
|
|
|
function Is_Single_Precision_Floating_Point_Type
|
|
(E : Entity_Id) return Boolean is
|
|
begin
|
|
return Is_Floating_Point_Type (E)
|
|
and then Machine_Radix_Value (E) = Uint_2
|
|
and then Machine_Mantissa_Value (E) = Uint_24
|
|
and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
|
|
and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
|
|
end Is_Single_Precision_Floating_Point_Type;
|
|
|
|
--------------------------------
|
|
-- Is_Single_Protected_Object --
|
|
--------------------------------
|
|
|
|
function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind (Id) = E_Variable
|
|
and then Ekind (Etype (Id)) = E_Protected_Type
|
|
and then Is_Single_Concurrent_Type (Etype (Id));
|
|
end Is_Single_Protected_Object;
|
|
|
|
---------------------------
|
|
-- Is_Single_Task_Object --
|
|
---------------------------
|
|
|
|
function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
|
|
begin
|
|
return
|
|
Ekind (Id) = E_Variable
|
|
and then Ekind (Etype (Id)) = E_Task_Type
|
|
and then Is_Single_Concurrent_Type (Etype (Id));
|
|
end Is_Single_Task_Object;
|
|
|
|
-------------------------------------
|
|
-- Is_SPARK_05_Initialization_Expr --
|
|
-------------------------------------
|
|
|
|
function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
|
|
Is_Ok : Boolean;
|
|
Expr : Node_Id;
|
|
Comp_Assn : Node_Id;
|
|
Orig_N : constant Node_Id := Original_Node (N);
|
|
|
|
begin
|
|
Is_Ok := True;
|
|
|
|
if not Comes_From_Source (Orig_N) then
|
|
goto Done;
|
|
end if;
|
|
|
|
pragma Assert (Nkind (Orig_N) in N_Subexpr);
|
|
|
|
case Nkind (Orig_N) is
|
|
when N_Character_Literal |
|
|
N_Integer_Literal |
|
|
N_Real_Literal |
|
|
N_String_Literal =>
|
|
null;
|
|
|
|
when N_Identifier |
|
|
N_Expanded_Name =>
|
|
if Is_Entity_Name (Orig_N)
|
|
and then Present (Entity (Orig_N)) -- needed in some cases
|
|
then
|
|
case Ekind (Entity (Orig_N)) is
|
|
when E_Constant |
|
|
E_Enumeration_Literal |
|
|
E_Named_Integer |
|
|
E_Named_Real =>
|
|
null;
|
|
when others =>
|
|
if Is_Type (Entity (Orig_N)) then
|
|
null;
|
|
else
|
|
Is_Ok := False;
|
|
end if;
|
|
end case;
|
|
end if;
|
|
|
|
when N_Qualified_Expression |
|
|
N_Type_Conversion =>
|
|
Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
|
|
|
|
when N_Unary_Op =>
|
|
Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
|
|
|
|
when N_Binary_Op |
|
|
N_Short_Circuit |
|
|
N_Membership_Test =>
|
|
Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
|
|
and then
|
|
Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
|
|
|
|
when N_Aggregate |
|
|
N_Extension_Aggregate =>
|
|
if Nkind (Orig_N) = N_Extension_Aggregate then
|
|
Is_Ok :=
|
|
Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
|
|
end if;
|
|
|
|
Expr := First (Expressions (Orig_N));
|
|
while Present (Expr) loop
|
|
if not Is_SPARK_05_Initialization_Expr (Expr) then
|
|
Is_Ok := False;
|
|
goto Done;
|
|
end if;
|
|
|
|
Next (Expr);
|
|
end loop;
|
|
|
|
Comp_Assn := First (Component_Associations (Orig_N));
|
|
while Present (Comp_Assn) loop
|
|
Expr := Expression (Comp_Assn);
|
|
|
|
-- Note: test for Present here needed for box assocation
|
|
|
|
if Present (Expr)
|
|
and then not Is_SPARK_05_Initialization_Expr (Expr)
|
|
then
|
|
Is_Ok := False;
|
|
goto Done;
|
|
end if;
|
|
|
|
Next (Comp_Assn);
|
|
end loop;
|
|
|
|
when N_Attribute_Reference =>
|
|
if Nkind (Prefix (Orig_N)) in N_Subexpr then
|
|
Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
|
|
end if;
|
|
|
|
Expr := First (Expressions (Orig_N));
|
|
while Present (Expr) loop
|
|
if not Is_SPARK_05_Initialization_Expr (Expr) then
|
|
Is_Ok := False;
|
|
goto Done;
|
|
end if;
|
|
|
|
Next (Expr);
|
|
end loop;
|
|
|
|
-- Selected components might be expanded named not yet resolved, so
|
|
-- default on the safe side. (Eg on sparklex.ads)
|
|
|
|
when N_Selected_Component =>
|
|
null;
|
|
|
|
when others =>
|
|
Is_Ok := False;
|
|
end case;
|
|
|
|
<<Done>>
|
|
return Is_Ok;
|
|
end Is_SPARK_05_Initialization_Expr;
|
|
|
|
----------------------------------
|
|
-- Is_SPARK_05_Object_Reference --
|
|
----------------------------------
|
|
|
|
function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Entity_Name (N) then
|
|
return Present (Entity (N))
|
|
and then
|
|
(Ekind_In (Entity (N), E_Constant, E_Variable)
|
|
or else Ekind (Entity (N)) in Formal_Kind);
|
|
|
|
else
|
|
case Nkind (N) is
|
|
when N_Selected_Component =>
|
|
return Is_SPARK_05_Object_Reference (Prefix (N));
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end if;
|
|
end Is_SPARK_05_Object_Reference;
|
|
|
|
-----------------------------
|
|
-- Is_Specific_Tagged_Type --
|
|
-----------------------------
|
|
|
|
function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
|
|
Full_Typ : Entity_Id;
|
|
|
|
begin
|
|
-- Handle private types
|
|
|
|
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
|
|
Full_Typ := Full_View (Typ);
|
|
else
|
|
Full_Typ := Typ;
|
|
end if;
|
|
|
|
-- A specific tagged type is a non-class-wide tagged type
|
|
|
|
return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
|
|
end Is_Specific_Tagged_Type;
|
|
|
|
------------------
|
|
-- Is_Statement --
|
|
------------------
|
|
|
|
function Is_Statement (N : Node_Id) return Boolean is
|
|
begin
|
|
return
|
|
Nkind (N) in N_Statement_Other_Than_Procedure_Call
|
|
or else Nkind (N) = N_Procedure_Call_Statement;
|
|
end Is_Statement;
|
|
|
|
---------------------------------------
|
|
-- Is_Subprogram_Contract_Annotation --
|
|
---------------------------------------
|
|
|
|
function Is_Subprogram_Contract_Annotation
|
|
(Item : Node_Id) return Boolean
|
|
is
|
|
Nam : Name_Id;
|
|
|
|
begin
|
|
if Nkind (Item) = N_Aspect_Specification then
|
|
Nam := Chars (Identifier (Item));
|
|
|
|
else pragma Assert (Nkind (Item) = N_Pragma);
|
|
Nam := Pragma_Name (Item);
|
|
end if;
|
|
|
|
return Nam = Name_Contract_Cases
|
|
or else Nam = Name_Depends
|
|
or else Nam = Name_Extensions_Visible
|
|
or else Nam = Name_Global
|
|
or else Nam = Name_Post
|
|
or else Nam = Name_Post_Class
|
|
or else Nam = Name_Postcondition
|
|
or else Nam = Name_Pre
|
|
or else Nam = Name_Pre_Class
|
|
or else Nam = Name_Precondition
|
|
or else Nam = Name_Refined_Depends
|
|
or else Nam = Name_Refined_Global
|
|
or else Nam = Name_Refined_Post
|
|
or else Nam = Name_Test_Case;
|
|
end Is_Subprogram_Contract_Annotation;
|
|
|
|
--------------------------------------------------
|
|
-- Is_Subprogram_Stub_Without_Prior_Declaration --
|
|
--------------------------------------------------
|
|
|
|
function Is_Subprogram_Stub_Without_Prior_Declaration
|
|
(N : Node_Id) return Boolean
|
|
is
|
|
begin
|
|
-- A subprogram stub without prior declaration serves as declaration for
|
|
-- the actual subprogram body. As such, it has an attached defining
|
|
-- entity of E_[Generic_]Function or E_[Generic_]Procedure.
|
|
|
|
return Nkind (N) = N_Subprogram_Body_Stub
|
|
and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
|
|
end Is_Subprogram_Stub_Without_Prior_Declaration;
|
|
|
|
--------------------------
|
|
-- Is_Suspension_Object --
|
|
--------------------------
|
|
|
|
function Is_Suspension_Object (Id : Entity_Id) return Boolean is
|
|
begin
|
|
-- This approach does an exact name match rather than to rely on
|
|
-- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
|
|
-- front end at point where all auxiliary tables are locked and any
|
|
-- modifications to them are treated as violations. Do not tamper with
|
|
-- the tables, instead examine the Chars fields of all the scopes of Id.
|
|
|
|
return
|
|
Chars (Id) = Name_Suspension_Object
|
|
and then Present (Scope (Id))
|
|
and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
|
|
and then Present (Scope (Scope (Id)))
|
|
and then Chars (Scope (Scope (Id))) = Name_Ada
|
|
and then Present (Scope (Scope (Scope (Id))))
|
|
and then Scope (Scope (Scope (Id))) = Standard_Standard;
|
|
end Is_Suspension_Object;
|
|
|
|
----------------------------
|
|
-- Is_Synchronized_Object --
|
|
----------------------------
|
|
|
|
function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
|
|
Prag : Node_Id;
|
|
|
|
begin
|
|
if Is_Object (Id) then
|
|
|
|
-- The object is synchronized if it is of a type that yields a
|
|
-- synchronized object.
|
|
|
|
if Yields_Synchronized_Object (Etype (Id)) then
|
|
return True;
|
|
|
|
-- The object is synchronized if it is atomic and Async_Writers is
|
|
-- enabled.
|
|
|
|
elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
|
|
return True;
|
|
|
|
-- A constant is a synchronized object by default
|
|
|
|
elsif Ekind (Id) = E_Constant then
|
|
return True;
|
|
|
|
-- A variable is a synchronized object if it is subject to pragma
|
|
-- Constant_After_Elaboration.
|
|
|
|
elsif Ekind (Id) = E_Variable then
|
|
Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
|
|
|
|
return Present (Prag) and then Is_Enabled_Pragma (Prag);
|
|
end if;
|
|
end if;
|
|
|
|
-- Otherwise the input is not an object or it does not qualify as a
|
|
-- synchronized object.
|
|
|
|
return False;
|
|
end Is_Synchronized_Object;
|
|
|
|
---------------------------------
|
|
-- Is_Synchronized_Tagged_Type --
|
|
---------------------------------
|
|
|
|
function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
|
|
Kind : constant Entity_Kind := Ekind (Base_Type (E));
|
|
|
|
begin
|
|
-- A task or protected type derived from an interface is a tagged type.
|
|
-- Such a tagged type is called a synchronized tagged type, as are
|
|
-- synchronized interfaces and private extensions whose declaration
|
|
-- includes the reserved word synchronized.
|
|
|
|
return (Is_Tagged_Type (E)
|
|
and then (Kind = E_Task_Type
|
|
or else
|
|
Kind = E_Protected_Type))
|
|
or else
|
|
(Is_Interface (E)
|
|
and then Is_Synchronized_Interface (E))
|
|
or else
|
|
(Ekind (E) = E_Record_Type_With_Private
|
|
and then Nkind (Parent (E)) = N_Private_Extension_Declaration
|
|
and then (Synchronized_Present (Parent (E))
|
|
or else Is_Synchronized_Interface (Etype (E))));
|
|
end Is_Synchronized_Tagged_Type;
|
|
|
|
-----------------
|
|
-- Is_Transfer --
|
|
-----------------
|
|
|
|
function Is_Transfer (N : Node_Id) return Boolean is
|
|
Kind : constant Node_Kind := Nkind (N);
|
|
|
|
begin
|
|
if Kind = N_Simple_Return_Statement
|
|
or else
|
|
Kind = N_Extended_Return_Statement
|
|
or else
|
|
Kind = N_Goto_Statement
|
|
or else
|
|
Kind = N_Raise_Statement
|
|
or else
|
|
Kind = N_Requeue_Statement
|
|
then
|
|
return True;
|
|
|
|
elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
|
|
and then No (Condition (N))
|
|
then
|
|
return True;
|
|
|
|
elsif Kind = N_Procedure_Call_Statement
|
|
and then Is_Entity_Name (Name (N))
|
|
and then Present (Entity (Name (N)))
|
|
and then No_Return (Entity (Name (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (Original_Node (N)) = N_Raise_Statement then
|
|
return True;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Transfer;
|
|
|
|
-------------
|
|
-- Is_True --
|
|
-------------
|
|
|
|
function Is_True (U : Uint) return Boolean is
|
|
begin
|
|
return (U /= 0);
|
|
end Is_True;
|
|
|
|
--------------------------------------
|
|
-- Is_Unchecked_Conversion_Instance --
|
|
--------------------------------------
|
|
|
|
function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
|
|
Par : Node_Id;
|
|
|
|
begin
|
|
-- Look for a function whose generic parent is the predefined intrinsic
|
|
-- function Unchecked_Conversion, or for one that renames such an
|
|
-- instance.
|
|
|
|
if Ekind (Id) = E_Function then
|
|
Par := Parent (Id);
|
|
|
|
if Nkind (Par) = N_Function_Specification then
|
|
Par := Generic_Parent (Par);
|
|
|
|
if Present (Par) then
|
|
return
|
|
Chars (Par) = Name_Unchecked_Conversion
|
|
and then Is_Intrinsic_Subprogram (Par)
|
|
and then Is_Predefined_File_Name
|
|
(Unit_File_Name (Get_Source_Unit (Par)));
|
|
else
|
|
return
|
|
Present (Alias (Id))
|
|
and then Is_Unchecked_Conversion_Instance (Alias (Id));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Is_Unchecked_Conversion_Instance;
|
|
|
|
-------------------------------
|
|
-- Is_Universal_Numeric_Type --
|
|
-------------------------------
|
|
|
|
function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
|
|
begin
|
|
return T = Universal_Integer or else T = Universal_Real;
|
|
end Is_Universal_Numeric_Type;
|
|
|
|
----------------------------
|
|
-- Is_Variable_Size_Array --
|
|
----------------------------
|
|
|
|
function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
|
|
Idx : Node_Id;
|
|
|
|
begin
|
|
pragma Assert (Is_Array_Type (E));
|
|
|
|
-- Check if some index is initialized with a non-constant value
|
|
|
|
Idx := First_Index (E);
|
|
while Present (Idx) loop
|
|
if Nkind (Idx) = N_Range then
|
|
if not Is_Constant_Bound (Low_Bound (Idx))
|
|
or else not Is_Constant_Bound (High_Bound (Idx))
|
|
then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
Idx := Next_Index (Idx);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Variable_Size_Array;
|
|
|
|
-----------------------------
|
|
-- Is_Variable_Size_Record --
|
|
-----------------------------
|
|
|
|
function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
|
|
Comp : Entity_Id;
|
|
Comp_Typ : Entity_Id;
|
|
|
|
begin
|
|
pragma Assert (Is_Record_Type (E));
|
|
|
|
Comp := First_Entity (E);
|
|
while Present (Comp) loop
|
|
Comp_Typ := Etype (Comp);
|
|
|
|
-- Recursive call if the record type has discriminants
|
|
|
|
if Is_Record_Type (Comp_Typ)
|
|
and then Has_Discriminants (Comp_Typ)
|
|
and then Is_Variable_Size_Record (Comp_Typ)
|
|
then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (Comp_Typ)
|
|
and then Is_Variable_Size_Array (Comp_Typ)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Variable_Size_Record;
|
|
|
|
-----------------
|
|
-- Is_Variable --
|
|
-----------------
|
|
|
|
function Is_Variable
|
|
(N : Node_Id;
|
|
Use_Original_Node : Boolean := True) return Boolean
|
|
is
|
|
Orig_Node : Node_Id;
|
|
|
|
function In_Protected_Function (E : Entity_Id) return Boolean;
|
|
-- Within a protected function, the private components of the enclosing
|
|
-- protected type are constants. A function nested within a (protected)
|
|
-- procedure is not itself protected. Within the body of a protected
|
|
-- function the current instance of the protected type is a constant.
|
|
|
|
function Is_Variable_Prefix (P : Node_Id) return Boolean;
|
|
-- Prefixes can involve implicit dereferences, in which case we must
|
|
-- test for the case of a reference of a constant access type, which can
|
|
-- can never be a variable.
|
|
|
|
---------------------------
|
|
-- In_Protected_Function --
|
|
---------------------------
|
|
|
|
function In_Protected_Function (E : Entity_Id) return Boolean is
|
|
Prot : Entity_Id;
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
-- E is the current instance of a type
|
|
|
|
if Is_Type (E) then
|
|
Prot := E;
|
|
|
|
-- E is an object
|
|
|
|
else
|
|
Prot := Scope (E);
|
|
end if;
|
|
|
|
if not Is_Protected_Type (Prot) then
|
|
return False;
|
|
|
|
else
|
|
S := Current_Scope;
|
|
while Present (S) and then S /= Prot loop
|
|
if Ekind (S) = E_Function and then Scope (S) = Prot then
|
|
return True;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
return False;
|
|
end if;
|
|
end In_Protected_Function;
|
|
|
|
------------------------
|
|
-- Is_Variable_Prefix --
|
|
------------------------
|
|
|
|
function Is_Variable_Prefix (P : Node_Id) return Boolean is
|
|
begin
|
|
if Is_Access_Type (Etype (P)) then
|
|
return not Is_Access_Constant (Root_Type (Etype (P)));
|
|
|
|
-- For the case of an indexed component whose prefix has a packed
|
|
-- array type, the prefix has been rewritten into a type conversion.
|
|
-- Determine variable-ness from the converted expression.
|
|
|
|
elsif Nkind (P) = N_Type_Conversion
|
|
and then not Comes_From_Source (P)
|
|
and then Is_Array_Type (Etype (P))
|
|
and then Is_Packed (Etype (P))
|
|
then
|
|
return Is_Variable (Expression (P));
|
|
|
|
else
|
|
return Is_Variable (P);
|
|
end if;
|
|
end Is_Variable_Prefix;
|
|
|
|
-- Start of processing for Is_Variable
|
|
|
|
begin
|
|
-- Special check, allow x'Deref(expr) as a variable
|
|
|
|
if Nkind (N) = N_Attribute_Reference
|
|
and then Attribute_Name (N) = Name_Deref
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- Check if we perform the test on the original node since this may be a
|
|
-- test of syntactic categories which must not be disturbed by whatever
|
|
-- rewriting might have occurred. For example, an aggregate, which is
|
|
-- certainly NOT a variable, could be turned into a variable by
|
|
-- expansion.
|
|
|
|
if Use_Original_Node then
|
|
Orig_Node := Original_Node (N);
|
|
else
|
|
Orig_Node := N;
|
|
end if;
|
|
|
|
-- Definitely OK if Assignment_OK is set. Since this is something that
|
|
-- only gets set for expanded nodes, the test is on N, not Orig_Node.
|
|
|
|
if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
|
|
return True;
|
|
|
|
-- Normally we go to the original node, but there is one exception where
|
|
-- we use the rewritten node, namely when it is an explicit dereference.
|
|
-- The generated code may rewrite a prefix which is an access type with
|
|
-- an explicit dereference. The dereference is a variable, even though
|
|
-- the original node may not be (since it could be a constant of the
|
|
-- access type).
|
|
|
|
-- In Ada 2005 we have a further case to consider: the prefix may be a
|
|
-- function call given in prefix notation. The original node appears to
|
|
-- be a selected component, but we need to examine the call.
|
|
|
|
elsif Nkind (N) = N_Explicit_Dereference
|
|
and then Nkind (Orig_Node) /= N_Explicit_Dereference
|
|
and then Present (Etype (Orig_Node))
|
|
and then Is_Access_Type (Etype (Orig_Node))
|
|
then
|
|
-- Note that if the prefix is an explicit dereference that does not
|
|
-- come from source, we must check for a rewritten function call in
|
|
-- prefixed notation before other forms of rewriting, to prevent a
|
|
-- compiler crash.
|
|
|
|
return
|
|
(Nkind (Orig_Node) = N_Function_Call
|
|
and then not Is_Access_Constant (Etype (Prefix (N))))
|
|
or else
|
|
Is_Variable_Prefix (Original_Node (Prefix (N)));
|
|
|
|
-- in Ada 2012, the dereference may have been added for a type with
|
|
-- a declared implicit dereference aspect. Check that it is not an
|
|
-- access to constant.
|
|
|
|
elsif Nkind (N) = N_Explicit_Dereference
|
|
and then Present (Etype (Orig_Node))
|
|
and then Ada_Version >= Ada_2012
|
|
and then Has_Implicit_Dereference (Etype (Orig_Node))
|
|
then
|
|
return not Is_Access_Constant (Etype (Prefix (N)));
|
|
|
|
-- A function call is never a variable
|
|
|
|
elsif Nkind (N) = N_Function_Call then
|
|
return False;
|
|
|
|
-- All remaining checks use the original node
|
|
|
|
elsif Is_Entity_Name (Orig_Node)
|
|
and then Present (Entity (Orig_Node))
|
|
then
|
|
declare
|
|
E : constant Entity_Id := Entity (Orig_Node);
|
|
K : constant Entity_Kind := Ekind (E);
|
|
|
|
begin
|
|
return (K = E_Variable
|
|
and then Nkind (Parent (E)) /= N_Exception_Handler)
|
|
or else (K = E_Component
|
|
and then not In_Protected_Function (E))
|
|
or else K = E_Out_Parameter
|
|
or else K = E_In_Out_Parameter
|
|
or else K = E_Generic_In_Out_Parameter
|
|
|
|
-- Current instance of type. If this is a protected type, check
|
|
-- we are not within the body of one of its protected functions.
|
|
|
|
or else (Is_Type (E)
|
|
and then In_Open_Scopes (E)
|
|
and then not In_Protected_Function (E))
|
|
|
|
or else (Is_Incomplete_Or_Private_Type (E)
|
|
and then In_Open_Scopes (Full_View (E)));
|
|
end;
|
|
|
|
else
|
|
case Nkind (Orig_Node) is
|
|
when N_Indexed_Component | N_Slice =>
|
|
return Is_Variable_Prefix (Prefix (Orig_Node));
|
|
|
|
when N_Selected_Component =>
|
|
return (Is_Variable (Selector_Name (Orig_Node))
|
|
and then Is_Variable_Prefix (Prefix (Orig_Node)))
|
|
or else
|
|
(Nkind (N) = N_Expanded_Name
|
|
and then Scope (Entity (N)) = Entity (Prefix (N)));
|
|
|
|
-- For an explicit dereference, the type of the prefix cannot
|
|
-- be an access to constant or an access to subprogram.
|
|
|
|
when N_Explicit_Dereference =>
|
|
declare
|
|
Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
|
|
begin
|
|
return Is_Access_Type (Typ)
|
|
and then not Is_Access_Constant (Root_Type (Typ))
|
|
and then Ekind (Typ) /= E_Access_Subprogram_Type;
|
|
end;
|
|
|
|
-- The type conversion is the case where we do not deal with the
|
|
-- context dependent special case of an actual parameter. Thus
|
|
-- the type conversion is only considered a variable for the
|
|
-- purposes of this routine if the target type is tagged. However,
|
|
-- a type conversion is considered to be a variable if it does not
|
|
-- come from source (this deals for example with the conversions
|
|
-- of expressions to their actual subtypes).
|
|
|
|
when N_Type_Conversion =>
|
|
return Is_Variable (Expression (Orig_Node))
|
|
and then
|
|
(not Comes_From_Source (Orig_Node)
|
|
or else
|
|
(Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
|
|
and then
|
|
Is_Tagged_Type (Etype (Expression (Orig_Node)))));
|
|
|
|
-- GNAT allows an unchecked type conversion as a variable. This
|
|
-- only affects the generation of internal expanded code, since
|
|
-- calls to instantiations of Unchecked_Conversion are never
|
|
-- considered variables (since they are function calls).
|
|
|
|
when N_Unchecked_Type_Conversion =>
|
|
return Is_Variable (Expression (Orig_Node));
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end if;
|
|
end Is_Variable;
|
|
|
|
---------------------------
|
|
-- Is_Visibly_Controlled --
|
|
---------------------------
|
|
|
|
function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
|
|
Root : constant Entity_Id := Root_Type (T);
|
|
begin
|
|
return Chars (Scope (Root)) = Name_Finalization
|
|
and then Chars (Scope (Scope (Root))) = Name_Ada
|
|
and then Scope (Scope (Scope (Root))) = Standard_Standard;
|
|
end Is_Visibly_Controlled;
|
|
|
|
--------------------------
|
|
-- Is_Volatile_Function --
|
|
--------------------------
|
|
|
|
function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
|
|
begin
|
|
pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
|
|
|
|
-- A function declared within a protected type is volatile
|
|
|
|
if Is_Protected_Type (Scope (Func_Id)) then
|
|
return True;
|
|
|
|
-- An instance of Ada.Unchecked_Conversion is a volatile function if
|
|
-- either the source or the target are effectively volatile.
|
|
|
|
elsif Is_Unchecked_Conversion_Instance (Func_Id)
|
|
and then Has_Effectively_Volatile_Profile (Func_Id)
|
|
then
|
|
return True;
|
|
|
|
-- Otherwise the function is treated as volatile if it is subject to
|
|
-- enabled pragma Volatile_Function.
|
|
|
|
else
|
|
return
|
|
Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
|
|
end if;
|
|
end Is_Volatile_Function;
|
|
|
|
------------------------
|
|
-- Is_Volatile_Object --
|
|
------------------------
|
|
|
|
function Is_Volatile_Object (N : Node_Id) return Boolean is
|
|
|
|
function Is_Volatile_Prefix (N : Node_Id) return Boolean;
|
|
-- If prefix is an implicit dereference, examine designated type
|
|
|
|
function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
|
|
-- Determines if given object has volatile components
|
|
|
|
------------------------
|
|
-- Is_Volatile_Prefix --
|
|
------------------------
|
|
|
|
function Is_Volatile_Prefix (N : Node_Id) return Boolean is
|
|
Typ : constant Entity_Id := Etype (N);
|
|
|
|
begin
|
|
if Is_Access_Type (Typ) then
|
|
declare
|
|
Dtyp : constant Entity_Id := Designated_Type (Typ);
|
|
|
|
begin
|
|
return Is_Volatile (Dtyp)
|
|
or else Has_Volatile_Components (Dtyp);
|
|
end;
|
|
|
|
else
|
|
return Object_Has_Volatile_Components (N);
|
|
end if;
|
|
end Is_Volatile_Prefix;
|
|
|
|
------------------------------------
|
|
-- Object_Has_Volatile_Components --
|
|
------------------------------------
|
|
|
|
function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
|
|
Typ : constant Entity_Id := Etype (N);
|
|
|
|
begin
|
|
if Is_Volatile (Typ)
|
|
or else Has_Volatile_Components (Typ)
|
|
then
|
|
return True;
|
|
|
|
elsif Is_Entity_Name (N)
|
|
and then (Has_Volatile_Components (Entity (N))
|
|
or else Is_Volatile (Entity (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Indexed_Component
|
|
or else Nkind (N) = N_Selected_Component
|
|
then
|
|
return Is_Volatile_Prefix (Prefix (N));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Object_Has_Volatile_Components;
|
|
|
|
-- Start of processing for Is_Volatile_Object
|
|
|
|
begin
|
|
if Nkind (N) = N_Defining_Identifier then
|
|
return Is_Volatile (N) or else Is_Volatile (Etype (N));
|
|
|
|
elsif Nkind (N) = N_Expanded_Name then
|
|
return Is_Volatile_Object (Entity (N));
|
|
|
|
elsif Is_Volatile (Etype (N))
|
|
or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
|
|
and then Is_Volatile_Prefix (Prefix (N))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (N) = N_Selected_Component
|
|
and then Is_Volatile (Entity (Selector_Name (N)))
|
|
then
|
|
return True;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Volatile_Object;
|
|
|
|
---------------------------
|
|
-- Itype_Has_Declaration --
|
|
---------------------------
|
|
|
|
function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
|
|
begin
|
|
pragma Assert (Is_Itype (Id));
|
|
return Present (Parent (Id))
|
|
and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
|
|
N_Subtype_Declaration)
|
|
and then Defining_Entity (Parent (Id)) = Id;
|
|
end Itype_Has_Declaration;
|
|
|
|
-------------------------
|
|
-- Kill_Current_Values --
|
|
-------------------------
|
|
|
|
procedure Kill_Current_Values
|
|
(Ent : Entity_Id;
|
|
Last_Assignment_Only : Boolean := False)
|
|
is
|
|
begin
|
|
if Is_Assignable (Ent) then
|
|
Set_Last_Assignment (Ent, Empty);
|
|
end if;
|
|
|
|
if Is_Object (Ent) then
|
|
if not Last_Assignment_Only then
|
|
Kill_Checks (Ent);
|
|
Set_Current_Value (Ent, Empty);
|
|
|
|
-- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
|
|
-- for a constant. Once the constant is elaborated, its value is
|
|
-- not changed, therefore the associated flags that describe the
|
|
-- value should not be modified either.
|
|
|
|
if Ekind (Ent) = E_Constant then
|
|
null;
|
|
|
|
-- Non-constant entities
|
|
|
|
else
|
|
if not Can_Never_Be_Null (Ent) then
|
|
Set_Is_Known_Non_Null (Ent, False);
|
|
end if;
|
|
|
|
Set_Is_Known_Null (Ent, False);
|
|
|
|
-- Reset the Is_Known_Valid flag unless the type is always
|
|
-- valid. This does not apply to a loop parameter because its
|
|
-- bounds are defined by the loop header and therefore always
|
|
-- valid.
|
|
|
|
if not Is_Known_Valid (Etype (Ent))
|
|
and then Ekind (Ent) /= E_Loop_Parameter
|
|
then
|
|
Set_Is_Known_Valid (Ent, False);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Kill_Current_Values;
|
|
|
|
procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
|
|
S : Entity_Id;
|
|
|
|
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
|
|
-- Clear current value for entity E and all entities chained to E
|
|
|
|
------------------------------------------
|
|
-- Kill_Current_Values_For_Entity_Chain --
|
|
------------------------------------------
|
|
|
|
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
|
|
Ent : Entity_Id;
|
|
begin
|
|
Ent := E;
|
|
while Present (Ent) loop
|
|
Kill_Current_Values (Ent, Last_Assignment_Only);
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
end Kill_Current_Values_For_Entity_Chain;
|
|
|
|
-- Start of processing for Kill_Current_Values
|
|
|
|
begin
|
|
-- Kill all saved checks, a special case of killing saved values
|
|
|
|
if not Last_Assignment_Only then
|
|
Kill_All_Checks;
|
|
end if;
|
|
|
|
-- Loop through relevant scopes, which includes the current scope and
|
|
-- any parent scopes if the current scope is a block or a package.
|
|
|
|
S := Current_Scope;
|
|
Scope_Loop : loop
|
|
|
|
-- Clear current values of all entities in current scope
|
|
|
|
Kill_Current_Values_For_Entity_Chain (First_Entity (S));
|
|
|
|
-- If scope is a package, also clear current values of all private
|
|
-- entities in the scope.
|
|
|
|
if Is_Package_Or_Generic_Package (S)
|
|
or else Is_Concurrent_Type (S)
|
|
then
|
|
Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
|
|
end if;
|
|
|
|
-- If this is a not a subprogram, deal with parents
|
|
|
|
if not Is_Subprogram (S) then
|
|
S := Scope (S);
|
|
exit Scope_Loop when S = Standard_Standard;
|
|
else
|
|
exit Scope_Loop;
|
|
end if;
|
|
end loop Scope_Loop;
|
|
end Kill_Current_Values;
|
|
|
|
--------------------------
|
|
-- Kill_Size_Check_Code --
|
|
--------------------------
|
|
|
|
procedure Kill_Size_Check_Code (E : Entity_Id) is
|
|
begin
|
|
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
|
|
and then Present (Size_Check_Code (E))
|
|
then
|
|
Remove (Size_Check_Code (E));
|
|
Set_Size_Check_Code (E, Empty);
|
|
end if;
|
|
end Kill_Size_Check_Code;
|
|
|
|
--------------------------
|
|
-- Known_To_Be_Assigned --
|
|
--------------------------
|
|
|
|
function Known_To_Be_Assigned (N : Node_Id) return Boolean is
|
|
P : constant Node_Id := Parent (N);
|
|
|
|
begin
|
|
case Nkind (P) is
|
|
|
|
-- Test left side of assignment
|
|
|
|
when N_Assignment_Statement =>
|
|
return N = Name (P);
|
|
|
|
-- Function call arguments are never lvalues
|
|
|
|
when N_Function_Call =>
|
|
return False;
|
|
|
|
-- Positional parameter for procedure or accept call
|
|
|
|
when N_Procedure_Call_Statement |
|
|
N_Accept_Statement
|
|
=>
|
|
declare
|
|
Proc : Entity_Id;
|
|
Form : Entity_Id;
|
|
Act : Node_Id;
|
|
|
|
begin
|
|
Proc := Get_Subprogram_Entity (P);
|
|
|
|
if No (Proc) then
|
|
return False;
|
|
end if;
|
|
|
|
-- If we are not a list member, something is strange, so
|
|
-- be conservative and return False.
|
|
|
|
if not Is_List_Member (N) then
|
|
return False;
|
|
end if;
|
|
|
|
-- We are going to find the right formal by stepping forward
|
|
-- through the formals, as we step backwards in the actuals.
|
|
|
|
Form := First_Formal (Proc);
|
|
Act := N;
|
|
loop
|
|
-- If no formal, something is weird, so be conservative
|
|
-- and return False.
|
|
|
|
if No (Form) then
|
|
return False;
|
|
end if;
|
|
|
|
Prev (Act);
|
|
exit when No (Act);
|
|
Next_Formal (Form);
|
|
end loop;
|
|
|
|
return Ekind (Form) /= E_In_Parameter;
|
|
end;
|
|
|
|
-- Named parameter for procedure or accept call
|
|
|
|
when N_Parameter_Association =>
|
|
declare
|
|
Proc : Entity_Id;
|
|
Form : Entity_Id;
|
|
|
|
begin
|
|
Proc := Get_Subprogram_Entity (Parent (P));
|
|
|
|
if No (Proc) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Loop through formals to find the one that matches
|
|
|
|
Form := First_Formal (Proc);
|
|
loop
|
|
-- If no matching formal, that's peculiar, some kind of
|
|
-- previous error, so return False to be conservative.
|
|
-- Actually this also happens in legal code in the case
|
|
-- where P is a parameter association for an Extra_Formal???
|
|
|
|
if No (Form) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Else test for match
|
|
|
|
if Chars (Form) = Chars (Selector_Name (P)) then
|
|
return Ekind (Form) /= E_In_Parameter;
|
|
end if;
|
|
|
|
Next_Formal (Form);
|
|
end loop;
|
|
end;
|
|
|
|
-- Test for appearing in a conversion that itself appears
|
|
-- in an lvalue context, since this should be an lvalue.
|
|
|
|
when N_Type_Conversion =>
|
|
return Known_To_Be_Assigned (P);
|
|
|
|
-- All other references are definitely not known to be modifications
|
|
|
|
when others =>
|
|
return False;
|
|
|
|
end case;
|
|
end Known_To_Be_Assigned;
|
|
|
|
---------------------------
|
|
-- Last_Source_Statement --
|
|
---------------------------
|
|
|
|
function Last_Source_Statement (HSS : Node_Id) return Node_Id is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
N := Last (Statements (HSS));
|
|
while Present (N) loop
|
|
exit when Comes_From_Source (N);
|
|
Prev (N);
|
|
end loop;
|
|
|
|
return N;
|
|
end Last_Source_Statement;
|
|
|
|
----------------------------------
|
|
-- Matching_Static_Array_Bounds --
|
|
----------------------------------
|
|
|
|
function Matching_Static_Array_Bounds
|
|
(L_Typ : Node_Id;
|
|
R_Typ : Node_Id) return Boolean
|
|
is
|
|
L_Ndims : constant Nat := Number_Dimensions (L_Typ);
|
|
R_Ndims : constant Nat := Number_Dimensions (R_Typ);
|
|
|
|
L_Index : Node_Id;
|
|
R_Index : Node_Id;
|
|
L_Low : Node_Id;
|
|
L_High : Node_Id;
|
|
L_Len : Uint;
|
|
R_Low : Node_Id;
|
|
R_High : Node_Id;
|
|
R_Len : Uint;
|
|
|
|
begin
|
|
if L_Ndims /= R_Ndims then
|
|
return False;
|
|
end if;
|
|
|
|
-- Unconstrained types do not have static bounds
|
|
|
|
if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
|
|
return False;
|
|
end if;
|
|
|
|
-- First treat specially the first dimension, as the lower bound and
|
|
-- length of string literals are not stored like those of arrays.
|
|
|
|
if Ekind (L_Typ) = E_String_Literal_Subtype then
|
|
L_Low := String_Literal_Low_Bound (L_Typ);
|
|
L_Len := String_Literal_Length (L_Typ);
|
|
else
|
|
L_Index := First_Index (L_Typ);
|
|
Get_Index_Bounds (L_Index, L_Low, L_High);
|
|
|
|
if Is_OK_Static_Expression (L_Low)
|
|
and then
|
|
Is_OK_Static_Expression (L_High)
|
|
then
|
|
if Expr_Value (L_High) < Expr_Value (L_Low) then
|
|
L_Len := Uint_0;
|
|
else
|
|
L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
if Ekind (R_Typ) = E_String_Literal_Subtype then
|
|
R_Low := String_Literal_Low_Bound (R_Typ);
|
|
R_Len := String_Literal_Length (R_Typ);
|
|
else
|
|
R_Index := First_Index (R_Typ);
|
|
Get_Index_Bounds (R_Index, R_Low, R_High);
|
|
|
|
if Is_OK_Static_Expression (R_Low)
|
|
and then
|
|
Is_OK_Static_Expression (R_High)
|
|
then
|
|
if Expr_Value (R_High) < Expr_Value (R_Low) then
|
|
R_Len := Uint_0;
|
|
else
|
|
R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
if (Is_OK_Static_Expression (L_Low)
|
|
and then
|
|
Is_OK_Static_Expression (R_Low))
|
|
and then Expr_Value (L_Low) = Expr_Value (R_Low)
|
|
and then L_Len = R_Len
|
|
then
|
|
null;
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- Then treat all other dimensions
|
|
|
|
for Indx in 2 .. L_Ndims loop
|
|
Next (L_Index);
|
|
Next (R_Index);
|
|
|
|
Get_Index_Bounds (L_Index, L_Low, L_High);
|
|
Get_Index_Bounds (R_Index, R_Low, R_High);
|
|
|
|
if (Is_OK_Static_Expression (L_Low) and then
|
|
Is_OK_Static_Expression (L_High) and then
|
|
Is_OK_Static_Expression (R_Low) and then
|
|
Is_OK_Static_Expression (R_High))
|
|
and then (Expr_Value (L_Low) = Expr_Value (R_Low)
|
|
and then
|
|
Expr_Value (L_High) = Expr_Value (R_High))
|
|
then
|
|
null;
|
|
else
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
|
|
-- If we fall through the loop, all indexes matched
|
|
|
|
return True;
|
|
end Matching_Static_Array_Bounds;
|
|
|
|
-------------------
|
|
-- May_Be_Lvalue --
|
|
-------------------
|
|
|
|
function May_Be_Lvalue (N : Node_Id) return Boolean is
|
|
P : constant Node_Id := Parent (N);
|
|
|
|
begin
|
|
case Nkind (P) is
|
|
|
|
-- Test left side of assignment
|
|
|
|
when N_Assignment_Statement =>
|
|
return N = Name (P);
|
|
|
|
-- Test prefix of component or attribute. Note that the prefix of an
|
|
-- explicit or implicit dereference cannot be an l-value. In the case
|
|
-- of a 'Read attribute, the reference can be an actual in the
|
|
-- argument list of the attribute.
|
|
|
|
when N_Attribute_Reference =>
|
|
return (N = Prefix (P)
|
|
and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)))
|
|
or else
|
|
Attribute_Name (P) = Name_Read;
|
|
|
|
-- For an expanded name, the name is an lvalue if the expanded name
|
|
-- is an lvalue, but the prefix is never an lvalue, since it is just
|
|
-- the scope where the name is found.
|
|
|
|
when N_Expanded_Name =>
|
|
if N = Prefix (P) then
|
|
return May_Be_Lvalue (P);
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- For a selected component A.B, A is certainly an lvalue if A.B is.
|
|
-- B is a little interesting, if we have A.B := 3, there is some
|
|
-- discussion as to whether B is an lvalue or not, we choose to say
|
|
-- it is. Note however that A is not an lvalue if it is of an access
|
|
-- type since this is an implicit dereference.
|
|
|
|
when N_Selected_Component =>
|
|
if N = Prefix (P)
|
|
and then Present (Etype (N))
|
|
and then Is_Access_Type (Etype (N))
|
|
then
|
|
return False;
|
|
else
|
|
return May_Be_Lvalue (P);
|
|
end if;
|
|
|
|
-- For an indexed component or slice, the index or slice bounds is
|
|
-- never an lvalue. The prefix is an lvalue if the indexed component
|
|
-- or slice is an lvalue, except if it is an access type, where we
|
|
-- have an implicit dereference.
|
|
|
|
when N_Indexed_Component | N_Slice =>
|
|
if N /= Prefix (P)
|
|
or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
|
|
then
|
|
return False;
|
|
else
|
|
return May_Be_Lvalue (P);
|
|
end if;
|
|
|
|
-- Prefix of a reference is an lvalue if the reference is an lvalue
|
|
|
|
when N_Reference =>
|
|
return May_Be_Lvalue (P);
|
|
|
|
-- Prefix of explicit dereference is never an lvalue
|
|
|
|
when N_Explicit_Dereference =>
|
|
return False;
|
|
|
|
-- Positional parameter for subprogram, entry, or accept call.
|
|
-- In older versions of Ada function call arguments are never
|
|
-- lvalues. In Ada 2012 functions can have in-out parameters.
|
|
|
|
when N_Subprogram_Call |
|
|
N_Entry_Call_Statement |
|
|
N_Accept_Statement
|
|
=>
|
|
if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
|
|
return False;
|
|
end if;
|
|
|
|
-- The following mechanism is clumsy and fragile. A single flag
|
|
-- set in Resolve_Actuals would be preferable ???
|
|
|
|
declare
|
|
Proc : Entity_Id;
|
|
Form : Entity_Id;
|
|
Act : Node_Id;
|
|
|
|
begin
|
|
Proc := Get_Subprogram_Entity (P);
|
|
|
|
if No (Proc) then
|
|
return True;
|
|
end if;
|
|
|
|
-- If we are not a list member, something is strange, so be
|
|
-- conservative and return True.
|
|
|
|
if not Is_List_Member (N) then
|
|
return True;
|
|
end if;
|
|
|
|
-- We are going to find the right formal by stepping forward
|
|
-- through the formals, as we step backwards in the actuals.
|
|
|
|
Form := First_Formal (Proc);
|
|
Act := N;
|
|
loop
|
|
-- If no formal, something is weird, so be conservative and
|
|
-- return True.
|
|
|
|
if No (Form) then
|
|
return True;
|
|
end if;
|
|
|
|
Prev (Act);
|
|
exit when No (Act);
|
|
Next_Formal (Form);
|
|
end loop;
|
|
|
|
return Ekind (Form) /= E_In_Parameter;
|
|
end;
|
|
|
|
-- Named parameter for procedure or accept call
|
|
|
|
when N_Parameter_Association =>
|
|
declare
|
|
Proc : Entity_Id;
|
|
Form : Entity_Id;
|
|
|
|
begin
|
|
Proc := Get_Subprogram_Entity (Parent (P));
|
|
|
|
if No (Proc) then
|
|
return True;
|
|
end if;
|
|
|
|
-- Loop through formals to find the one that matches
|
|
|
|
Form := First_Formal (Proc);
|
|
loop
|
|
-- If no matching formal, that's peculiar, some kind of
|
|
-- previous error, so return True to be conservative.
|
|
-- Actually happens with legal code for an unresolved call
|
|
-- where we may get the wrong homonym???
|
|
|
|
if No (Form) then
|
|
return True;
|
|
end if;
|
|
|
|
-- Else test for match
|
|
|
|
if Chars (Form) = Chars (Selector_Name (P)) then
|
|
return Ekind (Form) /= E_In_Parameter;
|
|
end if;
|
|
|
|
Next_Formal (Form);
|
|
end loop;
|
|
end;
|
|
|
|
-- Test for appearing in a conversion that itself appears in an
|
|
-- lvalue context, since this should be an lvalue.
|
|
|
|
when N_Type_Conversion =>
|
|
return May_Be_Lvalue (P);
|
|
|
|
-- Test for appearance in object renaming declaration
|
|
|
|
when N_Object_Renaming_Declaration =>
|
|
return True;
|
|
|
|
-- All other references are definitely not lvalues
|
|
|
|
when others =>
|
|
return False;
|
|
|
|
end case;
|
|
end May_Be_Lvalue;
|
|
|
|
-----------------------
|
|
-- Mark_Coextensions --
|
|
-----------------------
|
|
|
|
procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
|
|
Is_Dynamic : Boolean;
|
|
-- Indicates whether the context causes nested coextensions to be
|
|
-- dynamic or static
|
|
|
|
function Mark_Allocator (N : Node_Id) return Traverse_Result;
|
|
-- Recognize an allocator node and label it as a dynamic coextension
|
|
|
|
--------------------
|
|
-- Mark_Allocator --
|
|
--------------------
|
|
|
|
function Mark_Allocator (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if Nkind (N) = N_Allocator then
|
|
if Is_Dynamic then
|
|
Set_Is_Dynamic_Coextension (N);
|
|
|
|
-- If the allocator expression is potentially dynamic, it may
|
|
-- be expanded out of order and require dynamic allocation
|
|
-- anyway, so we treat the coextension itself as dynamic.
|
|
-- Potential optimization ???
|
|
|
|
elsif Nkind (Expression (N)) = N_Qualified_Expression
|
|
and then Nkind (Expression (Expression (N))) = N_Op_Concat
|
|
then
|
|
Set_Is_Dynamic_Coextension (N);
|
|
else
|
|
Set_Is_Static_Coextension (N);
|
|
end if;
|
|
end if;
|
|
|
|
return OK;
|
|
end Mark_Allocator;
|
|
|
|
procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
|
|
|
|
-- Start of processing for Mark_Coextensions
|
|
|
|
begin
|
|
-- An allocator that appears on the right-hand side of an assignment is
|
|
-- treated as a potentially dynamic coextension when the right-hand side
|
|
-- is an allocator or a qualified expression.
|
|
|
|
-- Obj := new ...'(new Coextension ...);
|
|
|
|
if Nkind (Context_Nod) = N_Assignment_Statement then
|
|
Is_Dynamic :=
|
|
Nkind_In (Expression (Context_Nod), N_Allocator,
|
|
N_Qualified_Expression);
|
|
|
|
-- An allocator that appears within the expression of a simple return
|
|
-- statement is treated as a potentially dynamic coextension when the
|
|
-- expression is either aggregate, allocator, or qualified expression.
|
|
|
|
-- return (new Coextension ...);
|
|
-- return new ...'(new Coextension ...);
|
|
|
|
elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
|
|
Is_Dynamic :=
|
|
Nkind_In (Expression (Context_Nod), N_Aggregate,
|
|
N_Allocator,
|
|
N_Qualified_Expression);
|
|
|
|
-- An alloctor that appears within the initialization expression of an
|
|
-- object declaration is considered a potentially dynamic coextension
|
|
-- when the initialization expression is an allocator or a qualified
|
|
-- expression.
|
|
|
|
-- Obj : ... := new ...'(new Coextension ...);
|
|
|
|
-- A similar case arises when the object declaration is part of an
|
|
-- extended return statement.
|
|
|
|
-- return Obj : ... := new ...'(new Coextension ...);
|
|
-- return Obj : ... := (new Coextension ...);
|
|
|
|
elsif Nkind (Context_Nod) = N_Object_Declaration then
|
|
Is_Dynamic :=
|
|
Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
|
|
or else
|
|
Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
|
|
|
|
-- This routine should not be called with constructs that cannot contain
|
|
-- coextensions.
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
Mark_Allocators (Root_Nod);
|
|
end Mark_Coextensions;
|
|
|
|
----------------------
|
|
-- Needs_One_Actual --
|
|
----------------------
|
|
|
|
function Needs_One_Actual (E : Entity_Id) return Boolean is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
-- Ada 2005 or later, and formals present
|
|
|
|
if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
|
|
Formal := Next_Formal (First_Formal (E));
|
|
while Present (Formal) loop
|
|
if No (Default_Value (Formal)) then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
-- Ada 83/95 or no formals
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Needs_One_Actual;
|
|
|
|
------------------------
|
|
-- New_Copy_List_Tree --
|
|
------------------------
|
|
|
|
function New_Copy_List_Tree (List : List_Id) return List_Id is
|
|
NL : List_Id;
|
|
E : Node_Id;
|
|
|
|
begin
|
|
if List = No_List then
|
|
return No_List;
|
|
|
|
else
|
|
NL := New_List;
|
|
E := First (List);
|
|
|
|
while Present (E) loop
|
|
Append (New_Copy_Tree (E), NL);
|
|
E := Next (E);
|
|
end loop;
|
|
|
|
return NL;
|
|
end if;
|
|
end New_Copy_List_Tree;
|
|
|
|
--------------------------------------------------
|
|
-- New_Copy_Tree Auxiliary Data and Subprograms --
|
|
--------------------------------------------------
|
|
|
|
use Atree.Unchecked_Access;
|
|
use Atree_Private_Part;
|
|
|
|
-- Our approach here requires a two pass traversal of the tree. The
|
|
-- first pass visits all nodes that eventually will be copied looking
|
|
-- for defining Itypes. If any defining Itypes are found, then they are
|
|
-- copied, and an entry is added to the replacement map. In the second
|
|
-- phase, the tree is copied, using the replacement map to replace any
|
|
-- Itype references within the copied tree.
|
|
|
|
-- The following hash tables are used if the Map supplied has more
|
|
-- than hash threshold entries to speed up access to the map. If
|
|
-- there are fewer entries, then the map is searched sequentially
|
|
-- (because setting up a hash table for only a few entries takes
|
|
-- more time than it saves.
|
|
|
|
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
|
|
-- Hash function used for hash operations
|
|
|
|
-------------------
|
|
-- New_Copy_Hash --
|
|
-------------------
|
|
|
|
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
|
|
begin
|
|
return Nat (E) mod (NCT_Header_Num'Last + 1);
|
|
end New_Copy_Hash;
|
|
|
|
---------------
|
|
-- NCT_Assoc --
|
|
---------------
|
|
|
|
-- The hash table NCT_Assoc associates old entities in the table
|
|
-- with their corresponding new entities (i.e. the pairs of entries
|
|
-- presented in the original Map argument are Key-Element pairs).
|
|
|
|
package NCT_Assoc is new Simple_HTable (
|
|
Header_Num => NCT_Header_Num,
|
|
Element => Entity_Id,
|
|
No_Element => Empty,
|
|
Key => Entity_Id,
|
|
Hash => New_Copy_Hash,
|
|
Equal => Types."=");
|
|
|
|
---------------------
|
|
-- NCT_Itype_Assoc --
|
|
---------------------
|
|
|
|
-- The hash table NCT_Itype_Assoc contains entries only for those
|
|
-- old nodes which have a non-empty Associated_Node_For_Itype set.
|
|
-- The key is the associated node, and the element is the new node
|
|
-- itself (NOT the associated node for the new node).
|
|
|
|
package NCT_Itype_Assoc is new Simple_HTable (
|
|
Header_Num => NCT_Header_Num,
|
|
Element => Entity_Id,
|
|
No_Element => Empty,
|
|
Key => Entity_Id,
|
|
Hash => New_Copy_Hash,
|
|
Equal => Types."=");
|
|
|
|
-------------------
|
|
-- New_Copy_Tree --
|
|
-------------------
|
|
|
|
function New_Copy_Tree
|
|
(Source : Node_Id;
|
|
Map : Elist_Id := No_Elist;
|
|
New_Sloc : Source_Ptr := No_Location;
|
|
New_Scope : Entity_Id := Empty) return Node_Id
|
|
is
|
|
Actual_Map : Elist_Id := Map;
|
|
-- This is the actual map for the copy. It is initialized with the
|
|
-- given elements, and then enlarged as required for Itypes that are
|
|
-- copied during the first phase of the copy operation. The visit
|
|
-- procedures add elements to this map as Itypes are encountered.
|
|
-- The reason we cannot use Map directly, is that it may well be
|
|
-- (and normally is) initialized to No_Elist, and if we have mapped
|
|
-- entities, we have to reset it to point to a real Elist.
|
|
|
|
function Assoc (N : Node_Or_Entity_Id) return Node_Id;
|
|
-- Called during second phase to map entities into their corresponding
|
|
-- copies using Actual_Map. If the argument is not an entity, or is not
|
|
-- in Actual_Map, then it is returned unchanged.
|
|
|
|
procedure Build_NCT_Hash_Tables;
|
|
-- Builds hash tables (number of elements >= threshold value)
|
|
|
|
function Copy_Elist_With_Replacement
|
|
(Old_Elist : Elist_Id) return Elist_Id;
|
|
-- Called during second phase to copy element list doing replacements
|
|
|
|
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
|
|
-- Called during the second phase to process a copied Itype. The actual
|
|
-- copy happened during the first phase (so that we could make the entry
|
|
-- in the mapping), but we still have to deal with the descendants of
|
|
-- the copied Itype and copy them where necessary.
|
|
|
|
function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
|
|
-- Called during second phase to copy list doing replacements
|
|
|
|
function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
|
|
-- Called during second phase to copy node doing replacements
|
|
|
|
procedure Visit_Elist (E : Elist_Id);
|
|
-- Called during first phase to visit all elements of an Elist
|
|
|
|
procedure Visit_Field (F : Union_Id; N : Node_Id);
|
|
-- Visit a single field, recursing to call Visit_Node or Visit_List
|
|
-- if the field is a syntactic descendant of the current node (i.e.
|
|
-- its parent is Node N).
|
|
|
|
procedure Visit_Itype (Old_Itype : Entity_Id);
|
|
-- Called during first phase to visit subsidiary fields of a defining
|
|
-- Itype, and also create a copy and make an entry in the replacement
|
|
-- map for the new copy.
|
|
|
|
procedure Visit_List (L : List_Id);
|
|
-- Called during first phase to visit all elements of a List
|
|
|
|
procedure Visit_Node (N : Node_Or_Entity_Id);
|
|
-- Called during first phase to visit a node and all its subtrees
|
|
|
|
-----------
|
|
-- Assoc --
|
|
-----------
|
|
|
|
function Assoc (N : Node_Or_Entity_Id) return Node_Id is
|
|
E : Elmt_Id;
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
if not Has_Extension (N) or else No (Actual_Map) then
|
|
return N;
|
|
|
|
elsif NCT_Hash_Tables_Used then
|
|
Ent := NCT_Assoc.Get (Entity_Id (N));
|
|
|
|
if Present (Ent) then
|
|
return Ent;
|
|
else
|
|
return N;
|
|
end if;
|
|
|
|
-- No hash table used, do serial search
|
|
|
|
else
|
|
E := First_Elmt (Actual_Map);
|
|
while Present (E) loop
|
|
if Node (E) = N then
|
|
return Node (Next_Elmt (E));
|
|
else
|
|
E := Next_Elmt (Next_Elmt (E));
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
return N;
|
|
end Assoc;
|
|
|
|
---------------------------
|
|
-- Build_NCT_Hash_Tables --
|
|
---------------------------
|
|
|
|
procedure Build_NCT_Hash_Tables is
|
|
Elmt : Elmt_Id;
|
|
Ent : Entity_Id;
|
|
begin
|
|
if NCT_Hash_Table_Setup then
|
|
NCT_Assoc.Reset;
|
|
NCT_Itype_Assoc.Reset;
|
|
end if;
|
|
|
|
Elmt := First_Elmt (Actual_Map);
|
|
while Present (Elmt) loop
|
|
Ent := Node (Elmt);
|
|
|
|
-- Get new entity, and associate old and new
|
|
|
|
Next_Elmt (Elmt);
|
|
NCT_Assoc.Set (Ent, Node (Elmt));
|
|
|
|
if Is_Type (Ent) then
|
|
declare
|
|
Anode : constant Entity_Id :=
|
|
Associated_Node_For_Itype (Ent);
|
|
|
|
begin
|
|
if Present (Anode) then
|
|
|
|
-- Enter a link between the associated node of the
|
|
-- old Itype and the new Itype, for updating later
|
|
-- when node is copied.
|
|
|
|
NCT_Itype_Assoc.Set (Anode, Node (Elmt));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
NCT_Hash_Tables_Used := True;
|
|
NCT_Hash_Table_Setup := True;
|
|
end Build_NCT_Hash_Tables;
|
|
|
|
---------------------------------
|
|
-- Copy_Elist_With_Replacement --
|
|
---------------------------------
|
|
|
|
function Copy_Elist_With_Replacement
|
|
(Old_Elist : Elist_Id) return Elist_Id
|
|
is
|
|
M : Elmt_Id;
|
|
New_Elist : Elist_Id;
|
|
|
|
begin
|
|
if No (Old_Elist) then
|
|
return No_Elist;
|
|
|
|
else
|
|
New_Elist := New_Elmt_List;
|
|
|
|
M := First_Elmt (Old_Elist);
|
|
while Present (M) loop
|
|
Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
|
|
Next_Elmt (M);
|
|
end loop;
|
|
end if;
|
|
|
|
return New_Elist;
|
|
end Copy_Elist_With_Replacement;
|
|
|
|
---------------------------------
|
|
-- Copy_Itype_With_Replacement --
|
|
---------------------------------
|
|
|
|
-- This routine exactly parallels its phase one analog Visit_Itype,
|
|
|
|
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
|
|
begin
|
|
-- Translate Next_Entity, Scope, and Etype fields, in case they
|
|
-- reference entities that have been mapped into copies.
|
|
|
|
Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
|
|
Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
|
|
|
|
if Present (New_Scope) then
|
|
Set_Scope (New_Itype, New_Scope);
|
|
else
|
|
Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
|
|
end if;
|
|
|
|
-- Copy referenced fields
|
|
|
|
if Is_Discrete_Type (New_Itype) then
|
|
Set_Scalar_Range (New_Itype,
|
|
Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
|
|
|
|
elsif Has_Discriminants (Base_Type (New_Itype)) then
|
|
Set_Discriminant_Constraint (New_Itype,
|
|
Copy_Elist_With_Replacement
|
|
(Discriminant_Constraint (New_Itype)));
|
|
|
|
elsif Is_Array_Type (New_Itype) then
|
|
if Present (First_Index (New_Itype)) then
|
|
Set_First_Index (New_Itype,
|
|
First (Copy_List_With_Replacement
|
|
(List_Containing (First_Index (New_Itype)))));
|
|
end if;
|
|
|
|
if Is_Packed (New_Itype) then
|
|
Set_Packed_Array_Impl_Type (New_Itype,
|
|
Copy_Node_With_Replacement
|
|
(Packed_Array_Impl_Type (New_Itype)));
|
|
end if;
|
|
end if;
|
|
end Copy_Itype_With_Replacement;
|
|
|
|
--------------------------------
|
|
-- Copy_List_With_Replacement --
|
|
--------------------------------
|
|
|
|
function Copy_List_With_Replacement
|
|
(Old_List : List_Id) return List_Id
|
|
is
|
|
New_List : List_Id;
|
|
E : Node_Id;
|
|
|
|
begin
|
|
if Old_List = No_List then
|
|
return No_List;
|
|
|
|
else
|
|
New_List := Empty_List;
|
|
|
|
E := First (Old_List);
|
|
while Present (E) loop
|
|
Append (Copy_Node_With_Replacement (E), New_List);
|
|
Next (E);
|
|
end loop;
|
|
|
|
return New_List;
|
|
end if;
|
|
end Copy_List_With_Replacement;
|
|
|
|
--------------------------------
|
|
-- Copy_Node_With_Replacement --
|
|
--------------------------------
|
|
|
|
function Copy_Node_With_Replacement
|
|
(Old_Node : Node_Id) return Node_Id
|
|
is
|
|
New_Node : Node_Id;
|
|
|
|
procedure Adjust_Named_Associations
|
|
(Old_Node : Node_Id;
|
|
New_Node : Node_Id);
|
|
-- If a call node has named associations, these are chained through
|
|
-- the First_Named_Actual, Next_Named_Actual links. These must be
|
|
-- propagated separately to the new parameter list, because these
|
|
-- are not syntactic fields.
|
|
|
|
function Copy_Field_With_Replacement
|
|
(Field : Union_Id) return Union_Id;
|
|
-- Given Field, which is a field of Old_Node, return a copy of it
|
|
-- if it is a syntactic field (i.e. its parent is Node), setting
|
|
-- the parent of the copy to poit to New_Node. Otherwise returns
|
|
-- the field (possibly mapped if it is an entity).
|
|
|
|
-------------------------------
|
|
-- Adjust_Named_Associations --
|
|
-------------------------------
|
|
|
|
procedure Adjust_Named_Associations
|
|
(Old_Node : Node_Id;
|
|
New_Node : Node_Id)
|
|
is
|
|
Old_E : Node_Id;
|
|
New_E : Node_Id;
|
|
|
|
Old_Next : Node_Id;
|
|
New_Next : Node_Id;
|
|
|
|
begin
|
|
Old_E := First (Parameter_Associations (Old_Node));
|
|
New_E := First (Parameter_Associations (New_Node));
|
|
while Present (Old_E) loop
|
|
if Nkind (Old_E) = N_Parameter_Association
|
|
and then Present (Next_Named_Actual (Old_E))
|
|
then
|
|
if First_Named_Actual (Old_Node)
|
|
= Explicit_Actual_Parameter (Old_E)
|
|
then
|
|
Set_First_Named_Actual
|
|
(New_Node, Explicit_Actual_Parameter (New_E));
|
|
end if;
|
|
|
|
-- Now scan parameter list from the beginning,to locate
|
|
-- next named actual, which can be out of order.
|
|
|
|
Old_Next := First (Parameter_Associations (Old_Node));
|
|
New_Next := First (Parameter_Associations (New_Node));
|
|
|
|
while Nkind (Old_Next) /= N_Parameter_Association
|
|
or else Explicit_Actual_Parameter (Old_Next) /=
|
|
Next_Named_Actual (Old_E)
|
|
loop
|
|
Next (Old_Next);
|
|
Next (New_Next);
|
|
end loop;
|
|
|
|
Set_Next_Named_Actual
|
|
(New_E, Explicit_Actual_Parameter (New_Next));
|
|
end if;
|
|
|
|
Next (Old_E);
|
|
Next (New_E);
|
|
end loop;
|
|
end Adjust_Named_Associations;
|
|
|
|
---------------------------------
|
|
-- Copy_Field_With_Replacement --
|
|
---------------------------------
|
|
|
|
function Copy_Field_With_Replacement
|
|
(Field : Union_Id) return Union_Id
|
|
is
|
|
begin
|
|
if Field = Union_Id (Empty) then
|
|
return Field;
|
|
|
|
elsif Field in Node_Range then
|
|
declare
|
|
Old_N : constant Node_Id := Node_Id (Field);
|
|
New_N : Node_Id;
|
|
|
|
begin
|
|
-- If syntactic field, as indicated by the parent pointer
|
|
-- being set, then copy the referenced node recursively.
|
|
|
|
if Parent (Old_N) = Old_Node then
|
|
New_N := Copy_Node_With_Replacement (Old_N);
|
|
|
|
if New_N /= Old_N then
|
|
Set_Parent (New_N, New_Node);
|
|
end if;
|
|
|
|
-- For semantic fields, update possible entity reference
|
|
-- from the replacement map.
|
|
|
|
else
|
|
New_N := Assoc (Old_N);
|
|
end if;
|
|
|
|
return Union_Id (New_N);
|
|
end;
|
|
|
|
elsif Field in List_Range then
|
|
declare
|
|
Old_L : constant List_Id := List_Id (Field);
|
|
New_L : List_Id;
|
|
|
|
begin
|
|
-- If syntactic field, as indicated by the parent pointer,
|
|
-- then recursively copy the entire referenced list.
|
|
|
|
if Parent (Old_L) = Old_Node then
|
|
New_L := Copy_List_With_Replacement (Old_L);
|
|
Set_Parent (New_L, New_Node);
|
|
|
|
-- For semantic list, just returned unchanged
|
|
|
|
else
|
|
New_L := Old_L;
|
|
end if;
|
|
|
|
return Union_Id (New_L);
|
|
end;
|
|
|
|
-- Anything other than a list or a node is returned unchanged
|
|
|
|
else
|
|
return Field;
|
|
end if;
|
|
end Copy_Field_With_Replacement;
|
|
|
|
-- Start of processing for Copy_Node_With_Replacement
|
|
|
|
begin
|
|
if Old_Node <= Empty_Or_Error then
|
|
return Old_Node;
|
|
|
|
elsif Has_Extension (Old_Node) then
|
|
return Assoc (Old_Node);
|
|
|
|
else
|
|
New_Node := New_Copy (Old_Node);
|
|
|
|
-- If the node we are copying is the associated node of a
|
|
-- previously copied Itype, then adjust the associated node
|
|
-- of the copy of that Itype accordingly.
|
|
|
|
if Present (Actual_Map) then
|
|
declare
|
|
E : Elmt_Id;
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
-- Case of hash table used
|
|
|
|
if NCT_Hash_Tables_Used then
|
|
Ent := NCT_Itype_Assoc.Get (Old_Node);
|
|
|
|
if Present (Ent) then
|
|
Set_Associated_Node_For_Itype (Ent, New_Node);
|
|
end if;
|
|
|
|
-- Case of no hash table used
|
|
|
|
else
|
|
E := First_Elmt (Actual_Map);
|
|
while Present (E) loop
|
|
if Is_Itype (Node (E))
|
|
and then
|
|
Old_Node = Associated_Node_For_Itype (Node (E))
|
|
then
|
|
Set_Associated_Node_For_Itype
|
|
(Node (Next_Elmt (E)), New_Node);
|
|
end if;
|
|
|
|
E := Next_Elmt (Next_Elmt (E));
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Recursively copy descendants
|
|
|
|
Set_Field1
|
|
(New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
|
|
Set_Field2
|
|
(New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
|
|
Set_Field3
|
|
(New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
|
|
Set_Field4
|
|
(New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
|
|
Set_Field5
|
|
(New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
|
|
|
|
-- Adjust Sloc of new node if necessary
|
|
|
|
if New_Sloc /= No_Location then
|
|
Set_Sloc (New_Node, New_Sloc);
|
|
|
|
-- If we adjust the Sloc, then we are essentially making a
|
|
-- completely new node, so the Comes_From_Source flag should
|
|
-- be reset to the proper default value.
|
|
|
|
Set_Comes_From_Source
|
|
(New_Node, Default_Node.Comes_From_Source);
|
|
end if;
|
|
|
|
-- If the node is a call and has named associations, set the
|
|
-- corresponding links in the copy.
|
|
|
|
if Nkind_In (Old_Node, N_Entry_Call_Statement,
|
|
N_Function_Call,
|
|
N_Procedure_Call_Statement)
|
|
and then Present (First_Named_Actual (Old_Node))
|
|
then
|
|
Adjust_Named_Associations (Old_Node, New_Node);
|
|
end if;
|
|
|
|
-- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
|
|
-- The replacement mechanism applies to entities, and is not used
|
|
-- here. Eventually we may need a more general graph-copying
|
|
-- routine. For now, do a sequential search to find desired node.
|
|
|
|
if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
|
|
and then Present (First_Real_Statement (Old_Node))
|
|
then
|
|
declare
|
|
Old_F : constant Node_Id := First_Real_Statement (Old_Node);
|
|
N1, N2 : Node_Id;
|
|
|
|
begin
|
|
N1 := First (Statements (Old_Node));
|
|
N2 := First (Statements (New_Node));
|
|
|
|
while N1 /= Old_F loop
|
|
Next (N1);
|
|
Next (N2);
|
|
end loop;
|
|
|
|
Set_First_Real_Statement (New_Node, N2);
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
-- All done, return copied node
|
|
|
|
return New_Node;
|
|
end Copy_Node_With_Replacement;
|
|
|
|
-----------------
|
|
-- Visit_Elist --
|
|
-----------------
|
|
|
|
procedure Visit_Elist (E : Elist_Id) is
|
|
Elmt : Elmt_Id;
|
|
begin
|
|
if Present (E) then
|
|
Elmt := First_Elmt (E);
|
|
|
|
while Elmt /= No_Elmt loop
|
|
Visit_Node (Node (Elmt));
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end if;
|
|
end Visit_Elist;
|
|
|
|
-----------------
|
|
-- Visit_Field --
|
|
-----------------
|
|
|
|
procedure Visit_Field (F : Union_Id; N : Node_Id) is
|
|
begin
|
|
if F = Union_Id (Empty) then
|
|
return;
|
|
|
|
elsif F in Node_Range then
|
|
|
|
-- Copy node if it is syntactic, i.e. its parent pointer is
|
|
-- set to point to the field that referenced it (certain
|
|
-- Itypes will also meet this criterion, which is fine, since
|
|
-- these are clearly Itypes that do need to be copied, since
|
|
-- we are copying their parent.)
|
|
|
|
if Parent (Node_Id (F)) = N then
|
|
Visit_Node (Node_Id (F));
|
|
return;
|
|
|
|
-- Another case, if we are pointing to an Itype, then we want
|
|
-- to copy it if its associated node is somewhere in the tree
|
|
-- being copied.
|
|
|
|
-- Note: the exclusion of self-referential copies is just an
|
|
-- optimization, since the search of the already copied list
|
|
-- would catch it, but it is a common case (Etype pointing
|
|
-- to itself for an Itype that is a base type).
|
|
|
|
elsif Has_Extension (Node_Id (F))
|
|
and then Is_Itype (Entity_Id (F))
|
|
and then Node_Id (F) /= N
|
|
then
|
|
declare
|
|
P : Node_Id;
|
|
|
|
begin
|
|
P := Associated_Node_For_Itype (Node_Id (F));
|
|
while Present (P) loop
|
|
if P = Source then
|
|
Visit_Node (Node_Id (F));
|
|
return;
|
|
else
|
|
P := Parent (P);
|
|
end if;
|
|
end loop;
|
|
|
|
-- An Itype whose parent is not being copied definitely
|
|
-- should NOT be copied, since it does not belong in any
|
|
-- sense to the copied subtree.
|
|
|
|
return;
|
|
end;
|
|
end if;
|
|
|
|
elsif F in List_Range and then Parent (List_Id (F)) = N then
|
|
Visit_List (List_Id (F));
|
|
return;
|
|
end if;
|
|
end Visit_Field;
|
|
|
|
-----------------
|
|
-- Visit_Itype --
|
|
-----------------
|
|
|
|
procedure Visit_Itype (Old_Itype : Entity_Id) is
|
|
New_Itype : Entity_Id;
|
|
E : Elmt_Id;
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
-- Itypes that describe the designated type of access to subprograms
|
|
-- have the structure of subprogram declarations, with signatures,
|
|
-- etc. Either we duplicate the signatures completely, or choose to
|
|
-- share such itypes, which is fine because their elaboration will
|
|
-- have no side effects.
|
|
|
|
if Ekind (Old_Itype) = E_Subprogram_Type then
|
|
return;
|
|
end if;
|
|
|
|
New_Itype := New_Copy (Old_Itype);
|
|
|
|
-- The new Itype has all the attributes of the old one, and
|
|
-- we just copy the contents of the entity. However, the back-end
|
|
-- needs different names for debugging purposes, so we create a
|
|
-- new internal name for it in all cases.
|
|
|
|
Set_Chars (New_Itype, New_Internal_Name ('T'));
|
|
|
|
-- If our associated node is an entity that has already been copied,
|
|
-- then set the associated node of the copy to point to the right
|
|
-- copy. If we have copied an Itype that is itself the associated
|
|
-- node of some previously copied Itype, then we set the right
|
|
-- pointer in the other direction.
|
|
|
|
if Present (Actual_Map) then
|
|
|
|
-- Case of hash tables used
|
|
|
|
if NCT_Hash_Tables_Used then
|
|
|
|
Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
|
|
|
|
if Present (Ent) then
|
|
Set_Associated_Node_For_Itype (New_Itype, Ent);
|
|
end if;
|
|
|
|
Ent := NCT_Itype_Assoc.Get (Old_Itype);
|
|
if Present (Ent) then
|
|
Set_Associated_Node_For_Itype (Ent, New_Itype);
|
|
|
|
-- If the hash table has no association for this Itype and
|
|
-- its associated node, enter one now.
|
|
|
|
else
|
|
NCT_Itype_Assoc.Set
|
|
(Associated_Node_For_Itype (Old_Itype), New_Itype);
|
|
end if;
|
|
|
|
-- Case of hash tables not used
|
|
|
|
else
|
|
E := First_Elmt (Actual_Map);
|
|
while Present (E) loop
|
|
if Associated_Node_For_Itype (Old_Itype) = Node (E) then
|
|
Set_Associated_Node_For_Itype
|
|
(New_Itype, Node (Next_Elmt (E)));
|
|
end if;
|
|
|
|
if Is_Type (Node (E))
|
|
and then Old_Itype = Associated_Node_For_Itype (Node (E))
|
|
then
|
|
Set_Associated_Node_For_Itype
|
|
(Node (Next_Elmt (E)), New_Itype);
|
|
end if;
|
|
|
|
E := Next_Elmt (Next_Elmt (E));
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
if Present (Freeze_Node (New_Itype)) then
|
|
Set_Is_Frozen (New_Itype, False);
|
|
Set_Freeze_Node (New_Itype, Empty);
|
|
end if;
|
|
|
|
-- Add new association to map
|
|
|
|
if No (Actual_Map) then
|
|
Actual_Map := New_Elmt_List;
|
|
end if;
|
|
|
|
Append_Elmt (Old_Itype, Actual_Map);
|
|
Append_Elmt (New_Itype, Actual_Map);
|
|
|
|
if NCT_Hash_Tables_Used then
|
|
NCT_Assoc.Set (Old_Itype, New_Itype);
|
|
|
|
else
|
|
NCT_Table_Entries := NCT_Table_Entries + 1;
|
|
|
|
if NCT_Table_Entries > NCT_Hash_Threshold then
|
|
Build_NCT_Hash_Tables;
|
|
end if;
|
|
end if;
|
|
|
|
-- If a record subtype is simply copied, the entity list will be
|
|
-- shared. Thus cloned_Subtype must be set to indicate the sharing.
|
|
|
|
if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
|
|
Set_Cloned_Subtype (New_Itype, Old_Itype);
|
|
end if;
|
|
|
|
-- Visit descendants that eventually get copied
|
|
|
|
Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
|
|
|
|
if Is_Discrete_Type (Old_Itype) then
|
|
Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
|
|
|
|
elsif Has_Discriminants (Base_Type (Old_Itype)) then
|
|
-- ??? This should involve call to Visit_Field
|
|
Visit_Elist (Discriminant_Constraint (Old_Itype));
|
|
|
|
elsif Is_Array_Type (Old_Itype) then
|
|
if Present (First_Index (Old_Itype)) then
|
|
Visit_Field (Union_Id (List_Containing
|
|
(First_Index (Old_Itype))),
|
|
Old_Itype);
|
|
end if;
|
|
|
|
if Is_Packed (Old_Itype) then
|
|
Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
|
|
Old_Itype);
|
|
end if;
|
|
end if;
|
|
end Visit_Itype;
|
|
|
|
----------------
|
|
-- Visit_List --
|
|
----------------
|
|
|
|
procedure Visit_List (L : List_Id) is
|
|
N : Node_Id;
|
|
begin
|
|
if L /= No_List then
|
|
N := First (L);
|
|
|
|
while Present (N) loop
|
|
Visit_Node (N);
|
|
Next (N);
|
|
end loop;
|
|
end if;
|
|
end Visit_List;
|
|
|
|
----------------
|
|
-- Visit_Node --
|
|
----------------
|
|
|
|
procedure Visit_Node (N : Node_Or_Entity_Id) is
|
|
|
|
-- Start of processing for Visit_Node
|
|
|
|
begin
|
|
-- Handle case of an Itype, which must be copied
|
|
|
|
if Has_Extension (N) and then Is_Itype (N) then
|
|
|
|
-- Nothing to do if already in the list. This can happen with an
|
|
-- Itype entity that appears more than once in the tree.
|
|
-- Note that we do not want to visit descendants in this case.
|
|
|
|
-- Test for already in list when hash table is used
|
|
|
|
if NCT_Hash_Tables_Used then
|
|
if Present (NCT_Assoc.Get (Entity_Id (N))) then
|
|
return;
|
|
end if;
|
|
|
|
-- Test for already in list when hash table not used
|
|
|
|
else
|
|
declare
|
|
E : Elmt_Id;
|
|
begin
|
|
if Present (Actual_Map) then
|
|
E := First_Elmt (Actual_Map);
|
|
while Present (E) loop
|
|
if Node (E) = N then
|
|
return;
|
|
else
|
|
E := Next_Elmt (Next_Elmt (E));
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Visit_Itype (N);
|
|
end if;
|
|
|
|
-- Visit descendants
|
|
|
|
Visit_Field (Field1 (N), N);
|
|
Visit_Field (Field2 (N), N);
|
|
Visit_Field (Field3 (N), N);
|
|
Visit_Field (Field4 (N), N);
|
|
Visit_Field (Field5 (N), N);
|
|
end Visit_Node;
|
|
|
|
-- Start of processing for New_Copy_Tree
|
|
|
|
begin
|
|
Actual_Map := Map;
|
|
|
|
-- See if we should use hash table
|
|
|
|
if No (Actual_Map) then
|
|
NCT_Hash_Tables_Used := False;
|
|
|
|
else
|
|
declare
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
NCT_Table_Entries := 0;
|
|
|
|
Elmt := First_Elmt (Actual_Map);
|
|
while Present (Elmt) loop
|
|
NCT_Table_Entries := NCT_Table_Entries + 1;
|
|
Next_Elmt (Elmt);
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
if NCT_Table_Entries > NCT_Hash_Threshold then
|
|
Build_NCT_Hash_Tables;
|
|
else
|
|
NCT_Hash_Tables_Used := False;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Hash table set up if required, now start phase one by visiting
|
|
-- top node (we will recursively visit the descendants).
|
|
|
|
Visit_Node (Source);
|
|
|
|
-- Now the second phase of the copy can start. First we process
|
|
-- all the mapped entities, copying their descendants.
|
|
|
|
if Present (Actual_Map) then
|
|
declare
|
|
Elmt : Elmt_Id;
|
|
New_Itype : Entity_Id;
|
|
begin
|
|
Elmt := First_Elmt (Actual_Map);
|
|
while Present (Elmt) loop
|
|
Next_Elmt (Elmt);
|
|
New_Itype := Node (Elmt);
|
|
|
|
if Is_Itype (New_Itype) then
|
|
Copy_Itype_With_Replacement (New_Itype);
|
|
end if;
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Now we can copy the actual tree
|
|
|
|
return Copy_Node_With_Replacement (Source);
|
|
end New_Copy_Tree;
|
|
|
|
-------------------------
|
|
-- New_External_Entity --
|
|
-------------------------
|
|
|
|
function New_External_Entity
|
|
(Kind : Entity_Kind;
|
|
Scope_Id : Entity_Id;
|
|
Sloc_Value : Source_Ptr;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character;
|
|
Suffix_Index : Nat := 0;
|
|
Prefix : Character := ' ') return Entity_Id
|
|
is
|
|
N : constant Entity_Id :=
|
|
Make_Defining_Identifier (Sloc_Value,
|
|
New_External_Name
|
|
(Chars (Related_Id), Suffix, Suffix_Index, Prefix));
|
|
|
|
begin
|
|
Set_Ekind (N, Kind);
|
|
Set_Is_Internal (N, True);
|
|
Append_Entity (N, Scope_Id);
|
|
Set_Public_Status (N);
|
|
|
|
if Kind in Type_Kind then
|
|
Init_Size_Align (N);
|
|
end if;
|
|
|
|
return N;
|
|
end New_External_Entity;
|
|
|
|
-------------------------
|
|
-- New_Internal_Entity --
|
|
-------------------------
|
|
|
|
function New_Internal_Entity
|
|
(Kind : Entity_Kind;
|
|
Scope_Id : Entity_Id;
|
|
Sloc_Value : Source_Ptr;
|
|
Id_Char : Character) return Entity_Id
|
|
is
|
|
N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
|
|
|
|
begin
|
|
Set_Ekind (N, Kind);
|
|
Set_Is_Internal (N, True);
|
|
Append_Entity (N, Scope_Id);
|
|
|
|
if Kind in Type_Kind then
|
|
Init_Size_Align (N);
|
|
end if;
|
|
|
|
return N;
|
|
end New_Internal_Entity;
|
|
|
|
-----------------
|
|
-- Next_Actual --
|
|
-----------------
|
|
|
|
function Next_Actual (Actual_Id : Node_Id) return Node_Id is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
-- If we are pointing at a positional parameter, it is a member of a
|
|
-- node list (the list of parameters), and the next parameter is the
|
|
-- next node on the list, unless we hit a parameter association, then
|
|
-- we shift to using the chain whose head is the First_Named_Actual in
|
|
-- the parent, and then is threaded using the Next_Named_Actual of the
|
|
-- Parameter_Association. All this fiddling is because the original node
|
|
-- list is in the textual call order, and what we need is the
|
|
-- declaration order.
|
|
|
|
if Is_List_Member (Actual_Id) then
|
|
N := Next (Actual_Id);
|
|
|
|
if Nkind (N) = N_Parameter_Association then
|
|
return First_Named_Actual (Parent (Actual_Id));
|
|
else
|
|
return N;
|
|
end if;
|
|
|
|
else
|
|
return Next_Named_Actual (Parent (Actual_Id));
|
|
end if;
|
|
end Next_Actual;
|
|
|
|
procedure Next_Actual (Actual_Id : in out Node_Id) is
|
|
begin
|
|
Actual_Id := Next_Actual (Actual_Id);
|
|
end Next_Actual;
|
|
|
|
-----------------------
|
|
-- Normalize_Actuals --
|
|
-----------------------
|
|
|
|
-- Chain actuals according to formals of subprogram. If there are no named
|
|
-- associations, the chain is simply the list of Parameter Associations,
|
|
-- since the order is the same as the declaration order. If there are named
|
|
-- associations, then the First_Named_Actual field in the N_Function_Call
|
|
-- or N_Procedure_Call_Statement node points to the Parameter_Association
|
|
-- node for the parameter that comes first in declaration order. The
|
|
-- remaining named parameters are then chained in declaration order using
|
|
-- Next_Named_Actual.
|
|
|
|
-- This routine also verifies that the number of actuals is compatible with
|
|
-- the number and default values of formals, but performs no type checking
|
|
-- (type checking is done by the caller).
|
|
|
|
-- If the matching succeeds, Success is set to True and the caller proceeds
|
|
-- with type-checking. If the match is unsuccessful, then Success is set to
|
|
-- False, and the caller attempts a different interpretation, if there is
|
|
-- one.
|
|
|
|
-- If the flag Report is on, the call is not overloaded, and a failure to
|
|
-- match can be reported here, rather than in the caller.
|
|
|
|
procedure Normalize_Actuals
|
|
(N : Node_Id;
|
|
S : Entity_Id;
|
|
Report : Boolean;
|
|
Success : out Boolean)
|
|
is
|
|
Actuals : constant List_Id := Parameter_Associations (N);
|
|
Actual : Node_Id := Empty;
|
|
Formal : Entity_Id;
|
|
Last : Node_Id := Empty;
|
|
First_Named : Node_Id := Empty;
|
|
Found : Boolean;
|
|
|
|
Formals_To_Match : Integer := 0;
|
|
Actuals_To_Match : Integer := 0;
|
|
|
|
procedure Chain (A : Node_Id);
|
|
-- Add named actual at the proper place in the list, using the
|
|
-- Next_Named_Actual link.
|
|
|
|
function Reporting return Boolean;
|
|
-- Determines if an error is to be reported. To report an error, we
|
|
-- need Report to be True, and also we do not report errors caused
|
|
-- by calls to init procs that occur within other init procs. Such
|
|
-- errors must always be cascaded errors, since if all the types are
|
|
-- declared correctly, the compiler will certainly build decent calls.
|
|
|
|
-----------
|
|
-- Chain --
|
|
-----------
|
|
|
|
procedure Chain (A : Node_Id) is
|
|
begin
|
|
if No (Last) then
|
|
|
|
-- Call node points to first actual in list
|
|
|
|
Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
|
|
|
|
else
|
|
Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
|
|
end if;
|
|
|
|
Last := A;
|
|
Set_Next_Named_Actual (Last, Empty);
|
|
end Chain;
|
|
|
|
---------------
|
|
-- Reporting --
|
|
---------------
|
|
|
|
function Reporting return Boolean is
|
|
begin
|
|
if not Report then
|
|
return False;
|
|
|
|
elsif not Within_Init_Proc then
|
|
return True;
|
|
|
|
elsif Is_Init_Proc (Entity (Name (N))) then
|
|
return False;
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Reporting;
|
|
|
|
-- Start of processing for Normalize_Actuals
|
|
|
|
begin
|
|
if Is_Access_Type (S) then
|
|
|
|
-- The name in the call is a function call that returns an access
|
|
-- to subprogram. The designated type has the list of formals.
|
|
|
|
Formal := First_Formal (Designated_Type (S));
|
|
else
|
|
Formal := First_Formal (S);
|
|
end if;
|
|
|
|
while Present (Formal) loop
|
|
Formals_To_Match := Formals_To_Match + 1;
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
-- Find if there is a named association, and verify that no positional
|
|
-- associations appear after named ones.
|
|
|
|
if Present (Actuals) then
|
|
Actual := First (Actuals);
|
|
end if;
|
|
|
|
while Present (Actual)
|
|
and then Nkind (Actual) /= N_Parameter_Association
|
|
loop
|
|
Actuals_To_Match := Actuals_To_Match + 1;
|
|
Next (Actual);
|
|
end loop;
|
|
|
|
if No (Actual) and Actuals_To_Match = Formals_To_Match then
|
|
|
|
-- Most common case: positional notation, no defaults
|
|
|
|
Success := True;
|
|
return;
|
|
|
|
elsif Actuals_To_Match > Formals_To_Match then
|
|
|
|
-- Too many actuals: will not work
|
|
|
|
if Reporting then
|
|
if Is_Entity_Name (Name (N)) then
|
|
Error_Msg_N ("too many arguments in call to&", Name (N));
|
|
else
|
|
Error_Msg_N ("too many arguments in call", N);
|
|
end if;
|
|
end if;
|
|
|
|
Success := False;
|
|
return;
|
|
end if;
|
|
|
|
First_Named := Actual;
|
|
|
|
while Present (Actual) loop
|
|
if Nkind (Actual) /= N_Parameter_Association then
|
|
Error_Msg_N
|
|
("positional parameters not allowed after named ones", Actual);
|
|
Success := False;
|
|
return;
|
|
|
|
else
|
|
Actuals_To_Match := Actuals_To_Match + 1;
|
|
end if;
|
|
|
|
Next (Actual);
|
|
end loop;
|
|
|
|
if Present (Actuals) then
|
|
Actual := First (Actuals);
|
|
end if;
|
|
|
|
Formal := First_Formal (S);
|
|
while Present (Formal) loop
|
|
|
|
-- Match the formals in order. If the corresponding actual is
|
|
-- positional, nothing to do. Else scan the list of named actuals
|
|
-- to find the one with the right name.
|
|
|
|
if Present (Actual)
|
|
and then Nkind (Actual) /= N_Parameter_Association
|
|
then
|
|
Next (Actual);
|
|
Actuals_To_Match := Actuals_To_Match - 1;
|
|
Formals_To_Match := Formals_To_Match - 1;
|
|
|
|
else
|
|
-- For named parameters, search the list of actuals to find
|
|
-- one that matches the next formal name.
|
|
|
|
Actual := First_Named;
|
|
Found := False;
|
|
while Present (Actual) loop
|
|
if Chars (Selector_Name (Actual)) = Chars (Formal) then
|
|
Found := True;
|
|
Chain (Actual);
|
|
Actuals_To_Match := Actuals_To_Match - 1;
|
|
Formals_To_Match := Formals_To_Match - 1;
|
|
exit;
|
|
end if;
|
|
|
|
Next (Actual);
|
|
end loop;
|
|
|
|
if not Found then
|
|
if Ekind (Formal) /= E_In_Parameter
|
|
or else No (Default_Value (Formal))
|
|
then
|
|
if Reporting then
|
|
if (Comes_From_Source (S)
|
|
or else Sloc (S) = Standard_Location)
|
|
and then Is_Overloadable (S)
|
|
then
|
|
if No (Actuals)
|
|
and then
|
|
Nkind_In (Parent (N), N_Procedure_Call_Statement,
|
|
N_Function_Call,
|
|
N_Parameter_Association)
|
|
and then Ekind (S) /= E_Function
|
|
then
|
|
Set_Etype (N, Etype (S));
|
|
|
|
else
|
|
Error_Msg_Name_1 := Chars (S);
|
|
Error_Msg_Sloc := Sloc (S);
|
|
Error_Msg_NE
|
|
("missing argument for parameter & "
|
|
& "in call to % declared #", N, Formal);
|
|
end if;
|
|
|
|
elsif Is_Overloadable (S) then
|
|
Error_Msg_Name_1 := Chars (S);
|
|
|
|
-- Point to type derivation that generated the
|
|
-- operation.
|
|
|
|
Error_Msg_Sloc := Sloc (Parent (S));
|
|
|
|
Error_Msg_NE
|
|
("missing argument for parameter & "
|
|
& "in call to % (inherited) #", N, Formal);
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("missing argument for parameter &", N, Formal);
|
|
end if;
|
|
end if;
|
|
|
|
Success := False;
|
|
return;
|
|
|
|
else
|
|
Formals_To_Match := Formals_To_Match - 1;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
|
|
Success := True;
|
|
return;
|
|
|
|
else
|
|
if Reporting then
|
|
|
|
-- Find some superfluous named actual that did not get
|
|
-- attached to the list of associations.
|
|
|
|
Actual := First (Actuals);
|
|
while Present (Actual) loop
|
|
if Nkind (Actual) = N_Parameter_Association
|
|
and then Actual /= Last
|
|
and then No (Next_Named_Actual (Actual))
|
|
then
|
|
-- A validity check may introduce a copy of a call that
|
|
-- includes an extra actual (for example for an unrelated
|
|
-- accessibility check). Check that the extra actual matches
|
|
-- some extra formal, which must exist already because
|
|
-- subprogram must be frozen at this point.
|
|
|
|
if Present (Extra_Formals (S))
|
|
and then not Comes_From_Source (Actual)
|
|
and then Nkind (Actual) = N_Parameter_Association
|
|
and then Chars (Extra_Formals (S)) =
|
|
Chars (Selector_Name (Actual))
|
|
then
|
|
null;
|
|
else
|
|
Error_Msg_N
|
|
("unmatched actual & in call", Selector_Name (Actual));
|
|
exit;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Actual);
|
|
end loop;
|
|
end if;
|
|
|
|
Success := False;
|
|
return;
|
|
end if;
|
|
end Normalize_Actuals;
|
|
|
|
--------------------------------
|
|
-- Note_Possible_Modification --
|
|
--------------------------------
|
|
|
|
procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
|
|
Modification_Comes_From_Source : constant Boolean :=
|
|
Comes_From_Source (Parent (N));
|
|
|
|
Ent : Entity_Id;
|
|
Exp : Node_Id;
|
|
|
|
begin
|
|
-- Loop to find referenced entity, if there is one
|
|
|
|
Exp := N;
|
|
loop
|
|
Ent := Empty;
|
|
|
|
if Is_Entity_Name (Exp) then
|
|
Ent := Entity (Exp);
|
|
|
|
-- If the entity is missing, it is an undeclared identifier,
|
|
-- and there is nothing to annotate.
|
|
|
|
if No (Ent) then
|
|
return;
|
|
end if;
|
|
|
|
elsif Nkind (Exp) = N_Explicit_Dereference then
|
|
declare
|
|
P : constant Node_Id := Prefix (Exp);
|
|
|
|
begin
|
|
-- In formal verification mode, keep track of all reads and
|
|
-- writes through explicit dereferences.
|
|
|
|
if GNATprove_Mode then
|
|
SPARK_Specific.Generate_Dereference (N, 'm');
|
|
end if;
|
|
|
|
if Nkind (P) = N_Selected_Component
|
|
and then Present (Entry_Formal (Entity (Selector_Name (P))))
|
|
then
|
|
-- Case of a reference to an entry formal
|
|
|
|
Ent := Entry_Formal (Entity (Selector_Name (P)));
|
|
|
|
elsif Nkind (P) = N_Identifier
|
|
and then Nkind (Parent (Entity (P))) = N_Object_Declaration
|
|
and then Present (Expression (Parent (Entity (P))))
|
|
and then Nkind (Expression (Parent (Entity (P)))) =
|
|
N_Reference
|
|
then
|
|
-- Case of a reference to a value on which side effects have
|
|
-- been removed.
|
|
|
|
Exp := Prefix (Expression (Parent (Entity (P))));
|
|
goto Continue;
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
end;
|
|
|
|
elsif Nkind_In (Exp, N_Type_Conversion,
|
|
N_Unchecked_Type_Conversion)
|
|
then
|
|
Exp := Expression (Exp);
|
|
goto Continue;
|
|
|
|
elsif Nkind_In (Exp, N_Slice,
|
|
N_Indexed_Component,
|
|
N_Selected_Component)
|
|
then
|
|
-- Special check, if the prefix is an access type, then return
|
|
-- since we are modifying the thing pointed to, not the prefix.
|
|
-- When we are expanding, most usually the prefix is replaced
|
|
-- by an explicit dereference, and this test is not needed, but
|
|
-- in some cases (notably -gnatc mode and generics) when we do
|
|
-- not do full expansion, we need this special test.
|
|
|
|
if Is_Access_Type (Etype (Prefix (Exp))) then
|
|
return;
|
|
|
|
-- Otherwise go to prefix and keep going
|
|
|
|
else
|
|
Exp := Prefix (Exp);
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- All other cases, not a modification
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- Now look for entity being referenced
|
|
|
|
if Present (Ent) then
|
|
if Is_Object (Ent) then
|
|
if Comes_From_Source (Exp)
|
|
or else Modification_Comes_From_Source
|
|
then
|
|
-- Give warning if pragma unmodified is given and we are
|
|
-- sure this is a modification.
|
|
|
|
if Has_Pragma_Unmodified (Ent) and then Sure then
|
|
|
|
-- Note that the entity may be present only as a result
|
|
-- of pragma Unused.
|
|
|
|
if Has_Pragma_Unused (Ent) then
|
|
Error_Msg_NE ("??pragma Unused given for &!", N, Ent);
|
|
else
|
|
Error_Msg_NE
|
|
("??pragma Unmodified given for &!", N, Ent);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Never_Set_In_Source (Ent, False);
|
|
end if;
|
|
|
|
Set_Is_True_Constant (Ent, False);
|
|
Set_Current_Value (Ent, Empty);
|
|
Set_Is_Known_Null (Ent, False);
|
|
|
|
if not Can_Never_Be_Null (Ent) then
|
|
Set_Is_Known_Non_Null (Ent, False);
|
|
end if;
|
|
|
|
-- Follow renaming chain
|
|
|
|
if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
|
|
and then Present (Renamed_Object (Ent))
|
|
then
|
|
Exp := Renamed_Object (Ent);
|
|
|
|
-- If the entity is the loop variable in an iteration over
|
|
-- a container, retrieve container expression to indicate
|
|
-- possible modification.
|
|
|
|
if Present (Related_Expression (Ent))
|
|
and then Nkind (Parent (Related_Expression (Ent))) =
|
|
N_Iterator_Specification
|
|
then
|
|
Exp := Original_Node (Related_Expression (Ent));
|
|
end if;
|
|
|
|
goto Continue;
|
|
|
|
-- The expression may be the renaming of a subcomponent of an
|
|
-- array or container. The assignment to the subcomponent is
|
|
-- a modification of the container.
|
|
|
|
elsif Comes_From_Source (Original_Node (Exp))
|
|
and then Nkind_In (Original_Node (Exp), N_Selected_Component,
|
|
N_Indexed_Component)
|
|
then
|
|
Exp := Prefix (Original_Node (Exp));
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- Generate a reference only if the assignment comes from
|
|
-- source. This excludes, for example, calls to a dispatching
|
|
-- assignment operation when the left-hand side is tagged. In
|
|
-- GNATprove mode, we need those references also on generated
|
|
-- code, as these are used to compute the local effects of
|
|
-- subprograms.
|
|
|
|
if Modification_Comes_From_Source or GNATprove_Mode then
|
|
Generate_Reference (Ent, Exp, 'm');
|
|
|
|
-- If the target of the assignment is the bound variable
|
|
-- in an iterator, indicate that the corresponding array
|
|
-- or container is also modified.
|
|
|
|
if Ada_Version >= Ada_2012
|
|
and then Nkind (Parent (Ent)) = N_Iterator_Specification
|
|
then
|
|
declare
|
|
Domain : constant Node_Id := Name (Parent (Ent));
|
|
|
|
begin
|
|
-- TBD : in the full version of the construct, the
|
|
-- domain of iteration can be given by an expression.
|
|
|
|
if Is_Entity_Name (Domain) then
|
|
Generate_Reference (Entity (Domain), Exp, 'm');
|
|
Set_Is_True_Constant (Entity (Domain), False);
|
|
Set_Never_Set_In_Source (Entity (Domain), False);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Kill_Checks (Ent);
|
|
|
|
-- If we are sure this is a modification from source, and we know
|
|
-- this modifies a constant, then give an appropriate warning.
|
|
|
|
if Sure
|
|
and then Modification_Comes_From_Source
|
|
and then Overlays_Constant (Ent)
|
|
and then Address_Clause_Overlay_Warnings
|
|
then
|
|
declare
|
|
Addr : constant Node_Id := Address_Clause (Ent);
|
|
O_Ent : Entity_Id;
|
|
Off : Boolean;
|
|
|
|
begin
|
|
Find_Overlaid_Entity (Addr, O_Ent, Off);
|
|
|
|
Error_Msg_Sloc := Sloc (Addr);
|
|
Error_Msg_NE
|
|
("??constant& may be modified via address clause#",
|
|
N, O_Ent);
|
|
end;
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
<<Continue>>
|
|
null;
|
|
end loop;
|
|
end Note_Possible_Modification;
|
|
|
|
--------------------------------------
|
|
-- Null_To_Null_Address_Convert_OK --
|
|
--------------------------------------
|
|
|
|
function Null_To_Null_Address_Convert_OK
|
|
(N : Node_Id;
|
|
Typ : Entity_Id := Empty) return Boolean
|
|
is
|
|
begin
|
|
if not Relaxed_RM_Semantics then
|
|
return False;
|
|
end if;
|
|
|
|
if Nkind (N) = N_Null then
|
|
return Present (Typ) and then Is_Descendant_Of_Address (Typ);
|
|
|
|
elsif Nkind_In (N, N_Op_Eq, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt, N_Op_Ne)
|
|
then
|
|
declare
|
|
L : constant Node_Id := Left_Opnd (N);
|
|
R : constant Node_Id := Right_Opnd (N);
|
|
|
|
begin
|
|
-- We check the Etype of the complementary operand since the
|
|
-- N_Null node is not decorated at this stage.
|
|
|
|
return
|
|
((Nkind (L) = N_Null
|
|
and then Is_Descendant_Of_Address (Etype (R)))
|
|
or else
|
|
(Nkind (R) = N_Null
|
|
and then Is_Descendant_Of_Address (Etype (L))));
|
|
end;
|
|
end if;
|
|
|
|
return False;
|
|
end Null_To_Null_Address_Convert_OK;
|
|
|
|
-------------------------
|
|
-- Object_Access_Level --
|
|
-------------------------
|
|
|
|
-- Returns the static accessibility level of the view denoted by Obj. Note
|
|
-- that the value returned is the result of a call to Scope_Depth. Only
|
|
-- scope depths associated with dynamic scopes can actually be returned.
|
|
-- Since only relative levels matter for accessibility checking, the fact
|
|
-- that the distance between successive levels of accessibility is not
|
|
-- always one is immaterial (invariant: if level(E2) is deeper than
|
|
-- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
|
|
|
|
function Object_Access_Level (Obj : Node_Id) return Uint is
|
|
function Is_Interface_Conversion (N : Node_Id) return Boolean;
|
|
-- Determine whether N is a construct of the form
|
|
-- Some_Type (Operand._tag'Address)
|
|
-- This construct appears in the context of dispatching calls.
|
|
|
|
function Reference_To (Obj : Node_Id) return Node_Id;
|
|
-- An explicit dereference is created when removing side-effects from
|
|
-- expressions for constraint checking purposes. In this case a local
|
|
-- access type is created for it. The correct access level is that of
|
|
-- the original source node. We detect this case by noting that the
|
|
-- prefix of the dereference is created by an object declaration whose
|
|
-- initial expression is a reference.
|
|
|
|
-----------------------------
|
|
-- Is_Interface_Conversion --
|
|
-----------------------------
|
|
|
|
function Is_Interface_Conversion (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Unchecked_Type_Conversion
|
|
and then Nkind (Expression (N)) = N_Attribute_Reference
|
|
and then Attribute_Name (Expression (N)) = Name_Address;
|
|
end Is_Interface_Conversion;
|
|
|
|
------------------
|
|
-- Reference_To --
|
|
------------------
|
|
|
|
function Reference_To (Obj : Node_Id) return Node_Id is
|
|
Pref : constant Node_Id := Prefix (Obj);
|
|
begin
|
|
if Is_Entity_Name (Pref)
|
|
and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
|
|
and then Present (Expression (Parent (Entity (Pref))))
|
|
and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
|
|
then
|
|
return (Prefix (Expression (Parent (Entity (Pref)))));
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end Reference_To;
|
|
|
|
-- Local variables
|
|
|
|
E : Entity_Id;
|
|
|
|
-- Start of processing for Object_Access_Level
|
|
|
|
begin
|
|
if Nkind (Obj) = N_Defining_Identifier
|
|
or else Is_Entity_Name (Obj)
|
|
then
|
|
if Nkind (Obj) = N_Defining_Identifier then
|
|
E := Obj;
|
|
else
|
|
E := Entity (Obj);
|
|
end if;
|
|
|
|
if Is_Prival (E) then
|
|
E := Prival_Link (E);
|
|
end if;
|
|
|
|
-- If E is a type then it denotes a current instance. For this case
|
|
-- we add one to the normal accessibility level of the type to ensure
|
|
-- that current instances are treated as always being deeper than
|
|
-- than the level of any visible named access type (see 3.10.2(21)).
|
|
|
|
if Is_Type (E) then
|
|
return Type_Access_Level (E) + 1;
|
|
|
|
elsif Present (Renamed_Object (E)) then
|
|
return Object_Access_Level (Renamed_Object (E));
|
|
|
|
-- Similarly, if E is a component of the current instance of a
|
|
-- protected type, any instance of it is assumed to be at a deeper
|
|
-- level than the type. For a protected object (whose type is an
|
|
-- anonymous protected type) its components are at the same level
|
|
-- as the type itself.
|
|
|
|
elsif not Is_Overloadable (E)
|
|
and then Ekind (Scope (E)) = E_Protected_Type
|
|
and then Comes_From_Source (Scope (E))
|
|
then
|
|
return Type_Access_Level (Scope (E)) + 1;
|
|
|
|
else
|
|
-- Aliased formals of functions take their access level from the
|
|
-- point of call, i.e. require a dynamic check. For static check
|
|
-- purposes, this is smaller than the level of the subprogram
|
|
-- itself. For procedures the aliased makes no difference.
|
|
|
|
if Is_Formal (E)
|
|
and then Is_Aliased (E)
|
|
and then Ekind (Scope (E)) = E_Function
|
|
then
|
|
return Type_Access_Level (Etype (E));
|
|
|
|
else
|
|
return Scope_Depth (Enclosing_Dynamic_Scope (E));
|
|
end if;
|
|
end if;
|
|
|
|
elsif Nkind (Obj) = N_Selected_Component then
|
|
if Is_Access_Type (Etype (Prefix (Obj))) then
|
|
return Type_Access_Level (Etype (Prefix (Obj)));
|
|
else
|
|
return Object_Access_Level (Prefix (Obj));
|
|
end if;
|
|
|
|
elsif Nkind (Obj) = N_Indexed_Component then
|
|
if Is_Access_Type (Etype (Prefix (Obj))) then
|
|
return Type_Access_Level (Etype (Prefix (Obj)));
|
|
else
|
|
return Object_Access_Level (Prefix (Obj));
|
|
end if;
|
|
|
|
elsif Nkind (Obj) = N_Explicit_Dereference then
|
|
|
|
-- If the prefix is a selected access discriminant then we make a
|
|
-- recursive call on the prefix, which will in turn check the level
|
|
-- of the prefix object of the selected discriminant.
|
|
|
|
-- In Ada 2012, if the discriminant has implicit dereference and
|
|
-- the context is a selected component, treat this as an object of
|
|
-- unknown scope (see below). This is necessary in compile-only mode;
|
|
-- otherwise expansion will already have transformed the prefix into
|
|
-- a temporary.
|
|
|
|
if Nkind (Prefix (Obj)) = N_Selected_Component
|
|
and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
|
|
and then
|
|
Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
|
|
and then
|
|
(not Has_Implicit_Dereference
|
|
(Entity (Selector_Name (Prefix (Obj))))
|
|
or else Nkind (Parent (Obj)) /= N_Selected_Component)
|
|
then
|
|
return Object_Access_Level (Prefix (Obj));
|
|
|
|
-- Detect an interface conversion in the context of a dispatching
|
|
-- call. Use the original form of the conversion to find the access
|
|
-- level of the operand.
|
|
|
|
elsif Is_Interface (Etype (Obj))
|
|
and then Is_Interface_Conversion (Prefix (Obj))
|
|
and then Nkind (Original_Node (Obj)) = N_Type_Conversion
|
|
then
|
|
return Object_Access_Level (Original_Node (Obj));
|
|
|
|
elsif not Comes_From_Source (Obj) then
|
|
declare
|
|
Ref : constant Node_Id := Reference_To (Obj);
|
|
begin
|
|
if Present (Ref) then
|
|
return Object_Access_Level (Ref);
|
|
else
|
|
return Type_Access_Level (Etype (Prefix (Obj)));
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
return Type_Access_Level (Etype (Prefix (Obj)));
|
|
end if;
|
|
|
|
elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
|
|
return Object_Access_Level (Expression (Obj));
|
|
|
|
elsif Nkind (Obj) = N_Function_Call then
|
|
|
|
-- Function results are objects, so we get either the access level of
|
|
-- the function or, in the case of an indirect call, the level of the
|
|
-- access-to-subprogram type. (This code is used for Ada 95, but it
|
|
-- looks wrong, because it seems that we should be checking the level
|
|
-- of the call itself, even for Ada 95. However, using the Ada 2005
|
|
-- version of the code causes regressions in several tests that are
|
|
-- compiled with -gnat95. ???)
|
|
|
|
if Ada_Version < Ada_2005 then
|
|
if Is_Entity_Name (Name (Obj)) then
|
|
return Subprogram_Access_Level (Entity (Name (Obj)));
|
|
else
|
|
return Type_Access_Level (Etype (Prefix (Name (Obj))));
|
|
end if;
|
|
|
|
-- For Ada 2005, the level of the result object of a function call is
|
|
-- defined to be the level of the call's innermost enclosing master.
|
|
-- We determine that by querying the depth of the innermost enclosing
|
|
-- dynamic scope.
|
|
|
|
else
|
|
Return_Master_Scope_Depth_Of_Call : declare
|
|
|
|
function Innermost_Master_Scope_Depth
|
|
(N : Node_Id) return Uint;
|
|
-- Returns the scope depth of the given node's innermost
|
|
-- enclosing dynamic scope (effectively the accessibility
|
|
-- level of the innermost enclosing master).
|
|
|
|
----------------------------------
|
|
-- Innermost_Master_Scope_Depth --
|
|
----------------------------------
|
|
|
|
function Innermost_Master_Scope_Depth
|
|
(N : Node_Id) return Uint
|
|
is
|
|
Node_Par : Node_Id := Parent (N);
|
|
|
|
begin
|
|
-- Locate the nearest enclosing node (by traversing Parents)
|
|
-- that Defining_Entity can be applied to, and return the
|
|
-- depth of that entity's nearest enclosing dynamic scope.
|
|
|
|
while Present (Node_Par) loop
|
|
case Nkind (Node_Par) is
|
|
when N_Component_Declaration |
|
|
N_Entry_Declaration |
|
|
N_Formal_Object_Declaration |
|
|
N_Formal_Type_Declaration |
|
|
N_Full_Type_Declaration |
|
|
N_Incomplete_Type_Declaration |
|
|
N_Loop_Parameter_Specification |
|
|
N_Object_Declaration |
|
|
N_Protected_Type_Declaration |
|
|
N_Private_Extension_Declaration |
|
|
N_Private_Type_Declaration |
|
|
N_Subtype_Declaration |
|
|
N_Function_Specification |
|
|
N_Procedure_Specification |
|
|
N_Task_Type_Declaration |
|
|
N_Body_Stub |
|
|
N_Generic_Instantiation |
|
|
N_Proper_Body |
|
|
N_Implicit_Label_Declaration |
|
|
N_Package_Declaration |
|
|
N_Single_Task_Declaration |
|
|
N_Subprogram_Declaration |
|
|
N_Generic_Declaration |
|
|
N_Renaming_Declaration |
|
|
N_Block_Statement |
|
|
N_Formal_Subprogram_Declaration |
|
|
N_Abstract_Subprogram_Declaration |
|
|
N_Entry_Body |
|
|
N_Exception_Declaration |
|
|
N_Formal_Package_Declaration |
|
|
N_Number_Declaration |
|
|
N_Package_Specification |
|
|
N_Parameter_Specification |
|
|
N_Single_Protected_Declaration |
|
|
N_Subunit =>
|
|
|
|
return Scope_Depth
|
|
(Nearest_Dynamic_Scope
|
|
(Defining_Entity (Node_Par)));
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
Node_Par := Parent (Node_Par);
|
|
end loop;
|
|
|
|
pragma Assert (False);
|
|
|
|
-- Should never reach the following return
|
|
|
|
return Scope_Depth (Current_Scope) + 1;
|
|
end Innermost_Master_Scope_Depth;
|
|
|
|
-- Start of processing for Return_Master_Scope_Depth_Of_Call
|
|
|
|
begin
|
|
return Innermost_Master_Scope_Depth (Obj);
|
|
end Return_Master_Scope_Depth_Of_Call;
|
|
end if;
|
|
|
|
-- For convenience we handle qualified expressions, even though they
|
|
-- aren't technically object names.
|
|
|
|
elsif Nkind (Obj) = N_Qualified_Expression then
|
|
return Object_Access_Level (Expression (Obj));
|
|
|
|
-- Ditto for aggregates. They have the level of the temporary that
|
|
-- will hold their value.
|
|
|
|
elsif Nkind (Obj) = N_Aggregate then
|
|
return Object_Access_Level (Current_Scope);
|
|
|
|
-- Otherwise return the scope level of Standard. (If there are cases
|
|
-- that fall through to this point they will be treated as having
|
|
-- global accessibility for now. ???)
|
|
|
|
else
|
|
return Scope_Depth (Standard_Standard);
|
|
end if;
|
|
end Object_Access_Level;
|
|
|
|
---------------------------------
|
|
-- Original_Aspect_Pragma_Name --
|
|
---------------------------------
|
|
|
|
function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
|
|
Item : Node_Id;
|
|
Item_Nam : Name_Id;
|
|
|
|
begin
|
|
pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
|
|
|
|
Item := N;
|
|
|
|
-- The pragma was generated to emulate an aspect, use the original
|
|
-- aspect specification.
|
|
|
|
if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
|
|
Item := Corresponding_Aspect (Item);
|
|
end if;
|
|
|
|
-- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
|
|
-- Post and Post_Class rewrite their pragma identifier to preserve the
|
|
-- original name.
|
|
-- ??? this is kludgey
|
|
|
|
if Nkind (Item) = N_Pragma then
|
|
Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
|
|
|
|
else
|
|
pragma Assert (Nkind (Item) = N_Aspect_Specification);
|
|
Item_Nam := Chars (Identifier (Item));
|
|
end if;
|
|
|
|
-- Deal with 'Class by converting the name to its _XXX form
|
|
|
|
if Class_Present (Item) then
|
|
if Item_Nam = Name_Invariant then
|
|
Item_Nam := Name_uInvariant;
|
|
|
|
elsif Item_Nam = Name_Post then
|
|
Item_Nam := Name_uPost;
|
|
|
|
elsif Item_Nam = Name_Pre then
|
|
Item_Nam := Name_uPre;
|
|
|
|
elsif Nam_In (Item_Nam, Name_Type_Invariant,
|
|
Name_Type_Invariant_Class)
|
|
then
|
|
Item_Nam := Name_uType_Invariant;
|
|
|
|
-- Nothing to do for other cases (e.g. a Check that derived from
|
|
-- Pre_Class and has the flag set). Also we do nothing if the name
|
|
-- is already in special _xxx form.
|
|
|
|
end if;
|
|
end if;
|
|
|
|
return Item_Nam;
|
|
end Original_Aspect_Pragma_Name;
|
|
|
|
--------------------------------------
|
|
-- Original_Corresponding_Operation --
|
|
--------------------------------------
|
|
|
|
function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
|
|
is
|
|
Typ : constant Entity_Id := Find_Dispatching_Type (S);
|
|
|
|
begin
|
|
-- If S is an inherited primitive S2 the original corresponding
|
|
-- operation of S is the original corresponding operation of S2
|
|
|
|
if Present (Alias (S))
|
|
and then Find_Dispatching_Type (Alias (S)) /= Typ
|
|
then
|
|
return Original_Corresponding_Operation (Alias (S));
|
|
|
|
-- If S overrides an inherited subprogram S2 the original corresponding
|
|
-- operation of S is the original corresponding operation of S2
|
|
|
|
elsif Present (Overridden_Operation (S)) then
|
|
return Original_Corresponding_Operation (Overridden_Operation (S));
|
|
|
|
-- otherwise it is S itself
|
|
|
|
else
|
|
return S;
|
|
end if;
|
|
end Original_Corresponding_Operation;
|
|
|
|
-------------------
|
|
-- Output_Entity --
|
|
-------------------
|
|
|
|
procedure Output_Entity (Id : Entity_Id) is
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Scop := Scope (Id);
|
|
|
|
-- The entity may lack a scope when it is in the process of being
|
|
-- analyzed. Use the current scope as an approximation.
|
|
|
|
if No (Scop) then
|
|
Scop := Current_Scope;
|
|
end if;
|
|
|
|
Output_Name (Chars (Id), Scop);
|
|
end Output_Entity;
|
|
|
|
-----------------
|
|
-- Output_Name --
|
|
-----------------
|
|
|
|
procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope) is
|
|
begin
|
|
Write_Str
|
|
(Get_Name_String
|
|
(Get_Qualified_Name
|
|
(Nam => Nam,
|
|
Suffix => No_Name,
|
|
Scop => Scop)));
|
|
Write_Eol;
|
|
end Output_Name;
|
|
|
|
----------------------
|
|
-- Policy_In_Effect --
|
|
----------------------
|
|
|
|
function Policy_In_Effect (Policy : Name_Id) return Name_Id is
|
|
function Policy_In_List (List : Node_Id) return Name_Id;
|
|
-- Determine the mode of a policy in a N_Pragma list
|
|
|
|
--------------------
|
|
-- Policy_In_List --
|
|
--------------------
|
|
|
|
function Policy_In_List (List : Node_Id) return Name_Id is
|
|
Arg1 : Node_Id;
|
|
Arg2 : Node_Id;
|
|
Prag : Node_Id;
|
|
|
|
begin
|
|
Prag := List;
|
|
while Present (Prag) loop
|
|
Arg1 := First (Pragma_Argument_Associations (Prag));
|
|
Arg2 := Next (Arg1);
|
|
|
|
Arg1 := Get_Pragma_Arg (Arg1);
|
|
Arg2 := Get_Pragma_Arg (Arg2);
|
|
|
|
-- The current Check_Policy pragma matches the requested policy or
|
|
-- appears in the single argument form (Assertion, policy_id).
|
|
|
|
if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
|
|
return Chars (Arg2);
|
|
end if;
|
|
|
|
Prag := Next_Pragma (Prag);
|
|
end loop;
|
|
|
|
return No_Name;
|
|
end Policy_In_List;
|
|
|
|
-- Local variables
|
|
|
|
Kind : Name_Id;
|
|
|
|
-- Start of processing for Policy_In_Effect
|
|
|
|
begin
|
|
if not Is_Valid_Assertion_Kind (Policy) then
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Inspect all policy pragmas that appear within scopes (if any)
|
|
|
|
Kind := Policy_In_List (Check_Policy_List);
|
|
|
|
-- Inspect all configuration policy pragmas (if any)
|
|
|
|
if Kind = No_Name then
|
|
Kind := Policy_In_List (Check_Policy_List_Config);
|
|
end if;
|
|
|
|
-- The context lacks policy pragmas, determine the mode based on whether
|
|
-- assertions are enabled at the configuration level. This ensures that
|
|
-- the policy is preserved when analyzing generics.
|
|
|
|
if Kind = No_Name then
|
|
if Assertions_Enabled_Config then
|
|
Kind := Name_Check;
|
|
else
|
|
Kind := Name_Ignore;
|
|
end if;
|
|
end if;
|
|
|
|
return Kind;
|
|
end Policy_In_Effect;
|
|
|
|
----------------------------------
|
|
-- Predicate_Tests_On_Arguments --
|
|
----------------------------------
|
|
|
|
function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
|
|
begin
|
|
-- Always test predicates on indirect call
|
|
|
|
if Ekind (Subp) = E_Subprogram_Type then
|
|
return True;
|
|
|
|
-- Do not test predicates on call to generated default Finalize, since
|
|
-- we are not interested in whether something we are finalizing (and
|
|
-- typically destroying) satisfies its predicates.
|
|
|
|
elsif Chars (Subp) = Name_Finalize
|
|
and then not Comes_From_Source (Subp)
|
|
then
|
|
return False;
|
|
|
|
-- Do not test predicates on any internally generated routines
|
|
|
|
elsif Is_Internal_Name (Chars (Subp)) then
|
|
return False;
|
|
|
|
-- Do not test predicates on call to Init_Proc, since if needed the
|
|
-- predicate test will occur at some other point.
|
|
|
|
elsif Is_Init_Proc (Subp) then
|
|
return False;
|
|
|
|
-- Do not test predicates on call to predicate function, since this
|
|
-- would cause infinite recursion.
|
|
|
|
elsif Ekind (Subp) = E_Function
|
|
and then (Is_Predicate_Function (Subp)
|
|
or else
|
|
Is_Predicate_Function_M (Subp))
|
|
then
|
|
return False;
|
|
|
|
-- For now, no other exceptions
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Predicate_Tests_On_Arguments;
|
|
|
|
-----------------------
|
|
-- Private_Component --
|
|
-----------------------
|
|
|
|
function Private_Component (Type_Id : Entity_Id) return Entity_Id is
|
|
Ancestor : constant Entity_Id := Base_Type (Type_Id);
|
|
|
|
function Trace_Components
|
|
(T : Entity_Id;
|
|
Check : Boolean) return Entity_Id;
|
|
-- Recursive function that does the work, and checks against circular
|
|
-- definition for each subcomponent type.
|
|
|
|
----------------------
|
|
-- Trace_Components --
|
|
----------------------
|
|
|
|
function Trace_Components
|
|
(T : Entity_Id;
|
|
Check : Boolean) return Entity_Id
|
|
is
|
|
Btype : constant Entity_Id := Base_Type (T);
|
|
Component : Entity_Id;
|
|
P : Entity_Id;
|
|
Candidate : Entity_Id := Empty;
|
|
|
|
begin
|
|
if Check and then Btype = Ancestor then
|
|
Error_Msg_N ("circular type definition", Type_Id);
|
|
return Any_Type;
|
|
end if;
|
|
|
|
if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
|
|
if Present (Full_View (Btype))
|
|
and then Is_Record_Type (Full_View (Btype))
|
|
and then not Is_Frozen (Btype)
|
|
then
|
|
-- To indicate that the ancestor depends on a private type, the
|
|
-- current Btype is sufficient. However, to check for circular
|
|
-- definition we must recurse on the full view.
|
|
|
|
Candidate := Trace_Components (Full_View (Btype), True);
|
|
|
|
if Candidate = Any_Type then
|
|
return Any_Type;
|
|
else
|
|
return Btype;
|
|
end if;
|
|
|
|
else
|
|
return Btype;
|
|
end if;
|
|
|
|
elsif Is_Array_Type (Btype) then
|
|
return Trace_Components (Component_Type (Btype), True);
|
|
|
|
elsif Is_Record_Type (Btype) then
|
|
Component := First_Entity (Btype);
|
|
while Present (Component)
|
|
and then Comes_From_Source (Component)
|
|
loop
|
|
-- Skip anonymous types generated by constrained components
|
|
|
|
if not Is_Type (Component) then
|
|
P := Trace_Components (Etype (Component), True);
|
|
|
|
if Present (P) then
|
|
if P = Any_Type then
|
|
return P;
|
|
else
|
|
Candidate := P;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Component);
|
|
end loop;
|
|
|
|
return Candidate;
|
|
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end Trace_Components;
|
|
|
|
-- Start of processing for Private_Component
|
|
|
|
begin
|
|
return Trace_Components (Type_Id, False);
|
|
end Private_Component;
|
|
|
|
---------------------------
|
|
-- Primitive_Names_Match --
|
|
---------------------------
|
|
|
|
function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
|
|
|
|
function Non_Internal_Name (E : Entity_Id) return Name_Id;
|
|
-- Given an internal name, returns the corresponding non-internal name
|
|
|
|
------------------------
|
|
-- Non_Internal_Name --
|
|
------------------------
|
|
|
|
function Non_Internal_Name (E : Entity_Id) return Name_Id is
|
|
begin
|
|
Get_Name_String (Chars (E));
|
|
Name_Len := Name_Len - 1;
|
|
return Name_Find;
|
|
end Non_Internal_Name;
|
|
|
|
-- Start of processing for Primitive_Names_Match
|
|
|
|
begin
|
|
pragma Assert (Present (E1) and then Present (E2));
|
|
|
|
return Chars (E1) = Chars (E2)
|
|
or else
|
|
(not Is_Internal_Name (Chars (E1))
|
|
and then Is_Internal_Name (Chars (E2))
|
|
and then Non_Internal_Name (E2) = Chars (E1))
|
|
or else
|
|
(not Is_Internal_Name (Chars (E2))
|
|
and then Is_Internal_Name (Chars (E1))
|
|
and then Non_Internal_Name (E1) = Chars (E2))
|
|
or else
|
|
(Is_Predefined_Dispatching_Operation (E1)
|
|
and then Is_Predefined_Dispatching_Operation (E2)
|
|
and then Same_TSS (E1, E2))
|
|
or else
|
|
(Is_Init_Proc (E1) and then Is_Init_Proc (E2));
|
|
end Primitive_Names_Match;
|
|
|
|
-----------------------
|
|
-- Process_End_Label --
|
|
-----------------------
|
|
|
|
procedure Process_End_Label
|
|
(N : Node_Id;
|
|
Typ : Character;
|
|
Ent : Entity_Id)
|
|
is
|
|
Loc : Source_Ptr;
|
|
Nam : Node_Id;
|
|
Scop : Entity_Id;
|
|
|
|
Label_Ref : Boolean;
|
|
-- Set True if reference to end label itself is required
|
|
|
|
Endl : Node_Id;
|
|
-- Gets set to the operator symbol or identifier that references the
|
|
-- entity Ent. For the child unit case, this is the identifier from the
|
|
-- designator. For other cases, this is simply Endl.
|
|
|
|
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
|
|
-- N is an identifier node that appears as a parent unit reference in
|
|
-- the case where Ent is a child unit. This procedure generates an
|
|
-- appropriate cross-reference entry. E is the corresponding entity.
|
|
|
|
-------------------------
|
|
-- Generate_Parent_Ref --
|
|
-------------------------
|
|
|
|
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
|
|
begin
|
|
-- If names do not match, something weird, skip reference
|
|
|
|
if Chars (E) = Chars (N) then
|
|
|
|
-- Generate the reference. We do NOT consider this as a reference
|
|
-- for unreferenced symbol purposes.
|
|
|
|
Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
|
|
|
|
if Style_Check then
|
|
Style.Check_Identifier (N, E);
|
|
end if;
|
|
end if;
|
|
end Generate_Parent_Ref;
|
|
|
|
-- Start of processing for Process_End_Label
|
|
|
|
begin
|
|
-- If no node, ignore. This happens in some error situations, and
|
|
-- also for some internally generated structures where no end label
|
|
-- references are required in any case.
|
|
|
|
if No (N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Nothing to do if no End_Label, happens for internally generated
|
|
-- constructs where we don't want an end label reference anyway. Also
|
|
-- nothing to do if Endl is a string literal, which means there was
|
|
-- some prior error (bad operator symbol)
|
|
|
|
Endl := End_Label (N);
|
|
|
|
if No (Endl) or else Nkind (Endl) = N_String_Literal then
|
|
return;
|
|
end if;
|
|
|
|
-- Reference node is not in extended main source unit
|
|
|
|
if not In_Extended_Main_Source_Unit (N) then
|
|
|
|
-- Generally we do not collect references except for the extended
|
|
-- main source unit. The one exception is the 'e' entry for a
|
|
-- package spec, where it is useful for a client to have the
|
|
-- ending information to define scopes.
|
|
|
|
if Typ /= 'e' then
|
|
return;
|
|
|
|
else
|
|
Label_Ref := False;
|
|
|
|
-- For this case, we can ignore any parent references, but we
|
|
-- need the package name itself for the 'e' entry.
|
|
|
|
if Nkind (Endl) = N_Designator then
|
|
Endl := Identifier (Endl);
|
|
end if;
|
|
end if;
|
|
|
|
-- Reference is in extended main source unit
|
|
|
|
else
|
|
Label_Ref := True;
|
|
|
|
-- For designator, generate references for the parent entries
|
|
|
|
if Nkind (Endl) = N_Designator then
|
|
|
|
-- Generate references for the prefix if the END line comes from
|
|
-- source (otherwise we do not need these references) We climb the
|
|
-- scope stack to find the expected entities.
|
|
|
|
if Comes_From_Source (Endl) then
|
|
Nam := Name (Endl);
|
|
Scop := Current_Scope;
|
|
while Nkind (Nam) = N_Selected_Component loop
|
|
Scop := Scope (Scop);
|
|
exit when No (Scop);
|
|
Generate_Parent_Ref (Selector_Name (Nam), Scop);
|
|
Nam := Prefix (Nam);
|
|
end loop;
|
|
|
|
if Present (Scop) then
|
|
Generate_Parent_Ref (Nam, Scope (Scop));
|
|
end if;
|
|
end if;
|
|
|
|
Endl := Identifier (Endl);
|
|
end if;
|
|
end if;
|
|
|
|
-- If the end label is not for the given entity, then either we have
|
|
-- some previous error, or this is a generic instantiation for which
|
|
-- we do not need to make a cross-reference in this case anyway. In
|
|
-- either case we simply ignore the call.
|
|
|
|
if Chars (Ent) /= Chars (Endl) then
|
|
return;
|
|
end if;
|
|
|
|
-- If label was really there, then generate a normal reference and then
|
|
-- adjust the location in the end label to point past the name (which
|
|
-- should almost always be the semicolon).
|
|
|
|
Loc := Sloc (Endl);
|
|
|
|
if Comes_From_Source (Endl) then
|
|
|
|
-- If a label reference is required, then do the style check and
|
|
-- generate an l-type cross-reference entry for the label
|
|
|
|
if Label_Ref then
|
|
if Style_Check then
|
|
Style.Check_Identifier (Endl, Ent);
|
|
end if;
|
|
|
|
Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
|
|
end if;
|
|
|
|
-- Set the location to point past the label (normally this will
|
|
-- mean the semicolon immediately following the label). This is
|
|
-- done for the sake of the 'e' or 't' entry generated below.
|
|
|
|
Get_Decoded_Name_String (Chars (Endl));
|
|
Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
|
|
|
|
else
|
|
-- In SPARK mode, no missing label is allowed for packages and
|
|
-- subprogram bodies. Detect those cases by testing whether
|
|
-- Process_End_Label was called for a body (Typ = 't') or a package.
|
|
|
|
if Restriction_Check_Required (SPARK_05)
|
|
and then (Typ = 't' or else Ekind (Ent) = E_Package)
|
|
then
|
|
Error_Msg_Node_1 := Endl;
|
|
Check_SPARK_05_Restriction
|
|
("`END &` required", Endl, Force => True);
|
|
end if;
|
|
end if;
|
|
|
|
-- Now generate the e/t reference
|
|
|
|
Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
|
|
|
|
-- Restore Sloc, in case modified above, since we have an identifier
|
|
-- and the normal Sloc should be left set in the tree.
|
|
|
|
Set_Sloc (Endl, Loc);
|
|
end Process_End_Label;
|
|
|
|
------------------------------------
|
|
-- Propagate_Invariant_Attributes --
|
|
------------------------------------
|
|
|
|
procedure Propagate_Invariant_Attributes
|
|
(Typ : Entity_Id;
|
|
From_Typ : Entity_Id)
|
|
is
|
|
Full_IP : Entity_Id;
|
|
Part_IP : Entity_Id;
|
|
|
|
begin
|
|
if Present (Typ) and then Present (From_Typ) then
|
|
pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
|
|
|
|
-- Nothing to do if both the source and the destination denote the
|
|
-- same type.
|
|
|
|
if From_Typ = Typ then
|
|
return;
|
|
end if;
|
|
|
|
Full_IP := Invariant_Procedure (From_Typ);
|
|
Part_IP := Partial_Invariant_Procedure (From_Typ);
|
|
|
|
-- The setting of the attributes is intentionally conservative. This
|
|
-- prevents accidental clobbering of enabled attributes.
|
|
|
|
if Has_Inheritable_Invariants (From_Typ)
|
|
and then not Has_Inheritable_Invariants (Typ)
|
|
then
|
|
Set_Has_Inheritable_Invariants (Typ, True);
|
|
end if;
|
|
|
|
if Has_Inherited_Invariants (From_Typ)
|
|
and then not Has_Inherited_Invariants (Typ)
|
|
then
|
|
Set_Has_Inherited_Invariants (Typ, True);
|
|
end if;
|
|
|
|
if Has_Own_Invariants (From_Typ)
|
|
and then not Has_Own_Invariants (Typ)
|
|
then
|
|
Set_Has_Own_Invariants (Typ, True);
|
|
end if;
|
|
|
|
if Present (Full_IP) and then No (Invariant_Procedure (Typ)) then
|
|
Set_Invariant_Procedure (Typ, Full_IP);
|
|
end if;
|
|
|
|
if Present (Part_IP) and then No (Partial_Invariant_Procedure (Typ))
|
|
then
|
|
Set_Partial_Invariant_Procedure (Typ, Part_IP);
|
|
end if;
|
|
end if;
|
|
end Propagate_Invariant_Attributes;
|
|
|
|
--------------------------------
|
|
-- Propagate_Concurrent_Flags --
|
|
--------------------------------
|
|
|
|
procedure Propagate_Concurrent_Flags
|
|
(Typ : Entity_Id;
|
|
Comp_Typ : Entity_Id)
|
|
is
|
|
begin
|
|
if Has_Task (Comp_Typ) then
|
|
Set_Has_Task (Typ);
|
|
end if;
|
|
|
|
if Has_Protected (Comp_Typ) then
|
|
Set_Has_Protected (Typ);
|
|
end if;
|
|
|
|
if Has_Timing_Event (Comp_Typ) then
|
|
Set_Has_Timing_Event (Typ);
|
|
end if;
|
|
end Propagate_Concurrent_Flags;
|
|
|
|
---------------------------------------
|
|
-- Record_Possible_Part_Of_Reference --
|
|
---------------------------------------
|
|
|
|
procedure Record_Possible_Part_Of_Reference
|
|
(Var_Id : Entity_Id;
|
|
Ref : Node_Id)
|
|
is
|
|
Encap : constant Entity_Id := Encapsulating_State (Var_Id);
|
|
Refs : Elist_Id;
|
|
|
|
begin
|
|
-- The variable is a constituent of a single protected/task type. Such
|
|
-- a variable acts as a component of the type and must appear within a
|
|
-- specific region (SPARK RM 9.3). Instead of recording the reference,
|
|
-- verify its legality now.
|
|
|
|
if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
|
|
Check_Part_Of_Reference (Var_Id, Ref);
|
|
|
|
-- The variable is subject to pragma Part_Of and may eventually become a
|
|
-- constituent of a single protected/task type. Record the reference to
|
|
-- verify its placement when the contract of the variable is analyzed.
|
|
|
|
elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
|
|
Refs := Part_Of_References (Var_Id);
|
|
|
|
if No (Refs) then
|
|
Refs := New_Elmt_List;
|
|
Set_Part_Of_References (Var_Id, Refs);
|
|
end if;
|
|
|
|
Append_Elmt (Ref, Refs);
|
|
end if;
|
|
end Record_Possible_Part_Of_Reference;
|
|
|
|
----------------
|
|
-- Referenced --
|
|
----------------
|
|
|
|
function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
|
|
Seen : Boolean := False;
|
|
|
|
function Is_Reference (N : Node_Id) return Traverse_Result;
|
|
-- Determine whether node N denotes a reference to Id. If this is the
|
|
-- case, set global flag Seen to True and stop the traversal.
|
|
|
|
------------------
|
|
-- Is_Reference --
|
|
------------------
|
|
|
|
function Is_Reference (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if Is_Entity_Name (N)
|
|
and then Present (Entity (N))
|
|
and then Entity (N) = Id
|
|
then
|
|
Seen := True;
|
|
return Abandon;
|
|
else
|
|
return OK;
|
|
end if;
|
|
end Is_Reference;
|
|
|
|
procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
|
|
|
|
-- Start of processing for Referenced
|
|
|
|
begin
|
|
Inspect_Expression (Expr);
|
|
return Seen;
|
|
end Referenced;
|
|
|
|
------------------------------------
|
|
-- References_Generic_Formal_Type --
|
|
------------------------------------
|
|
|
|
function References_Generic_Formal_Type (N : Node_Id) return Boolean is
|
|
|
|
function Process (N : Node_Id) return Traverse_Result;
|
|
-- Process one node in search for generic formal type
|
|
|
|
-------------
|
|
-- Process --
|
|
-------------
|
|
|
|
function Process (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if Nkind (N) in N_Has_Entity then
|
|
declare
|
|
E : constant Entity_Id := Entity (N);
|
|
begin
|
|
if Present (E) then
|
|
if Is_Generic_Type (E) then
|
|
return Abandon;
|
|
elsif Present (Etype (E))
|
|
and then Is_Generic_Type (Etype (E))
|
|
then
|
|
return Abandon;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
return Atree.OK;
|
|
end Process;
|
|
|
|
function Traverse is new Traverse_Func (Process);
|
|
-- Traverse tree to look for generic type
|
|
|
|
begin
|
|
if Inside_A_Generic then
|
|
return Traverse (N) = Abandon;
|
|
else
|
|
return False;
|
|
end if;
|
|
end References_Generic_Formal_Type;
|
|
|
|
--------------------
|
|
-- Remove_Homonym --
|
|
--------------------
|
|
|
|
procedure Remove_Homonym (E : Entity_Id) is
|
|
Prev : Entity_Id := Empty;
|
|
H : Entity_Id;
|
|
|
|
begin
|
|
if E = Current_Entity (E) then
|
|
if Present (Homonym (E)) then
|
|
Set_Current_Entity (Homonym (E));
|
|
else
|
|
Set_Name_Entity_Id (Chars (E), Empty);
|
|
end if;
|
|
|
|
else
|
|
H := Current_Entity (E);
|
|
while Present (H) and then H /= E loop
|
|
Prev := H;
|
|
H := Homonym (H);
|
|
end loop;
|
|
|
|
-- If E is not on the homonym chain, nothing to do
|
|
|
|
if Present (H) then
|
|
Set_Homonym (Prev, Homonym (E));
|
|
end if;
|
|
end if;
|
|
end Remove_Homonym;
|
|
|
|
------------------------------
|
|
-- Remove_Overloaded_Entity --
|
|
------------------------------
|
|
|
|
procedure Remove_Overloaded_Entity (Id : Entity_Id) is
|
|
procedure Remove_Primitive_Of (Typ : Entity_Id);
|
|
-- Remove primitive subprogram Id from the list of primitives that
|
|
-- belong to type Typ.
|
|
|
|
-------------------------
|
|
-- Remove_Primitive_Of --
|
|
-------------------------
|
|
|
|
procedure Remove_Primitive_Of (Typ : Entity_Id) is
|
|
Prims : Elist_Id;
|
|
|
|
begin
|
|
if Is_Tagged_Type (Typ) then
|
|
Prims := Direct_Primitive_Operations (Typ);
|
|
|
|
if Present (Prims) then
|
|
Remove (Prims, Id);
|
|
end if;
|
|
end if;
|
|
end Remove_Primitive_Of;
|
|
|
|
-- Local variables
|
|
|
|
Scop : constant Entity_Id := Scope (Id);
|
|
Formal : Entity_Id;
|
|
Prev_Id : Entity_Id;
|
|
|
|
-- Start of processing for Remove_Overloaded_Entity
|
|
|
|
begin
|
|
-- Remove the entity from the homonym chain. When the entity is the
|
|
-- head of the chain, associate the entry in the name table with its
|
|
-- homonym effectively making it the new head of the chain.
|
|
|
|
if Current_Entity (Id) = Id then
|
|
Set_Name_Entity_Id (Chars (Id), Homonym (Id));
|
|
|
|
-- Otherwise link the previous and next homonyms
|
|
|
|
else
|
|
Prev_Id := Current_Entity (Id);
|
|
while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
|
|
Prev_Id := Homonym (Prev_Id);
|
|
end loop;
|
|
|
|
Set_Homonym (Prev_Id, Homonym (Id));
|
|
end if;
|
|
|
|
-- Remove the entity from the scope entity chain. When the entity is
|
|
-- the head of the chain, set the next entity as the new head of the
|
|
-- chain.
|
|
|
|
if First_Entity (Scop) = Id then
|
|
Prev_Id := Empty;
|
|
Set_First_Entity (Scop, Next_Entity (Id));
|
|
|
|
-- Otherwise the entity is either in the middle of the chain or it acts
|
|
-- as its tail. Traverse and link the previous and next entities.
|
|
|
|
else
|
|
Prev_Id := First_Entity (Scop);
|
|
while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
|
|
Next_Entity (Prev_Id);
|
|
end loop;
|
|
|
|
Set_Next_Entity (Prev_Id, Next_Entity (Id));
|
|
end if;
|
|
|
|
-- Handle the case where the entity acts as the tail of the scope entity
|
|
-- chain.
|
|
|
|
if Last_Entity (Scop) = Id then
|
|
Set_Last_Entity (Scop, Prev_Id);
|
|
end if;
|
|
|
|
-- The entity denotes a primitive subprogram. Remove it from the list of
|
|
-- primitives of the associated controlling type.
|
|
|
|
if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
|
|
Formal := First_Formal (Id);
|
|
while Present (Formal) loop
|
|
if Is_Controlling_Formal (Formal) then
|
|
Remove_Primitive_Of (Etype (Formal));
|
|
exit;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
|
|
Remove_Primitive_Of (Etype (Id));
|
|
end if;
|
|
end if;
|
|
end Remove_Overloaded_Entity;
|
|
|
|
---------------------
|
|
-- Rep_To_Pos_Flag --
|
|
---------------------
|
|
|
|
function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
|
|
begin
|
|
return New_Occurrence_Of
|
|
(Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
|
|
end Rep_To_Pos_Flag;
|
|
|
|
--------------------
|
|
-- Require_Entity --
|
|
--------------------
|
|
|
|
procedure Require_Entity (N : Node_Id) is
|
|
begin
|
|
if Is_Entity_Name (N) and then No (Entity (N)) then
|
|
if Total_Errors_Detected /= 0 then
|
|
Set_Entity (N, Any_Id);
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
end Require_Entity;
|
|
|
|
------------------------------
|
|
-- Requires_Transient_Scope --
|
|
------------------------------
|
|
|
|
-- A transient scope is required when variable-sized temporaries are
|
|
-- allocated on the secondary stack, or when finalization actions must be
|
|
-- generated before the next instruction.
|
|
|
|
function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
|
|
function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
|
|
-- ???We retain the old and new algorithms for Requires_Transient_Scope for
|
|
-- the time being. New_Requires_Transient_Scope is used by default; the
|
|
-- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
|
|
-- instead. The intent is to use this temporarily to measure before/after
|
|
-- efficiency. Note: when this temporary code is removed, the documentation
|
|
-- of dQ in debug.adb should be removed.
|
|
|
|
procedure Results_Differ (Id : Entity_Id);
|
|
-- ???Debugging code. Called when the Old_ and New_ results differ. Will be
|
|
-- removed when New_Requires_Transient_Scope becomes
|
|
-- Requires_Transient_Scope and Old_Requires_Transient_Scope is eliminated.
|
|
|
|
procedure Results_Differ (Id : Entity_Id) is
|
|
begin
|
|
if False then -- False to disable; True for debugging
|
|
Treepr.Print_Tree_Node (Id);
|
|
|
|
if Old_Requires_Transient_Scope (Id) =
|
|
New_Requires_Transient_Scope (Id)
|
|
then
|
|
raise Program_Error;
|
|
end if;
|
|
end if;
|
|
end Results_Differ;
|
|
|
|
function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
|
|
Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
|
|
|
|
begin
|
|
if Debug_Flag_QQ then
|
|
return Old_Result;
|
|
end if;
|
|
|
|
declare
|
|
New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
|
|
|
|
begin
|
|
-- Assert that we're not putting things on the secondary stack if we
|
|
-- didn't before; we are trying to AVOID secondary stack when
|
|
-- possible.
|
|
|
|
if not Old_Result then
|
|
pragma Assert (not New_Result);
|
|
null;
|
|
end if;
|
|
|
|
if New_Result /= Old_Result then
|
|
Results_Differ (Id);
|
|
end if;
|
|
|
|
return New_Result;
|
|
end;
|
|
end Requires_Transient_Scope;
|
|
|
|
----------------------------------
|
|
-- Old_Requires_Transient_Scope --
|
|
----------------------------------
|
|
|
|
function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
|
|
Typ : constant Entity_Id := Underlying_Type (Id);
|
|
|
|
begin
|
|
-- This is a private type which is not completed yet. This can only
|
|
-- happen in a default expression (of a formal parameter or of a
|
|
-- record component). Do not expand transient scope in this case.
|
|
|
|
if No (Typ) then
|
|
return False;
|
|
|
|
-- Do not expand transient scope for non-existent procedure return
|
|
|
|
elsif Typ = Standard_Void_Type then
|
|
return False;
|
|
|
|
-- Elementary types do not require a transient scope
|
|
|
|
elsif Is_Elementary_Type (Typ) then
|
|
return False;
|
|
|
|
-- Generally, indefinite subtypes require a transient scope, since the
|
|
-- back end cannot generate temporaries, since this is not a valid type
|
|
-- for declaring an object. It might be possible to relax this in the
|
|
-- future, e.g. by declaring the maximum possible space for the type.
|
|
|
|
elsif not Is_Definite_Subtype (Typ) then
|
|
return True;
|
|
|
|
-- Functions returning tagged types may dispatch on result so their
|
|
-- returned value is allocated on the secondary stack. Controlled
|
|
-- type temporaries need finalization.
|
|
|
|
elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
|
|
return True;
|
|
|
|
-- Record type
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
declare
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
Comp := First_Entity (Typ);
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component then
|
|
|
|
-- ???It's not clear we need a full recursive call to
|
|
-- Old_Requires_Transient_Scope here. Note that the
|
|
-- following can't happen.
|
|
|
|
pragma Assert (Is_Definite_Subtype (Etype (Comp)));
|
|
pragma Assert (not Has_Controlled_Component (Etype (Comp)));
|
|
|
|
if Old_Requires_Transient_Scope (Etype (Comp)) then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end;
|
|
|
|
return False;
|
|
|
|
-- String literal types never require transient scope
|
|
|
|
elsif Ekind (Typ) = E_String_Literal_Subtype then
|
|
return False;
|
|
|
|
-- Array type. Note that we already know that this is a constrained
|
|
-- array, since unconstrained arrays will fail the indefinite test.
|
|
|
|
elsif Is_Array_Type (Typ) then
|
|
|
|
-- If component type requires a transient scope, the array does too
|
|
|
|
if Old_Requires_Transient_Scope (Component_Type (Typ)) then
|
|
return True;
|
|
|
|
-- Otherwise, we only need a transient scope if the size depends on
|
|
-- the value of one or more discriminants.
|
|
|
|
else
|
|
return Size_Depends_On_Discriminant (Typ);
|
|
end if;
|
|
|
|
-- All other cases do not require a transient scope
|
|
|
|
else
|
|
pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
|
|
return False;
|
|
end if;
|
|
end Old_Requires_Transient_Scope;
|
|
|
|
----------------------------------
|
|
-- New_Requires_Transient_Scope --
|
|
----------------------------------
|
|
|
|
function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
|
|
|
|
function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
|
|
-- This is called for untagged records and protected types, with
|
|
-- nondefaulted discriminants. Returns True if the size of function
|
|
-- results is known at the call site, False otherwise. Returns False
|
|
-- if there is a variant part that depends on the discriminants of
|
|
-- this type, or if there is an array constrained by the discriminants
|
|
-- of this type. ???Currently, this is overly conservative (the array
|
|
-- could be nested inside some other record that is constrained by
|
|
-- nondiscriminants). That is, the recursive calls are too conservative.
|
|
|
|
function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
|
|
-- Returns True if Typ is a nonlimited record with defaulted
|
|
-- discriminants whose max size makes it unsuitable for allocating on
|
|
-- the primary stack.
|
|
|
|
------------------------------
|
|
-- Caller_Known_Size_Record --
|
|
------------------------------
|
|
|
|
function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
|
|
pragma Assert (Typ = Underlying_Type (Typ));
|
|
|
|
begin
|
|
if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
|
|
return False;
|
|
end if;
|
|
|
|
declare
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
Comp := First_Entity (Typ);
|
|
while Present (Comp) loop
|
|
|
|
-- Only look at E_Component entities. No need to look at
|
|
-- E_Discriminant entities, and we must ignore internal
|
|
-- subtypes generated for constrained components.
|
|
|
|
if Ekind (Comp) = E_Component then
|
|
declare
|
|
Comp_Type : constant Entity_Id :=
|
|
Underlying_Type (Etype (Comp));
|
|
|
|
begin
|
|
if Is_Record_Type (Comp_Type)
|
|
or else
|
|
Is_Protected_Type (Comp_Type)
|
|
then
|
|
if not Caller_Known_Size_Record (Comp_Type) then
|
|
return False;
|
|
end if;
|
|
|
|
elsif Is_Array_Type (Comp_Type) then
|
|
if Size_Depends_On_Discriminant (Comp_Type) then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end;
|
|
|
|
return True;
|
|
end Caller_Known_Size_Record;
|
|
|
|
------------------------------
|
|
-- Large_Max_Size_Mutable --
|
|
------------------------------
|
|
|
|
function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
|
|
pragma Assert (Typ = Underlying_Type (Typ));
|
|
|
|
function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
|
|
-- Returns true if the discrete type T has a large range
|
|
|
|
----------------------------
|
|
-- Is_Large_Discrete_Type --
|
|
----------------------------
|
|
|
|
function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
|
|
Threshold : constant Int := 16;
|
|
-- Arbitrary threshold above which we consider it "large". We want
|
|
-- a fairly large threshold, because these large types really
|
|
-- shouldn't have default discriminants in the first place, in
|
|
-- most cases.
|
|
|
|
begin
|
|
return UI_To_Int (RM_Size (T)) > Threshold;
|
|
end Is_Large_Discrete_Type;
|
|
|
|
begin
|
|
if Is_Record_Type (Typ)
|
|
and then not Is_Limited_View (Typ)
|
|
and then Has_Defaulted_Discriminants (Typ)
|
|
then
|
|
-- Loop through the components, looking for an array whose upper
|
|
-- bound(s) depends on discriminants, where both the subtype of
|
|
-- the discriminant and the index subtype are too large.
|
|
|
|
declare
|
|
Comp : Entity_Id;
|
|
|
|
begin
|
|
Comp := First_Entity (Typ);
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component then
|
|
declare
|
|
Comp_Type : constant Entity_Id :=
|
|
Underlying_Type (Etype (Comp));
|
|
Indx : Node_Id;
|
|
Ityp : Entity_Id;
|
|
Hi : Node_Id;
|
|
|
|
begin
|
|
if Is_Array_Type (Comp_Type) then
|
|
Indx := First_Index (Comp_Type);
|
|
|
|
while Present (Indx) loop
|
|
Ityp := Etype (Indx);
|
|
Hi := Type_High_Bound (Ityp);
|
|
|
|
if Nkind (Hi) = N_Identifier
|
|
and then Ekind (Entity (Hi)) = E_Discriminant
|
|
and then Is_Large_Discrete_Type (Ityp)
|
|
and then Is_Large_Discrete_Type
|
|
(Etype (Entity (Hi)))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Index (Indx);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
return False;
|
|
end Large_Max_Size_Mutable;
|
|
|
|
-- Local declarations
|
|
|
|
Typ : constant Entity_Id := Underlying_Type (Id);
|
|
|
|
-- Start of processing for New_Requires_Transient_Scope
|
|
|
|
begin
|
|
-- This is a private type which is not completed yet. This can only
|
|
-- happen in a default expression (of a formal parameter or of a
|
|
-- record component). Do not expand transient scope in this case.
|
|
|
|
if No (Typ) then
|
|
return False;
|
|
|
|
-- Do not expand transient scope for non-existent procedure return or
|
|
-- string literal types.
|
|
|
|
elsif Typ = Standard_Void_Type
|
|
or else Ekind (Typ) = E_String_Literal_Subtype
|
|
then
|
|
return False;
|
|
|
|
-- If Typ is a generic formal incomplete type, then we want to look at
|
|
-- the actual type.
|
|
|
|
elsif Ekind (Typ) = E_Record_Subtype
|
|
and then Present (Cloned_Subtype (Typ))
|
|
then
|
|
return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
|
|
|
|
-- Functions returning specific tagged types may dispatch on result, so
|
|
-- their returned value is allocated on the secondary stack, even in the
|
|
-- definite case. We must treat nondispatching functions the same way,
|
|
-- because access-to-function types can point at both, so the calling
|
|
-- conventions must be compatible. Is_Tagged_Type includes controlled
|
|
-- types and class-wide types. Controlled type temporaries need
|
|
-- finalization.
|
|
|
|
-- ???It's not clear why we need to return noncontrolled types with
|
|
-- controlled components on the secondary stack.
|
|
|
|
elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
|
|
return True;
|
|
|
|
-- Untagged definite subtypes are known size. This includes all
|
|
-- elementary [sub]types. Tasks are known size even if they have
|
|
-- discriminants. So we return False here, with one exception:
|
|
-- For a type like:
|
|
-- type T (Last : Natural := 0) is
|
|
-- X : String (1 .. Last);
|
|
-- end record;
|
|
-- we return True. That's because for "P(F(...));", where F returns T,
|
|
-- we don't know the size of the result at the call site, so if we
|
|
-- allocated it on the primary stack, we would have to allocate the
|
|
-- maximum size, which is way too big.
|
|
|
|
elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
|
|
return Large_Max_Size_Mutable (Typ);
|
|
|
|
-- Indefinite (discriminated) untagged record or protected type
|
|
|
|
elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
|
|
return not Caller_Known_Size_Record (Typ);
|
|
|
|
-- Unconstrained array
|
|
|
|
else
|
|
pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
|
|
return True;
|
|
end if;
|
|
end New_Requires_Transient_Scope;
|
|
|
|
--------------------------
|
|
-- Reset_Analyzed_Flags --
|
|
--------------------------
|
|
|
|
procedure Reset_Analyzed_Flags (N : Node_Id) is
|
|
|
|
function Clear_Analyzed (N : Node_Id) return Traverse_Result;
|
|
-- Function used to reset Analyzed flags in tree. Note that we do
|
|
-- not reset Analyzed flags in entities, since there is no need to
|
|
-- reanalyze entities, and indeed, it is wrong to do so, since it
|
|
-- can result in generating auxiliary stuff more than once.
|
|
|
|
--------------------
|
|
-- Clear_Analyzed --
|
|
--------------------
|
|
|
|
function Clear_Analyzed (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
if not Has_Extension (N) then
|
|
Set_Analyzed (N, False);
|
|
end if;
|
|
|
|
return OK;
|
|
end Clear_Analyzed;
|
|
|
|
procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
|
|
|
|
-- Start of processing for Reset_Analyzed_Flags
|
|
|
|
begin
|
|
Reset_Analyzed (N);
|
|
end Reset_Analyzed_Flags;
|
|
|
|
------------------------
|
|
-- Restore_SPARK_Mode --
|
|
------------------------
|
|
|
|
procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
|
|
begin
|
|
SPARK_Mode := Mode;
|
|
end Restore_SPARK_Mode;
|
|
|
|
--------------------------------
|
|
-- Returns_Unconstrained_Type --
|
|
--------------------------------
|
|
|
|
function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
|
|
begin
|
|
return Ekind (Subp) = E_Function
|
|
and then not Is_Scalar_Type (Etype (Subp))
|
|
and then not Is_Access_Type (Etype (Subp))
|
|
and then not Is_Constrained (Etype (Subp));
|
|
end Returns_Unconstrained_Type;
|
|
|
|
----------------------------
|
|
-- Root_Type_Of_Full_View --
|
|
----------------------------
|
|
|
|
function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
|
|
Rtyp : constant Entity_Id := Root_Type (T);
|
|
|
|
begin
|
|
-- The root type of the full view may itself be a private type. Keep
|
|
-- looking for the ultimate derivation parent.
|
|
|
|
if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
|
|
return Root_Type_Of_Full_View (Full_View (Rtyp));
|
|
else
|
|
return Rtyp;
|
|
end if;
|
|
end Root_Type_Of_Full_View;
|
|
|
|
---------------------------
|
|
-- Safe_To_Capture_Value --
|
|
---------------------------
|
|
|
|
function Safe_To_Capture_Value
|
|
(N : Node_Id;
|
|
Ent : Entity_Id;
|
|
Cond : Boolean := False) return Boolean
|
|
is
|
|
begin
|
|
-- The only entities for which we track constant values are variables
|
|
-- which are not renamings, constants, out parameters, and in out
|
|
-- parameters, so check if we have this case.
|
|
|
|
-- Note: it may seem odd to track constant values for constants, but in
|
|
-- fact this routine is used for other purposes than simply capturing
|
|
-- the value. In particular, the setting of Known[_Non]_Null.
|
|
|
|
if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
|
|
or else
|
|
Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
|
|
then
|
|
null;
|
|
|
|
-- For conditionals, we also allow loop parameters and all formals,
|
|
-- including in parameters.
|
|
|
|
elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
|
|
null;
|
|
|
|
-- For all other cases, not just unsafe, but impossible to capture
|
|
-- Current_Value, since the above are the only entities which have
|
|
-- Current_Value fields.
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- Skip if volatile or aliased, since funny things might be going on in
|
|
-- these cases which we cannot necessarily track. Also skip any variable
|
|
-- for which an address clause is given, or whose address is taken. Also
|
|
-- never capture value of library level variables (an attempt to do so
|
|
-- can occur in the case of package elaboration code).
|
|
|
|
if Treat_As_Volatile (Ent)
|
|
or else Is_Aliased (Ent)
|
|
or else Present (Address_Clause (Ent))
|
|
or else Address_Taken (Ent)
|
|
or else (Is_Library_Level_Entity (Ent)
|
|
and then Ekind (Ent) = E_Variable)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- OK, all above conditions are met. We also require that the scope of
|
|
-- the reference be the same as the scope of the entity, not counting
|
|
-- packages and blocks and loops.
|
|
|
|
declare
|
|
E_Scope : constant Entity_Id := Scope (Ent);
|
|
R_Scope : Entity_Id;
|
|
|
|
begin
|
|
R_Scope := Current_Scope;
|
|
while R_Scope /= Standard_Standard loop
|
|
exit when R_Scope = E_Scope;
|
|
|
|
if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
|
|
return False;
|
|
else
|
|
R_Scope := Scope (R_Scope);
|
|
end if;
|
|
end loop;
|
|
end;
|
|
|
|
-- We also require that the reference does not appear in a context
|
|
-- where it is not sure to be executed (i.e. a conditional context
|
|
-- or an exception handler). We skip this if Cond is True, since the
|
|
-- capturing of values from conditional tests handles this ok.
|
|
|
|
if Cond then
|
|
return True;
|
|
end if;
|
|
|
|
declare
|
|
Desc : Node_Id;
|
|
P : Node_Id;
|
|
|
|
begin
|
|
Desc := N;
|
|
|
|
-- Seems dubious that case expressions are not handled here ???
|
|
|
|
P := Parent (N);
|
|
while Present (P) loop
|
|
if Nkind (P) = N_If_Statement
|
|
or else Nkind (P) = N_Case_Statement
|
|
or else (Nkind (P) in N_Short_Circuit
|
|
and then Desc = Right_Opnd (P))
|
|
or else (Nkind (P) = N_If_Expression
|
|
and then Desc /= First (Expressions (P)))
|
|
or else Nkind (P) = N_Exception_Handler
|
|
or else Nkind (P) = N_Selective_Accept
|
|
or else Nkind (P) = N_Conditional_Entry_Call
|
|
or else Nkind (P) = N_Timed_Entry_Call
|
|
or else Nkind (P) = N_Asynchronous_Select
|
|
then
|
|
return False;
|
|
|
|
else
|
|
Desc := P;
|
|
P := Parent (P);
|
|
|
|
-- A special Ada 2012 case: the original node may be part
|
|
-- of the else_actions of a conditional expression, in which
|
|
-- case it might not have been expanded yet, and appears in
|
|
-- a non-syntactic list of actions. In that case it is clearly
|
|
-- not safe to save a value.
|
|
|
|
if No (P)
|
|
and then Is_List_Member (Desc)
|
|
and then No (Parent (List_Containing (Desc)))
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
|
|
-- OK, looks safe to set value
|
|
|
|
return True;
|
|
end Safe_To_Capture_Value;
|
|
|
|
---------------
|
|
-- Same_Name --
|
|
---------------
|
|
|
|
function Same_Name (N1, N2 : Node_Id) return Boolean is
|
|
K1 : constant Node_Kind := Nkind (N1);
|
|
K2 : constant Node_Kind := Nkind (N2);
|
|
|
|
begin
|
|
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
|
|
and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
|
|
then
|
|
return Chars (N1) = Chars (N2);
|
|
|
|
elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
|
|
and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
|
|
then
|
|
return Same_Name (Selector_Name (N1), Selector_Name (N2))
|
|
and then Same_Name (Prefix (N1), Prefix (N2));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Same_Name;
|
|
|
|
-----------------
|
|
-- Same_Object --
|
|
-----------------
|
|
|
|
function Same_Object (Node1, Node2 : Node_Id) return Boolean is
|
|
N1 : constant Node_Id := Original_Node (Node1);
|
|
N2 : constant Node_Id := Original_Node (Node2);
|
|
-- We do the tests on original nodes, since we are most interested
|
|
-- in the original source, not any expansion that got in the way.
|
|
|
|
K1 : constant Node_Kind := Nkind (N1);
|
|
K2 : constant Node_Kind := Nkind (N2);
|
|
|
|
begin
|
|
-- First case, both are entities with same entity
|
|
|
|
if K1 in N_Has_Entity and then K2 in N_Has_Entity then
|
|
declare
|
|
EN1 : constant Entity_Id := Entity (N1);
|
|
EN2 : constant Entity_Id := Entity (N2);
|
|
begin
|
|
if Present (EN1) and then Present (EN2)
|
|
and then (Ekind_In (EN1, E_Variable, E_Constant)
|
|
or else Is_Formal (EN1))
|
|
and then EN1 = EN2
|
|
then
|
|
return True;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Second case, selected component with same selector, same record
|
|
|
|
if K1 = N_Selected_Component
|
|
and then K2 = N_Selected_Component
|
|
and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
|
|
then
|
|
return Same_Object (Prefix (N1), Prefix (N2));
|
|
|
|
-- Third case, indexed component with same subscripts, same array
|
|
|
|
elsif K1 = N_Indexed_Component
|
|
and then K2 = N_Indexed_Component
|
|
and then Same_Object (Prefix (N1), Prefix (N2))
|
|
then
|
|
declare
|
|
E1, E2 : Node_Id;
|
|
begin
|
|
E1 := First (Expressions (N1));
|
|
E2 := First (Expressions (N2));
|
|
while Present (E1) loop
|
|
if not Same_Value (E1, E2) then
|
|
return False;
|
|
else
|
|
Next (E1);
|
|
Next (E2);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end;
|
|
|
|
-- Fourth case, slice of same array with same bounds
|
|
|
|
elsif K1 = N_Slice
|
|
and then K2 = N_Slice
|
|
and then Nkind (Discrete_Range (N1)) = N_Range
|
|
and then Nkind (Discrete_Range (N2)) = N_Range
|
|
and then Same_Value (Low_Bound (Discrete_Range (N1)),
|
|
Low_Bound (Discrete_Range (N2)))
|
|
and then Same_Value (High_Bound (Discrete_Range (N1)),
|
|
High_Bound (Discrete_Range (N2)))
|
|
then
|
|
return Same_Name (Prefix (N1), Prefix (N2));
|
|
|
|
-- All other cases, not clearly the same object
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Same_Object;
|
|
|
|
---------------
|
|
-- Same_Type --
|
|
---------------
|
|
|
|
function Same_Type (T1, T2 : Entity_Id) return Boolean is
|
|
begin
|
|
if T1 = T2 then
|
|
return True;
|
|
|
|
elsif not Is_Constrained (T1)
|
|
and then not Is_Constrained (T2)
|
|
and then Base_Type (T1) = Base_Type (T2)
|
|
then
|
|
return True;
|
|
|
|
-- For now don't bother with case of identical constraints, to be
|
|
-- fiddled with later on perhaps (this is only used for optimization
|
|
-- purposes, so it is not critical to do a best possible job)
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Same_Type;
|
|
|
|
----------------
|
|
-- Same_Value --
|
|
----------------
|
|
|
|
function Same_Value (Node1, Node2 : Node_Id) return Boolean is
|
|
begin
|
|
if Compile_Time_Known_Value (Node1)
|
|
and then Compile_Time_Known_Value (Node2)
|
|
and then Expr_Value (Node1) = Expr_Value (Node2)
|
|
then
|
|
return True;
|
|
elsif Same_Object (Node1, Node2) then
|
|
return True;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Same_Value;
|
|
|
|
-----------------------------
|
|
-- Save_SPARK_Mode_And_Set --
|
|
-----------------------------
|
|
|
|
procedure Save_SPARK_Mode_And_Set
|
|
(Context : Entity_Id;
|
|
Mode : out SPARK_Mode_Type)
|
|
is
|
|
begin
|
|
-- Save the current mode in effect
|
|
|
|
Mode := SPARK_Mode;
|
|
|
|
-- Do not consider illegal or partially decorated constructs
|
|
|
|
if Ekind (Context) = E_Void or else Error_Posted (Context) then
|
|
null;
|
|
|
|
elsif Present (SPARK_Pragma (Context)) then
|
|
SPARK_Mode := Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Context));
|
|
end if;
|
|
end Save_SPARK_Mode_And_Set;
|
|
|
|
-------------------------
|
|
-- Scalar_Part_Present --
|
|
-------------------------
|
|
|
|
function Scalar_Part_Present (T : Entity_Id) return Boolean is
|
|
C : Entity_Id;
|
|
|
|
begin
|
|
if Is_Scalar_Type (T) then
|
|
return True;
|
|
|
|
elsif Is_Array_Type (T) then
|
|
return Scalar_Part_Present (Component_Type (T));
|
|
|
|
elsif Is_Record_Type (T) or else Has_Discriminants (T) then
|
|
C := First_Component_Or_Discriminant (T);
|
|
while Present (C) loop
|
|
if Scalar_Part_Present (Etype (C)) then
|
|
return True;
|
|
else
|
|
Next_Component_Or_Discriminant (C);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Scalar_Part_Present;
|
|
|
|
------------------------
|
|
-- Scope_Is_Transient --
|
|
------------------------
|
|
|
|
function Scope_Is_Transient return Boolean is
|
|
begin
|
|
return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
|
|
end Scope_Is_Transient;
|
|
|
|
------------------
|
|
-- Scope_Within --
|
|
------------------
|
|
|
|
function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Scop := Scope1;
|
|
while Scop /= Standard_Standard loop
|
|
Scop := Scope (Scop);
|
|
|
|
if Scop = Scope2 then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Scope_Within;
|
|
|
|
--------------------------
|
|
-- Scope_Within_Or_Same --
|
|
--------------------------
|
|
|
|
function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Scop := Scope1;
|
|
while Scop /= Standard_Standard loop
|
|
if Scop = Scope2 then
|
|
return True;
|
|
else
|
|
Scop := Scope (Scop);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Scope_Within_Or_Same;
|
|
|
|
--------------------
|
|
-- Set_Convention --
|
|
--------------------
|
|
|
|
procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
|
|
begin
|
|
Basic_Set_Convention (E, Val);
|
|
|
|
if Is_Type (E)
|
|
and then Is_Access_Subprogram_Type (Base_Type (E))
|
|
and then Has_Foreign_Convention (E)
|
|
then
|
|
|
|
-- A pragma Convention in an instance may apply to the subtype
|
|
-- created for a formal, in which case we have already verified
|
|
-- that conventions of actual and formal match and there is nothing
|
|
-- to flag on the subtype.
|
|
|
|
if In_Instance then
|
|
null;
|
|
else
|
|
Set_Can_Use_Internal_Rep (E, False);
|
|
end if;
|
|
end if;
|
|
|
|
-- If E is an object or component, and the type of E is an anonymous
|
|
-- access type with no convention set, then also set the convention of
|
|
-- the anonymous access type. We do not do this for anonymous protected
|
|
-- types, since protected types always have the default convention.
|
|
|
|
if Present (Etype (E))
|
|
and then (Is_Object (E)
|
|
or else Ekind (E) = E_Component
|
|
|
|
-- Allow E_Void (happens for pragma Convention appearing
|
|
-- in the middle of a record applying to a component)
|
|
|
|
or else Ekind (E) = E_Void)
|
|
then
|
|
declare
|
|
Typ : constant Entity_Id := Etype (E);
|
|
|
|
begin
|
|
if Ekind_In (Typ, E_Anonymous_Access_Type,
|
|
E_Anonymous_Access_Subprogram_Type)
|
|
and then not Has_Convention_Pragma (Typ)
|
|
then
|
|
Basic_Set_Convention (Typ, Val);
|
|
Set_Has_Convention_Pragma (Typ);
|
|
|
|
-- And for the access subprogram type, deal similarly with the
|
|
-- designated E_Subprogram_Type if it is also internal (which
|
|
-- it always is?)
|
|
|
|
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
|
|
declare
|
|
Dtype : constant Entity_Id := Designated_Type (Typ);
|
|
begin
|
|
if Ekind (Dtype) = E_Subprogram_Type
|
|
and then Is_Itype (Dtype)
|
|
and then not Has_Convention_Pragma (Dtype)
|
|
then
|
|
Basic_Set_Convention (Dtype, Val);
|
|
Set_Has_Convention_Pragma (Dtype);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Set_Convention;
|
|
|
|
------------------------
|
|
-- Set_Current_Entity --
|
|
------------------------
|
|
|
|
-- The given entity is to be set as the currently visible definition of its
|
|
-- associated name (i.e. the Node_Id associated with its name). All we have
|
|
-- to do is to get the name from the identifier, and then set the
|
|
-- associated Node_Id to point to the given entity.
|
|
|
|
procedure Set_Current_Entity (E : Entity_Id) is
|
|
begin
|
|
Set_Name_Entity_Id (Chars (E), E);
|
|
end Set_Current_Entity;
|
|
|
|
---------------------------
|
|
-- Set_Debug_Info_Needed --
|
|
---------------------------
|
|
|
|
procedure Set_Debug_Info_Needed (T : Entity_Id) is
|
|
|
|
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
|
|
pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
|
|
-- Used to set debug info in a related node if not set already
|
|
|
|
--------------------------------------
|
|
-- Set_Debug_Info_Needed_If_Not_Set --
|
|
--------------------------------------
|
|
|
|
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
|
|
begin
|
|
if Present (E) and then not Needs_Debug_Info (E) then
|
|
Set_Debug_Info_Needed (E);
|
|
|
|
-- For a private type, indicate that the full view also needs
|
|
-- debug information.
|
|
|
|
if Is_Type (E)
|
|
and then Is_Private_Type (E)
|
|
and then Present (Full_View (E))
|
|
then
|
|
Set_Debug_Info_Needed (Full_View (E));
|
|
end if;
|
|
end if;
|
|
end Set_Debug_Info_Needed_If_Not_Set;
|
|
|
|
-- Start of processing for Set_Debug_Info_Needed
|
|
|
|
begin
|
|
-- Nothing to do if argument is Empty or has Debug_Info_Off set, which
|
|
-- indicates that Debug_Info_Needed is never required for the entity.
|
|
-- Nothing to do if entity comes from a predefined file. Library files
|
|
-- are compiled without debug information, but inlined bodies of these
|
|
-- routines may appear in user code, and debug information on them ends
|
|
-- up complicating debugging the user code.
|
|
|
|
if No (T)
|
|
or else Debug_Info_Off (T)
|
|
then
|
|
return;
|
|
|
|
elsif In_Inlined_Body
|
|
and then Is_Predefined_File_Name
|
|
(Unit_File_Name (Get_Source_Unit (Sloc (T))))
|
|
then
|
|
Set_Needs_Debug_Info (T, False);
|
|
end if;
|
|
|
|
-- Set flag in entity itself. Note that we will go through the following
|
|
-- circuitry even if the flag is already set on T. That's intentional,
|
|
-- it makes sure that the flag will be set in subsidiary entities.
|
|
|
|
Set_Needs_Debug_Info (T);
|
|
|
|
-- Set flag on subsidiary entities if not set already
|
|
|
|
if Is_Object (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
|
|
|
|
elsif Is_Type (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
|
|
|
|
if Is_Record_Type (T) then
|
|
declare
|
|
Ent : Entity_Id := First_Entity (T);
|
|
begin
|
|
while Present (Ent) loop
|
|
Set_Debug_Info_Needed_If_Not_Set (Ent);
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
end;
|
|
|
|
-- For a class wide subtype, we also need debug information
|
|
-- for the equivalent type.
|
|
|
|
if Ekind (T) = E_Class_Wide_Subtype then
|
|
Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
|
|
end if;
|
|
|
|
elsif Is_Array_Type (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
|
|
|
|
declare
|
|
Indx : Node_Id := First_Index (T);
|
|
begin
|
|
while Present (Indx) loop
|
|
Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
|
|
Indx := Next_Index (Indx);
|
|
end loop;
|
|
end;
|
|
|
|
-- For a packed array type, we also need debug information for
|
|
-- the type used to represent the packed array. Conversely, we
|
|
-- also need it for the former if we need it for the latter.
|
|
|
|
if Is_Packed (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
|
|
end if;
|
|
|
|
if Is_Packed_Array_Impl_Type (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
|
|
end if;
|
|
|
|
elsif Is_Access_Type (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
|
|
|
|
elsif Is_Private_Type (T) then
|
|
declare
|
|
FV : constant Entity_Id := Full_View (T);
|
|
|
|
begin
|
|
Set_Debug_Info_Needed_If_Not_Set (FV);
|
|
|
|
-- If the full view is itself a derived private type, we need
|
|
-- debug information on its underlying type.
|
|
|
|
if Present (FV)
|
|
and then Is_Private_Type (FV)
|
|
and then Present (Underlying_Full_View (FV))
|
|
then
|
|
Set_Needs_Debug_Info (Underlying_Full_View (FV));
|
|
end if;
|
|
end;
|
|
|
|
elsif Is_Protected_Type (T) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
|
|
|
|
elsif Is_Scalar_Type (T) then
|
|
|
|
-- If the subrange bounds are materialized by dedicated constant
|
|
-- objects, also include them in the debug info to make sure the
|
|
-- debugger can properly use them.
|
|
|
|
if Present (Scalar_Range (T))
|
|
and then Nkind (Scalar_Range (T)) = N_Range
|
|
then
|
|
declare
|
|
Low_Bnd : constant Node_Id := Type_Low_Bound (T);
|
|
High_Bnd : constant Node_Id := Type_High_Bound (T);
|
|
|
|
begin
|
|
if Is_Entity_Name (Low_Bnd) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
|
|
end if;
|
|
|
|
if Is_Entity_Name (High_Bnd) then
|
|
Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Set_Debug_Info_Needed;
|
|
|
|
----------------------------
|
|
-- Set_Entity_With_Checks --
|
|
----------------------------
|
|
|
|
procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
|
|
Val_Actual : Entity_Id;
|
|
Nod : Node_Id;
|
|
Post_Node : Node_Id;
|
|
|
|
begin
|
|
-- Unconditionally set the entity
|
|
|
|
Set_Entity (N, Val);
|
|
|
|
-- The node to post on is the selector in the case of an expanded name,
|
|
-- and otherwise the node itself.
|
|
|
|
if Nkind (N) = N_Expanded_Name then
|
|
Post_Node := Selector_Name (N);
|
|
else
|
|
Post_Node := N;
|
|
end if;
|
|
|
|
-- Check for violation of No_Fixed_IO
|
|
|
|
if Restriction_Check_Required (No_Fixed_IO)
|
|
and then
|
|
((RTU_Loaded (Ada_Text_IO)
|
|
and then (Is_RTE (Val, RE_Decimal_IO)
|
|
or else
|
|
Is_RTE (Val, RE_Fixed_IO)))
|
|
|
|
or else
|
|
(RTU_Loaded (Ada_Wide_Text_IO)
|
|
and then (Is_RTE (Val, RO_WT_Decimal_IO)
|
|
or else
|
|
Is_RTE (Val, RO_WT_Fixed_IO)))
|
|
|
|
or else
|
|
(RTU_Loaded (Ada_Wide_Wide_Text_IO)
|
|
and then (Is_RTE (Val, RO_WW_Decimal_IO)
|
|
or else
|
|
Is_RTE (Val, RO_WW_Fixed_IO))))
|
|
|
|
-- A special extra check, don't complain about a reference from within
|
|
-- the Ada.Interrupts package itself!
|
|
|
|
and then not In_Same_Extended_Unit (N, Val)
|
|
then
|
|
Check_Restriction (No_Fixed_IO, Post_Node);
|
|
end if;
|
|
|
|
-- Remaining checks are only done on source nodes. Note that we test
|
|
-- for violation of No_Fixed_IO even on non-source nodes, because the
|
|
-- cases for checking violations of this restriction are instantiations
|
|
-- where the reference in the instance has Comes_From_Source False.
|
|
|
|
if not Comes_From_Source (N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Check for violation of No_Abort_Statements, which is triggered by
|
|
-- call to Ada.Task_Identification.Abort_Task.
|
|
|
|
if Restriction_Check_Required (No_Abort_Statements)
|
|
and then (Is_RTE (Val, RE_Abort_Task))
|
|
|
|
-- A special extra check, don't complain about a reference from within
|
|
-- the Ada.Task_Identification package itself!
|
|
|
|
and then not In_Same_Extended_Unit (N, Val)
|
|
then
|
|
Check_Restriction (No_Abort_Statements, Post_Node);
|
|
end if;
|
|
|
|
if Val = Standard_Long_Long_Integer then
|
|
Check_Restriction (No_Long_Long_Integers, Post_Node);
|
|
end if;
|
|
|
|
-- Check for violation of No_Dynamic_Attachment
|
|
|
|
if Restriction_Check_Required (No_Dynamic_Attachment)
|
|
and then RTU_Loaded (Ada_Interrupts)
|
|
and then (Is_RTE (Val, RE_Is_Reserved) or else
|
|
Is_RTE (Val, RE_Is_Attached) or else
|
|
Is_RTE (Val, RE_Current_Handler) or else
|
|
Is_RTE (Val, RE_Attach_Handler) or else
|
|
Is_RTE (Val, RE_Exchange_Handler) or else
|
|
Is_RTE (Val, RE_Detach_Handler) or else
|
|
Is_RTE (Val, RE_Reference))
|
|
|
|
-- A special extra check, don't complain about a reference from within
|
|
-- the Ada.Interrupts package itself!
|
|
|
|
and then not In_Same_Extended_Unit (N, Val)
|
|
then
|
|
Check_Restriction (No_Dynamic_Attachment, Post_Node);
|
|
end if;
|
|
|
|
-- Check for No_Implementation_Identifiers
|
|
|
|
if Restriction_Check_Required (No_Implementation_Identifiers) then
|
|
|
|
-- We have an implementation defined entity if it is marked as
|
|
-- implementation defined, or is defined in a package marked as
|
|
-- implementation defined. However, library packages themselves
|
|
-- are excluded (we don't want to flag Interfaces itself, just
|
|
-- the entities within it).
|
|
|
|
if (Is_Implementation_Defined (Val)
|
|
or else
|
|
(Present (Scope (Val))
|
|
and then Is_Implementation_Defined (Scope (Val))))
|
|
and then not (Ekind_In (Val, E_Package, E_Generic_Package)
|
|
and then Is_Library_Level_Entity (Val))
|
|
then
|
|
Check_Restriction (No_Implementation_Identifiers, Post_Node);
|
|
end if;
|
|
end if;
|
|
|
|
-- Do the style check
|
|
|
|
if Style_Check
|
|
and then not Suppress_Style_Checks (Val)
|
|
and then not In_Instance
|
|
then
|
|
if Nkind (N) = N_Identifier then
|
|
Nod := N;
|
|
elsif Nkind (N) = N_Expanded_Name then
|
|
Nod := Selector_Name (N);
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- A special situation arises for derived operations, where we want
|
|
-- to do the check against the parent (since the Sloc of the derived
|
|
-- operation points to the derived type declaration itself).
|
|
|
|
Val_Actual := Val;
|
|
while not Comes_From_Source (Val_Actual)
|
|
and then Nkind (Val_Actual) in N_Entity
|
|
and then (Ekind (Val_Actual) = E_Enumeration_Literal
|
|
or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
|
|
and then Present (Alias (Val_Actual))
|
|
loop
|
|
Val_Actual := Alias (Val_Actual);
|
|
end loop;
|
|
|
|
-- Renaming declarations for generic actuals do not come from source,
|
|
-- and have a different name from that of the entity they rename, so
|
|
-- there is no style check to perform here.
|
|
|
|
if Chars (Nod) = Chars (Val_Actual) then
|
|
Style.Check_Identifier (Nod, Val_Actual);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Entity (N, Val);
|
|
end Set_Entity_With_Checks;
|
|
|
|
------------------------
|
|
-- Set_Name_Entity_Id --
|
|
------------------------
|
|
|
|
procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
|
|
begin
|
|
Set_Name_Table_Int (Id, Int (Val));
|
|
end Set_Name_Entity_Id;
|
|
|
|
---------------------
|
|
-- Set_Next_Actual --
|
|
---------------------
|
|
|
|
procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
|
|
begin
|
|
if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
|
|
Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
|
|
end if;
|
|
end Set_Next_Actual;
|
|
|
|
----------------------------------
|
|
-- Set_Optimize_Alignment_Flags --
|
|
----------------------------------
|
|
|
|
procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
|
|
begin
|
|
if Optimize_Alignment = 'S' then
|
|
Set_Optimize_Alignment_Space (E);
|
|
elsif Optimize_Alignment = 'T' then
|
|
Set_Optimize_Alignment_Time (E);
|
|
end if;
|
|
end Set_Optimize_Alignment_Flags;
|
|
|
|
-----------------------
|
|
-- Set_Public_Status --
|
|
-----------------------
|
|
|
|
procedure Set_Public_Status (Id : Entity_Id) is
|
|
S : constant Entity_Id := Current_Scope;
|
|
|
|
function Within_HSS_Or_If (E : Entity_Id) return Boolean;
|
|
-- Determines if E is defined within handled statement sequence or
|
|
-- an if statement, returns True if so, False otherwise.
|
|
|
|
----------------------
|
|
-- Within_HSS_Or_If --
|
|
----------------------
|
|
|
|
function Within_HSS_Or_If (E : Entity_Id) return Boolean is
|
|
N : Node_Id;
|
|
begin
|
|
N := Declaration_Node (E);
|
|
loop
|
|
N := Parent (N);
|
|
|
|
if No (N) then
|
|
return False;
|
|
|
|
elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
|
|
N_If_Statement)
|
|
then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
end Within_HSS_Or_If;
|
|
|
|
-- Start of processing for Set_Public_Status
|
|
|
|
begin
|
|
-- Everything in the scope of Standard is public
|
|
|
|
if S = Standard_Standard then
|
|
Set_Is_Public (Id);
|
|
|
|
-- Entity is definitely not public if enclosing scope is not public
|
|
|
|
elsif not Is_Public (S) then
|
|
return;
|
|
|
|
-- An object or function declaration that occurs in a handled sequence
|
|
-- of statements or within an if statement is the declaration for a
|
|
-- temporary object or local subprogram generated by the expander. It
|
|
-- never needs to be made public and furthermore, making it public can
|
|
-- cause back end problems.
|
|
|
|
elsif Nkind_In (Parent (Id), N_Object_Declaration,
|
|
N_Function_Specification)
|
|
and then Within_HSS_Or_If (Id)
|
|
then
|
|
return;
|
|
|
|
-- Entities in public packages or records are public
|
|
|
|
elsif Ekind (S) = E_Package or Is_Record_Type (S) then
|
|
Set_Is_Public (Id);
|
|
|
|
-- The bounds of an entry family declaration can generate object
|
|
-- declarations that are visible to the back-end, e.g. in the
|
|
-- the declaration of a composite type that contains tasks.
|
|
|
|
elsif Is_Concurrent_Type (S)
|
|
and then not Has_Completion (S)
|
|
and then Nkind (Parent (Id)) = N_Object_Declaration
|
|
then
|
|
Set_Is_Public (Id);
|
|
end if;
|
|
end Set_Public_Status;
|
|
|
|
-----------------------------
|
|
-- Set_Referenced_Modified --
|
|
-----------------------------
|
|
|
|
procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
|
|
Pref : Node_Id;
|
|
|
|
begin
|
|
-- Deal with indexed or selected component where prefix is modified
|
|
|
|
if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
|
|
Pref := Prefix (N);
|
|
|
|
-- If prefix is access type, then it is the designated object that is
|
|
-- being modified, which means we have no entity to set the flag on.
|
|
|
|
if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
|
|
return;
|
|
|
|
-- Otherwise chase the prefix
|
|
|
|
else
|
|
Set_Referenced_Modified (Pref, Out_Param);
|
|
end if;
|
|
|
|
-- Otherwise see if we have an entity name (only other case to process)
|
|
|
|
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
|
|
Set_Referenced_As_LHS (Entity (N), not Out_Param);
|
|
Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
|
|
end if;
|
|
end Set_Referenced_Modified;
|
|
|
|
----------------------------
|
|
-- Set_Scope_Is_Transient --
|
|
----------------------------
|
|
|
|
procedure Set_Scope_Is_Transient (V : Boolean := True) is
|
|
begin
|
|
Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
|
|
end Set_Scope_Is_Transient;
|
|
|
|
-------------------
|
|
-- Set_Size_Info --
|
|
-------------------
|
|
|
|
procedure Set_Size_Info (T1, T2 : Entity_Id) is
|
|
begin
|
|
-- We copy Esize, but not RM_Size, since in general RM_Size is
|
|
-- subtype specific and does not get inherited by all subtypes.
|
|
|
|
Set_Esize (T1, Esize (T2));
|
|
Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
|
|
|
|
if Is_Discrete_Or_Fixed_Point_Type (T1)
|
|
and then
|
|
Is_Discrete_Or_Fixed_Point_Type (T2)
|
|
then
|
|
Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
|
|
end if;
|
|
|
|
Set_Alignment (T1, Alignment (T2));
|
|
end Set_Size_Info;
|
|
|
|
--------------------
|
|
-- Static_Boolean --
|
|
--------------------
|
|
|
|
function Static_Boolean (N : Node_Id) return Uint is
|
|
begin
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
|
|
if N = Error
|
|
or else Error_Posted (N)
|
|
or else Etype (N) = Any_Type
|
|
then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
if Is_OK_Static_Expression (N) then
|
|
if not Raises_Constraint_Error (N) then
|
|
return Expr_Value (N);
|
|
else
|
|
return No_Uint;
|
|
end if;
|
|
|
|
elsif Etype (N) = Any_Type then
|
|
return No_Uint;
|
|
|
|
else
|
|
Flag_Non_Static_Expr
|
|
("static boolean expression required here", N);
|
|
return No_Uint;
|
|
end if;
|
|
end Static_Boolean;
|
|
|
|
--------------------
|
|
-- Static_Integer --
|
|
--------------------
|
|
|
|
function Static_Integer (N : Node_Id) return Uint is
|
|
begin
|
|
Analyze_And_Resolve (N, Any_Integer);
|
|
|
|
if N = Error
|
|
or else Error_Posted (N)
|
|
or else Etype (N) = Any_Type
|
|
then
|
|
return No_Uint;
|
|
end if;
|
|
|
|
if Is_OK_Static_Expression (N) then
|
|
if not Raises_Constraint_Error (N) then
|
|
return Expr_Value (N);
|
|
else
|
|
return No_Uint;
|
|
end if;
|
|
|
|
elsif Etype (N) = Any_Type then
|
|
return No_Uint;
|
|
|
|
else
|
|
Flag_Non_Static_Expr
|
|
("static integer expression required here", N);
|
|
return No_Uint;
|
|
end if;
|
|
end Static_Integer;
|
|
|
|
--------------------------
|
|
-- Statically_Different --
|
|
--------------------------
|
|
|
|
function Statically_Different (E1, E2 : Node_Id) return Boolean is
|
|
R1 : constant Node_Id := Get_Referenced_Object (E1);
|
|
R2 : constant Node_Id := Get_Referenced_Object (E2);
|
|
begin
|
|
return Is_Entity_Name (R1)
|
|
and then Is_Entity_Name (R2)
|
|
and then Entity (R1) /= Entity (R2)
|
|
and then not Is_Formal (Entity (R1))
|
|
and then not Is_Formal (Entity (R2));
|
|
end Statically_Different;
|
|
|
|
--------------------------------------
|
|
-- Subject_To_Loop_Entry_Attributes --
|
|
--------------------------------------
|
|
|
|
function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
|
|
Stmt : Node_Id;
|
|
|
|
begin
|
|
Stmt := N;
|
|
|
|
-- The expansion mechanism transform a loop subject to at least one
|
|
-- 'Loop_Entry attribute into a conditional block. Infinite loops lack
|
|
-- the conditional part.
|
|
|
|
if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
|
|
and then Nkind (Original_Node (N)) = N_Loop_Statement
|
|
then
|
|
Stmt := Original_Node (N);
|
|
end if;
|
|
|
|
return
|
|
Nkind (Stmt) = N_Loop_Statement
|
|
and then Present (Identifier (Stmt))
|
|
and then Present (Entity (Identifier (Stmt)))
|
|
and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
|
|
end Subject_To_Loop_Entry_Attributes;
|
|
|
|
-----------------------------
|
|
-- Subprogram_Access_Level --
|
|
-----------------------------
|
|
|
|
function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
|
|
begin
|
|
if Present (Alias (Subp)) then
|
|
return Subprogram_Access_Level (Alias (Subp));
|
|
else
|
|
return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
|
|
end if;
|
|
end Subprogram_Access_Level;
|
|
|
|
-------------------------------
|
|
-- Support_Atomic_Primitives --
|
|
-------------------------------
|
|
|
|
function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
|
|
Size : Int;
|
|
|
|
begin
|
|
-- Verify the alignment of Typ is known
|
|
|
|
if not Known_Alignment (Typ) then
|
|
return False;
|
|
end if;
|
|
|
|
if Known_Static_Esize (Typ) then
|
|
Size := UI_To_Int (Esize (Typ));
|
|
|
|
-- If the Esize (Object_Size) is unknown at compile time, look at the
|
|
-- RM_Size (Value_Size) which may have been set by an explicit rep item.
|
|
|
|
elsif Known_Static_RM_Size (Typ) then
|
|
Size := UI_To_Int (RM_Size (Typ));
|
|
|
|
-- Otherwise, the size is considered to be unknown.
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that the size of the component is 8, 16, 32, or 64 bits and
|
|
-- that Typ is properly aligned.
|
|
|
|
case Size is
|
|
when 8 | 16 | 32 | 64 =>
|
|
return Size = UI_To_Int (Alignment (Typ)) * 8;
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end Support_Atomic_Primitives;
|
|
|
|
-----------------
|
|
-- Trace_Scope --
|
|
-----------------
|
|
|
|
procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
|
|
begin
|
|
if Debug_Flag_W then
|
|
for J in 0 .. Scope_Stack.Last loop
|
|
Write_Str (" ");
|
|
end loop;
|
|
|
|
Write_Str (Msg);
|
|
Write_Name (Chars (E));
|
|
Write_Str (" from ");
|
|
Write_Location (Sloc (N));
|
|
Write_Eol;
|
|
end if;
|
|
end Trace_Scope;
|
|
|
|
-----------------------
|
|
-- Transfer_Entities --
|
|
-----------------------
|
|
|
|
procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
|
|
procedure Set_Public_Status_Of (Id : Entity_Id);
|
|
-- Set the Is_Public attribute of arbitrary entity Id by calling routine
|
|
-- Set_Public_Status. If successfull and Id denotes a record type, set
|
|
-- the Is_Public attribute of its fields.
|
|
|
|
--------------------------
|
|
-- Set_Public_Status_Of --
|
|
--------------------------
|
|
|
|
procedure Set_Public_Status_Of (Id : Entity_Id) is
|
|
Field : Entity_Id;
|
|
|
|
begin
|
|
if not Is_Public (Id) then
|
|
Set_Public_Status (Id);
|
|
|
|
-- When the input entity is a public record type, ensure that all
|
|
-- its internal fields are also exposed to the linker. The fields
|
|
-- of a class-wide type are never made public.
|
|
|
|
if Is_Public (Id)
|
|
and then Is_Record_Type (Id)
|
|
and then not Is_Class_Wide_Type (Id)
|
|
then
|
|
Field := First_Entity (Id);
|
|
while Present (Field) loop
|
|
Set_Is_Public (Field);
|
|
Next_Entity (Field);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
end Set_Public_Status_Of;
|
|
|
|
-- Local variables
|
|
|
|
Full_Id : Entity_Id;
|
|
Id : Entity_Id;
|
|
|
|
-- Start of processing for Transfer_Entities
|
|
|
|
begin
|
|
Id := First_Entity (From);
|
|
|
|
if Present (Id) then
|
|
|
|
-- Merge the entity chain of the source scope with that of the
|
|
-- destination scope.
|
|
|
|
if Present (Last_Entity (To)) then
|
|
Set_Next_Entity (Last_Entity (To), Id);
|
|
else
|
|
Set_First_Entity (To, Id);
|
|
end if;
|
|
|
|
Set_Last_Entity (To, Last_Entity (From));
|
|
|
|
-- Inspect the entities of the source scope and update their Scope
|
|
-- attribute.
|
|
|
|
while Present (Id) loop
|
|
Set_Scope (Id, To);
|
|
Set_Public_Status_Of (Id);
|
|
|
|
-- Handle an internally generated full view for a private type
|
|
|
|
if Is_Private_Type (Id)
|
|
and then Present (Full_View (Id))
|
|
and then Is_Itype (Full_View (Id))
|
|
then
|
|
Full_Id := Full_View (Id);
|
|
|
|
Set_Scope (Full_Id, To);
|
|
Set_Public_Status_Of (Full_Id);
|
|
end if;
|
|
|
|
Next_Entity (Id);
|
|
end loop;
|
|
|
|
Set_First_Entity (From, Empty);
|
|
Set_Last_Entity (From, Empty);
|
|
end if;
|
|
end Transfer_Entities;
|
|
|
|
-----------------------
|
|
-- Type_Access_Level --
|
|
-----------------------
|
|
|
|
function Type_Access_Level (Typ : Entity_Id) return Uint is
|
|
Btyp : Entity_Id;
|
|
|
|
begin
|
|
Btyp := Base_Type (Typ);
|
|
|
|
-- Ada 2005 (AI-230): For most cases of anonymous access types, we
|
|
-- simply use the level where the type is declared. This is true for
|
|
-- stand-alone object declarations, and for anonymous access types
|
|
-- associated with components the level is the same as that of the
|
|
-- enclosing composite type. However, special treatment is needed for
|
|
-- the cases of access parameters, return objects of an anonymous access
|
|
-- type, and, in Ada 95, access discriminants of limited types.
|
|
|
|
if Is_Access_Type (Btyp) then
|
|
if Ekind (Btyp) = E_Anonymous_Access_Type then
|
|
|
|
-- If the type is a nonlocal anonymous access type (such as for
|
|
-- an access parameter) we treat it as being declared at the
|
|
-- library level to ensure that names such as X.all'access don't
|
|
-- fail static accessibility checks.
|
|
|
|
if not Is_Local_Anonymous_Access (Typ) then
|
|
return Scope_Depth (Standard_Standard);
|
|
|
|
-- If this is a return object, the accessibility level is that of
|
|
-- the result subtype of the enclosing function. The test here is
|
|
-- little complicated, because we have to account for extended
|
|
-- return statements that have been rewritten as blocks, in which
|
|
-- case we have to find and the Is_Return_Object attribute of the
|
|
-- itype's associated object. It would be nice to find a way to
|
|
-- simplify this test, but it doesn't seem worthwhile to add a new
|
|
-- flag just for purposes of this test. ???
|
|
|
|
elsif Ekind (Scope (Btyp)) = E_Return_Statement
|
|
or else
|
|
(Is_Itype (Btyp)
|
|
and then Nkind (Associated_Node_For_Itype (Btyp)) =
|
|
N_Object_Declaration
|
|
and then Is_Return_Object
|
|
(Defining_Identifier
|
|
(Associated_Node_For_Itype (Btyp))))
|
|
then
|
|
declare
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Scop := Scope (Scope (Btyp));
|
|
while Present (Scop) loop
|
|
exit when Ekind (Scop) = E_Function;
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
-- Treat the return object's type as having the level of the
|
|
-- function's result subtype (as per RM05-6.5(5.3/2)).
|
|
|
|
return Type_Access_Level (Etype (Scop));
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
Btyp := Root_Type (Btyp);
|
|
|
|
-- The accessibility level of anonymous access types associated with
|
|
-- discriminants is that of the current instance of the type, and
|
|
-- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
|
|
|
|
-- AI-402: access discriminants have accessibility based on the
|
|
-- object rather than the type in Ada 2005, so the above paragraph
|
|
-- doesn't apply.
|
|
|
|
-- ??? Needs completion with rules from AI-416
|
|
|
|
if Ada_Version <= Ada_95
|
|
and then Ekind (Typ) = E_Anonymous_Access_Type
|
|
and then Present (Associated_Node_For_Itype (Typ))
|
|
and then Nkind (Associated_Node_For_Itype (Typ)) =
|
|
N_Discriminant_Specification
|
|
then
|
|
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
|
|
end if;
|
|
end if;
|
|
|
|
-- Return library level for a generic formal type. This is done because
|
|
-- RM(10.3.2) says that "The statically deeper relationship does not
|
|
-- apply to ... a descendant of a generic formal type". Rather than
|
|
-- checking at each point where a static accessibility check is
|
|
-- performed to see if we are dealing with a formal type, this rule is
|
|
-- implemented by having Type_Access_Level and Deepest_Type_Access_Level
|
|
-- return extreme values for a formal type; Deepest_Type_Access_Level
|
|
-- returns Int'Last. By calling the appropriate function from among the
|
|
-- two, we ensure that the static accessibility check will pass if we
|
|
-- happen to run into a formal type. More specifically, we should call
|
|
-- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
|
|
-- call occurs as part of a static accessibility check and the error
|
|
-- case is the case where the type's level is too shallow (as opposed
|
|
-- to too deep).
|
|
|
|
if Is_Generic_Type (Root_Type (Btyp)) then
|
|
return Scope_Depth (Standard_Standard);
|
|
end if;
|
|
|
|
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
|
|
end Type_Access_Level;
|
|
|
|
------------------------------------
|
|
-- Type_Without_Stream_Operation --
|
|
------------------------------------
|
|
|
|
function Type_Without_Stream_Operation
|
|
(T : Entity_Id;
|
|
Op : TSS_Name_Type := TSS_Null) return Entity_Id
|
|
is
|
|
BT : constant Entity_Id := Base_Type (T);
|
|
Op_Missing : Boolean;
|
|
|
|
begin
|
|
if not Restriction_Active (No_Default_Stream_Attributes) then
|
|
return Empty;
|
|
end if;
|
|
|
|
if Is_Elementary_Type (T) then
|
|
if Op = TSS_Null then
|
|
Op_Missing :=
|
|
No (TSS (BT, TSS_Stream_Read))
|
|
or else No (TSS (BT, TSS_Stream_Write));
|
|
|
|
else
|
|
Op_Missing := No (TSS (BT, Op));
|
|
end if;
|
|
|
|
if Op_Missing then
|
|
return T;
|
|
else
|
|
return Empty;
|
|
end if;
|
|
|
|
elsif Is_Array_Type (T) then
|
|
return Type_Without_Stream_Operation (Component_Type (T), Op);
|
|
|
|
elsif Is_Record_Type (T) then
|
|
declare
|
|
Comp : Entity_Id;
|
|
C_Typ : Entity_Id;
|
|
|
|
begin
|
|
Comp := First_Component (T);
|
|
while Present (Comp) loop
|
|
C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
|
|
|
|
if Present (C_Typ) then
|
|
return C_Typ;
|
|
end if;
|
|
|
|
Next_Component (Comp);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end;
|
|
|
|
elsif Is_Private_Type (T) and then Present (Full_View (T)) then
|
|
return Type_Without_Stream_Operation (Full_View (T), Op);
|
|
else
|
|
return Empty;
|
|
end if;
|
|
end Type_Without_Stream_Operation;
|
|
|
|
----------------------------
|
|
-- Unique_Defining_Entity --
|
|
----------------------------
|
|
|
|
function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
|
|
begin
|
|
return Unique_Entity (Defining_Entity (N));
|
|
end Unique_Defining_Entity;
|
|
|
|
-------------------
|
|
-- Unique_Entity --
|
|
-------------------
|
|
|
|
function Unique_Entity (E : Entity_Id) return Entity_Id is
|
|
U : Entity_Id := E;
|
|
P : Node_Id;
|
|
|
|
begin
|
|
case Ekind (E) is
|
|
when E_Constant =>
|
|
if Present (Full_View (E)) then
|
|
U := Full_View (E);
|
|
end if;
|
|
|
|
when Entry_Kind =>
|
|
if Nkind (Parent (E)) = N_Entry_Body then
|
|
declare
|
|
Prot_Item : Entity_Id;
|
|
begin
|
|
-- Traverse the entity list of the protected type and locate
|
|
-- an entry declaration which matches the entry body.
|
|
|
|
Prot_Item := First_Entity (Scope (E));
|
|
while Present (Prot_Item) loop
|
|
if Ekind (Prot_Item) = E_Entry
|
|
and then Corresponding_Body (Parent (Prot_Item)) = E
|
|
then
|
|
U := Prot_Item;
|
|
exit;
|
|
end if;
|
|
|
|
Next_Entity (Prot_Item);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
when Formal_Kind =>
|
|
if Present (Spec_Entity (E)) then
|
|
U := Spec_Entity (E);
|
|
end if;
|
|
|
|
when E_Package_Body =>
|
|
P := Parent (E);
|
|
|
|
if Nkind (P) = N_Defining_Program_Unit_Name then
|
|
P := Parent (P);
|
|
end if;
|
|
|
|
if Nkind (P) = N_Package_Body
|
|
and then Present (Corresponding_Spec (P))
|
|
then
|
|
U := Corresponding_Spec (P);
|
|
|
|
elsif Nkind (P) = N_Package_Body_Stub
|
|
and then Present (Corresponding_Spec_Of_Stub (P))
|
|
then
|
|
U := Corresponding_Spec_Of_Stub (P);
|
|
end if;
|
|
|
|
when E_Protected_Body =>
|
|
P := Parent (E);
|
|
|
|
if Nkind (P) = N_Protected_Body
|
|
and then Present (Corresponding_Spec (P))
|
|
then
|
|
U := Corresponding_Spec (P);
|
|
|
|
elsif Nkind (P) = N_Protected_Body_Stub
|
|
and then Present (Corresponding_Spec_Of_Stub (P))
|
|
then
|
|
U := Corresponding_Spec_Of_Stub (P);
|
|
end if;
|
|
|
|
when E_Subprogram_Body =>
|
|
P := Parent (E);
|
|
|
|
if Nkind (P) = N_Defining_Program_Unit_Name then
|
|
P := Parent (P);
|
|
end if;
|
|
|
|
P := Parent (P);
|
|
|
|
if Nkind (P) = N_Subprogram_Body
|
|
and then Present (Corresponding_Spec (P))
|
|
then
|
|
U := Corresponding_Spec (P);
|
|
|
|
elsif Nkind (P) = N_Subprogram_Body_Stub
|
|
and then Present (Corresponding_Spec_Of_Stub (P))
|
|
then
|
|
U := Corresponding_Spec_Of_Stub (P);
|
|
|
|
elsif Nkind (P) = N_Subprogram_Renaming_Declaration then
|
|
U := Corresponding_Spec (P);
|
|
end if;
|
|
|
|
when E_Task_Body =>
|
|
P := Parent (E);
|
|
|
|
if Nkind (P) = N_Task_Body
|
|
and then Present (Corresponding_Spec (P))
|
|
then
|
|
U := Corresponding_Spec (P);
|
|
|
|
elsif Nkind (P) = N_Task_Body_Stub
|
|
and then Present (Corresponding_Spec_Of_Stub (P))
|
|
then
|
|
U := Corresponding_Spec_Of_Stub (P);
|
|
end if;
|
|
|
|
when Type_Kind =>
|
|
if Present (Full_View (E)) then
|
|
U := Full_View (E);
|
|
end if;
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
return U;
|
|
end Unique_Entity;
|
|
|
|
-----------------
|
|
-- Unique_Name --
|
|
-----------------
|
|
|
|
function Unique_Name (E : Entity_Id) return String is
|
|
|
|
-- Names of E_Subprogram_Body or E_Package_Body entities are not
|
|
-- reliable, as they may not include the overloading suffix. Instead,
|
|
-- when looking for the name of E or one of its enclosing scope, we get
|
|
-- the name of the corresponding Unique_Entity.
|
|
|
|
function Get_Scoped_Name (E : Entity_Id) return String;
|
|
-- Return the name of E prefixed by all the names of the scopes to which
|
|
-- E belongs, except for Standard.
|
|
|
|
---------------------
|
|
-- Get_Scoped_Name --
|
|
---------------------
|
|
|
|
function Get_Scoped_Name (E : Entity_Id) return String is
|
|
Name : constant String := Get_Name_String (Chars (E));
|
|
begin
|
|
if Has_Fully_Qualified_Name (E)
|
|
or else Scope (E) = Standard_Standard
|
|
then
|
|
return Name;
|
|
else
|
|
return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
|
|
end if;
|
|
end Get_Scoped_Name;
|
|
|
|
-- Start of processing for Unique_Name
|
|
|
|
begin
|
|
if E = Standard_Standard then
|
|
return Get_Name_String (Name_Standard);
|
|
|
|
elsif Scope (E) = Standard_Standard
|
|
and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
|
|
then
|
|
return Get_Name_String (Name_Standard) & "__" &
|
|
Get_Name_String (Chars (E));
|
|
|
|
elsif Ekind (E) = E_Enumeration_Literal then
|
|
return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
|
|
|
|
else
|
|
return Get_Scoped_Name (Unique_Entity (E));
|
|
end if;
|
|
end Unique_Name;
|
|
|
|
---------------------
|
|
-- Unit_Is_Visible --
|
|
---------------------
|
|
|
|
function Unit_Is_Visible (U : Entity_Id) return Boolean is
|
|
Curr : constant Node_Id := Cunit (Current_Sem_Unit);
|
|
Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
|
|
|
|
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
|
|
-- For a child unit, check whether unit appears in a with_clause
|
|
-- of a parent.
|
|
|
|
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
|
|
-- Scan the context clause of one compilation unit looking for a
|
|
-- with_clause for the unit in question.
|
|
|
|
----------------------------
|
|
-- Unit_In_Parent_Context --
|
|
----------------------------
|
|
|
|
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
|
|
begin
|
|
if Unit_In_Context (Par_Unit) then
|
|
return True;
|
|
|
|
elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
|
|
return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Unit_In_Parent_Context;
|
|
|
|
---------------------
|
|
-- Unit_In_Context --
|
|
---------------------
|
|
|
|
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
|
|
Clause : Node_Id;
|
|
|
|
begin
|
|
Clause := First (Context_Items (Comp_Unit));
|
|
while Present (Clause) loop
|
|
if Nkind (Clause) = N_With_Clause then
|
|
if Library_Unit (Clause) = U then
|
|
return True;
|
|
|
|
-- The with_clause may denote a renaming of the unit we are
|
|
-- looking for, eg. Text_IO which renames Ada.Text_IO.
|
|
|
|
elsif
|
|
Renamed_Entity (Entity (Name (Clause))) =
|
|
Defining_Entity (Unit (U))
|
|
then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Clause);
|
|
end loop;
|
|
|
|
return False;
|
|
end Unit_In_Context;
|
|
|
|
-- Start of processing for Unit_Is_Visible
|
|
|
|
begin
|
|
-- The currrent unit is directly visible
|
|
|
|
if Curr = U then
|
|
return True;
|
|
|
|
elsif Unit_In_Context (Curr) then
|
|
return True;
|
|
|
|
-- If the current unit is a body, check the context of the spec
|
|
|
|
elsif Nkind (Unit (Curr)) = N_Package_Body
|
|
or else
|
|
(Nkind (Unit (Curr)) = N_Subprogram_Body
|
|
and then not Acts_As_Spec (Unit (Curr)))
|
|
then
|
|
if Unit_In_Context (Library_Unit (Curr)) then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
-- If the spec is a child unit, examine the parents
|
|
|
|
if Is_Child_Unit (Curr_Entity) then
|
|
if Nkind (Unit (Curr)) in N_Unit_Body then
|
|
return
|
|
Unit_In_Parent_Context
|
|
(Parent_Spec (Unit (Library_Unit (Curr))));
|
|
else
|
|
return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
|
|
end if;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Unit_Is_Visible;
|
|
|
|
------------------------------
|
|
-- Universal_Interpretation --
|
|
------------------------------
|
|
|
|
function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
|
|
Index : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
-- The argument may be a formal parameter of an operator or subprogram
|
|
-- with multiple interpretations, or else an expression for an actual.
|
|
|
|
if Nkind (Opnd) = N_Defining_Identifier
|
|
or else not Is_Overloaded (Opnd)
|
|
then
|
|
if Etype (Opnd) = Universal_Integer
|
|
or else Etype (Opnd) = Universal_Real
|
|
then
|
|
return Etype (Opnd);
|
|
else
|
|
return Empty;
|
|
end if;
|
|
|
|
else
|
|
Get_First_Interp (Opnd, Index, It);
|
|
while Present (It.Typ) loop
|
|
if It.Typ = Universal_Integer
|
|
or else It.Typ = Universal_Real
|
|
then
|
|
return It.Typ;
|
|
end if;
|
|
|
|
Get_Next_Interp (Index, It);
|
|
end loop;
|
|
|
|
return Empty;
|
|
end if;
|
|
end Universal_Interpretation;
|
|
|
|
---------------
|
|
-- Unqualify --
|
|
---------------
|
|
|
|
function Unqualify (Expr : Node_Id) return Node_Id is
|
|
begin
|
|
-- Recurse to handle unlikely case of multiple levels of qualification
|
|
|
|
if Nkind (Expr) = N_Qualified_Expression then
|
|
return Unqualify (Expression (Expr));
|
|
|
|
-- Normal case, not a qualified expression
|
|
|
|
else
|
|
return Expr;
|
|
end if;
|
|
end Unqualify;
|
|
|
|
-----------------------
|
|
-- Visible_Ancestors --
|
|
-----------------------
|
|
|
|
function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
|
|
List_1 : Elist_Id;
|
|
List_2 : Elist_Id;
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
|
|
|
|
-- Collect all the parents and progenitors of Typ. If the full-view of
|
|
-- private parents and progenitors is available then it is used to
|
|
-- generate the list of visible ancestors; otherwise their partial
|
|
-- view is added to the resulting list.
|
|
|
|
Collect_Parents
|
|
(T => Typ,
|
|
List => List_1,
|
|
Use_Full_View => True);
|
|
|
|
Collect_Interfaces
|
|
(T => Typ,
|
|
Ifaces_List => List_2,
|
|
Exclude_Parents => True,
|
|
Use_Full_View => True);
|
|
|
|
-- Join the two lists. Avoid duplications because an interface may
|
|
-- simultaneously be parent and progenitor of a type.
|
|
|
|
Elmt := First_Elmt (List_2);
|
|
while Present (Elmt) loop
|
|
Append_Unique_Elmt (Node (Elmt), List_1);
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
return List_1;
|
|
end Visible_Ancestors;
|
|
|
|
----------------------
|
|
-- Within_Init_Proc --
|
|
----------------------
|
|
|
|
function Within_Init_Proc return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while not Is_Overloadable (S) loop
|
|
if S = Standard_Standard then
|
|
return False;
|
|
else
|
|
S := Scope (S);
|
|
end if;
|
|
end loop;
|
|
|
|
return Is_Init_Proc (S);
|
|
end Within_Init_Proc;
|
|
|
|
------------------
|
|
-- Within_Scope --
|
|
------------------
|
|
|
|
function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
|
|
begin
|
|
return Scope_Within_Or_Same (Scope (E), S);
|
|
end Within_Scope;
|
|
|
|
----------------
|
|
-- Wrong_Type --
|
|
----------------
|
|
|
|
procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
|
|
Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
|
|
Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
|
|
|
|
Matching_Field : Entity_Id;
|
|
-- Entity to give a more precise suggestion on how to write a one-
|
|
-- element positional aggregate.
|
|
|
|
function Has_One_Matching_Field return Boolean;
|
|
-- Determines if Expec_Type is a record type with a single component or
|
|
-- discriminant whose type matches the found type or is one dimensional
|
|
-- array whose component type matches the found type. In the case of
|
|
-- one discriminant, we ignore the variant parts. That's not accurate,
|
|
-- but good enough for the warning.
|
|
|
|
----------------------------
|
|
-- Has_One_Matching_Field --
|
|
----------------------------
|
|
|
|
function Has_One_Matching_Field return Boolean is
|
|
E : Entity_Id;
|
|
|
|
begin
|
|
Matching_Field := Empty;
|
|
|
|
if Is_Array_Type (Expec_Type)
|
|
and then Number_Dimensions (Expec_Type) = 1
|
|
and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
|
|
then
|
|
-- Use type name if available. This excludes multidimensional
|
|
-- arrays and anonymous arrays.
|
|
|
|
if Comes_From_Source (Expec_Type) then
|
|
Matching_Field := Expec_Type;
|
|
|
|
-- For an assignment, use name of target
|
|
|
|
elsif Nkind (Parent (Expr)) = N_Assignment_Statement
|
|
and then Is_Entity_Name (Name (Parent (Expr)))
|
|
then
|
|
Matching_Field := Entity (Name (Parent (Expr)));
|
|
end if;
|
|
|
|
return True;
|
|
|
|
elsif not Is_Record_Type (Expec_Type) then
|
|
return False;
|
|
|
|
else
|
|
E := First_Entity (Expec_Type);
|
|
loop
|
|
if No (E) then
|
|
return False;
|
|
|
|
elsif not Ekind_In (E, E_Discriminant, E_Component)
|
|
or else Nam_In (Chars (E), Name_uTag, Name_uParent)
|
|
then
|
|
Next_Entity (E);
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
if not Covers (Etype (E), Found_Type) then
|
|
return False;
|
|
|
|
elsif Present (Next_Entity (E))
|
|
and then (Ekind (E) = E_Component
|
|
or else Ekind (Next_Entity (E)) = E_Discriminant)
|
|
then
|
|
return False;
|
|
|
|
else
|
|
Matching_Field := E;
|
|
return True;
|
|
end if;
|
|
end if;
|
|
end Has_One_Matching_Field;
|
|
|
|
-- Start of processing for Wrong_Type
|
|
|
|
begin
|
|
-- Don't output message if either type is Any_Type, or if a message
|
|
-- has already been posted for this node. We need to do the latter
|
|
-- check explicitly (it is ordinarily done in Errout), because we
|
|
-- are using ! to force the output of the error messages.
|
|
|
|
if Expec_Type = Any_Type
|
|
or else Found_Type = Any_Type
|
|
or else Error_Posted (Expr)
|
|
then
|
|
return;
|
|
|
|
-- If one of the types is a Taft-Amendment type and the other it its
|
|
-- completion, it must be an illegal use of a TAT in the spec, for
|
|
-- which an error was already emitted. Avoid cascaded errors.
|
|
|
|
elsif Is_Incomplete_Type (Expec_Type)
|
|
and then Has_Completion_In_Body (Expec_Type)
|
|
and then Full_View (Expec_Type) = Etype (Expr)
|
|
then
|
|
return;
|
|
|
|
elsif Is_Incomplete_Type (Etype (Expr))
|
|
and then Has_Completion_In_Body (Etype (Expr))
|
|
and then Full_View (Etype (Expr)) = Expec_Type
|
|
then
|
|
return;
|
|
|
|
-- In an instance, there is an ongoing problem with completion of
|
|
-- type derived from private types. Their structure is what Gigi
|
|
-- expects, but the Etype is the parent type rather than the
|
|
-- derived private type itself. Do not flag error in this case. The
|
|
-- private completion is an entity without a parent, like an Itype.
|
|
-- Similarly, full and partial views may be incorrect in the instance.
|
|
-- There is no simple way to insure that it is consistent ???
|
|
|
|
-- A similar view discrepancy can happen in an inlined body, for the
|
|
-- same reason: inserted body may be outside of the original package
|
|
-- and only partial views are visible at the point of insertion.
|
|
|
|
elsif In_Instance or else In_Inlined_Body then
|
|
if Etype (Etype (Expr)) = Etype (Expected_Type)
|
|
and then
|
|
(Has_Private_Declaration (Expected_Type)
|
|
or else Has_Private_Declaration (Etype (Expr)))
|
|
and then No (Parent (Expected_Type))
|
|
then
|
|
return;
|
|
|
|
elsif Nkind (Parent (Expr)) = N_Qualified_Expression
|
|
and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
|
|
then
|
|
return;
|
|
|
|
elsif Is_Private_Type (Expected_Type)
|
|
and then Present (Full_View (Expected_Type))
|
|
and then Covers (Full_View (Expected_Type), Etype (Expr))
|
|
then
|
|
return;
|
|
|
|
-- Conversely, type of expression may be the private one
|
|
|
|
elsif Is_Private_Type (Base_Type (Etype (Expr)))
|
|
and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
|
|
then
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- An interesting special check. If the expression is parenthesized
|
|
-- and its type corresponds to the type of the sole component of the
|
|
-- expected record type, or to the component type of the expected one
|
|
-- dimensional array type, then assume we have a bad aggregate attempt.
|
|
|
|
if Nkind (Expr) in N_Subexpr
|
|
and then Paren_Count (Expr) /= 0
|
|
and then Has_One_Matching_Field
|
|
then
|
|
Error_Msg_N ("positional aggregate cannot have one component", Expr);
|
|
|
|
if Present (Matching_Field) then
|
|
if Is_Array_Type (Expec_Type) then
|
|
Error_Msg_NE
|
|
("\write instead `&''First ='> ...`", Expr, Matching_Field);
|
|
else
|
|
Error_Msg_NE
|
|
("\write instead `& ='> ...`", Expr, Matching_Field);
|
|
end if;
|
|
end if;
|
|
|
|
-- Another special check, if we are looking for a pool-specific access
|
|
-- type and we found an E_Access_Attribute_Type, then we have the case
|
|
-- of an Access attribute being used in a context which needs a pool-
|
|
-- specific type, which is never allowed. The one extra check we make
|
|
-- is that the expected designated type covers the Found_Type.
|
|
|
|
elsif Is_Access_Type (Expec_Type)
|
|
and then Ekind (Found_Type) = E_Access_Attribute_Type
|
|
and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
|
|
and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
|
|
and then Covers
|
|
(Designated_Type (Expec_Type), Designated_Type (Found_Type))
|
|
then
|
|
Error_Msg_N -- CODEFIX
|
|
("result must be general access type!", Expr);
|
|
Error_Msg_NE -- CODEFIX
|
|
("add ALL to }!", Expr, Expec_Type);
|
|
|
|
-- Another special check, if the expected type is an integer type,
|
|
-- but the expression is of type System.Address, and the parent is
|
|
-- an addition or subtraction operation whose left operand is the
|
|
-- expression in question and whose right operand is of an integral
|
|
-- type, then this is an attempt at address arithmetic, so give
|
|
-- appropriate message.
|
|
|
|
elsif Is_Integer_Type (Expec_Type)
|
|
and then Is_RTE (Found_Type, RE_Address)
|
|
and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
|
|
and then Expr = Left_Opnd (Parent (Expr))
|
|
and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
|
|
then
|
|
Error_Msg_N
|
|
("address arithmetic not predefined in package System",
|
|
Parent (Expr));
|
|
Error_Msg_N
|
|
("\possible missing with/use of System.Storage_Elements",
|
|
Parent (Expr));
|
|
return;
|
|
|
|
-- If the expected type is an anonymous access type, as for access
|
|
-- parameters and discriminants, the error is on the designated types.
|
|
|
|
elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
|
|
if Comes_From_Source (Expec_Type) then
|
|
Error_Msg_NE ("expected}!", Expr, Expec_Type);
|
|
else
|
|
Error_Msg_NE
|
|
("expected an access type with designated}",
|
|
Expr, Designated_Type (Expec_Type));
|
|
end if;
|
|
|
|
if Is_Access_Type (Found_Type)
|
|
and then not Comes_From_Source (Found_Type)
|
|
then
|
|
Error_Msg_NE
|
|
("\\found an access type with designated}!",
|
|
Expr, Designated_Type (Found_Type));
|
|
else
|
|
if From_Limited_With (Found_Type) then
|
|
Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
|
|
Error_Msg_Qual_Level := 99;
|
|
Error_Msg_NE -- CODEFIX
|
|
("\\missing `WITH &;", Expr, Scope (Found_Type));
|
|
Error_Msg_Qual_Level := 0;
|
|
else
|
|
Error_Msg_NE ("found}!", Expr, Found_Type);
|
|
end if;
|
|
end if;
|
|
|
|
-- Normal case of one type found, some other type expected
|
|
|
|
else
|
|
-- If the names of the two types are the same, see if some number
|
|
-- of levels of qualification will help. Don't try more than three
|
|
-- levels, and if we get to standard, it's no use (and probably
|
|
-- represents an error in the compiler) Also do not bother with
|
|
-- internal scope names.
|
|
|
|
declare
|
|
Expec_Scope : Entity_Id;
|
|
Found_Scope : Entity_Id;
|
|
|
|
begin
|
|
Expec_Scope := Expec_Type;
|
|
Found_Scope := Found_Type;
|
|
|
|
for Levels in Nat range 0 .. 3 loop
|
|
if Chars (Expec_Scope) /= Chars (Found_Scope) then
|
|
Error_Msg_Qual_Level := Levels;
|
|
exit;
|
|
end if;
|
|
|
|
Expec_Scope := Scope (Expec_Scope);
|
|
Found_Scope := Scope (Found_Scope);
|
|
|
|
exit when Expec_Scope = Standard_Standard
|
|
or else Found_Scope = Standard_Standard
|
|
or else not Comes_From_Source (Expec_Scope)
|
|
or else not Comes_From_Source (Found_Scope);
|
|
end loop;
|
|
end;
|
|
|
|
if Is_Record_Type (Expec_Type)
|
|
and then Present (Corresponding_Remote_Type (Expec_Type))
|
|
then
|
|
Error_Msg_NE ("expected}!", Expr,
|
|
Corresponding_Remote_Type (Expec_Type));
|
|
else
|
|
Error_Msg_NE ("expected}!", Expr, Expec_Type);
|
|
end if;
|
|
|
|
if Is_Entity_Name (Expr)
|
|
and then Is_Package_Or_Generic_Package (Entity (Expr))
|
|
then
|
|
Error_Msg_N ("\\found package name!", Expr);
|
|
|
|
elsif Is_Entity_Name (Expr)
|
|
and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
|
|
then
|
|
if Ekind (Expec_Type) = E_Access_Subprogram_Type then
|
|
Error_Msg_N
|
|
("found procedure name, possibly missing Access attribute!",
|
|
Expr);
|
|
else
|
|
Error_Msg_N
|
|
("\\found procedure name instead of function!", Expr);
|
|
end if;
|
|
|
|
elsif Nkind (Expr) = N_Function_Call
|
|
and then Ekind (Expec_Type) = E_Access_Subprogram_Type
|
|
and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
|
|
and then No (Parameter_Associations (Expr))
|
|
then
|
|
Error_Msg_N
|
|
("found function name, possibly missing Access attribute!",
|
|
Expr);
|
|
|
|
-- Catch common error: a prefix or infix operator which is not
|
|
-- directly visible because the type isn't.
|
|
|
|
elsif Nkind (Expr) in N_Op
|
|
and then Is_Overloaded (Expr)
|
|
and then not Is_Immediately_Visible (Expec_Type)
|
|
and then not Is_Potentially_Use_Visible (Expec_Type)
|
|
and then not In_Use (Expec_Type)
|
|
and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
|
|
then
|
|
Error_Msg_N
|
|
("operator of the type is not directly visible!", Expr);
|
|
|
|
elsif Ekind (Found_Type) = E_Void
|
|
and then Present (Parent (Found_Type))
|
|
and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
|
|
then
|
|
Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
|
|
|
|
else
|
|
Error_Msg_NE ("\\found}!", Expr, Found_Type);
|
|
end if;
|
|
|
|
-- A special check for cases like M1 and M2 = 0 where M1 and M2 are
|
|
-- of the same modular type, and (M1 and M2) = 0 was intended.
|
|
|
|
if Expec_Type = Standard_Boolean
|
|
and then Is_Modular_Integer_Type (Found_Type)
|
|
and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
|
|
and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
|
|
then
|
|
declare
|
|
Op : constant Node_Id := Right_Opnd (Parent (Expr));
|
|
L : constant Node_Id := Left_Opnd (Op);
|
|
R : constant Node_Id := Right_Opnd (Op);
|
|
|
|
begin
|
|
-- The case for the message is when the left operand of the
|
|
-- comparison is the same modular type, or when it is an
|
|
-- integer literal (or other universal integer expression),
|
|
-- which would have been typed as the modular type if the
|
|
-- parens had been there.
|
|
|
|
if (Etype (L) = Found_Type
|
|
or else
|
|
Etype (L) = Universal_Integer)
|
|
and then Is_Integer_Type (Etype (R))
|
|
then
|
|
Error_Msg_N
|
|
("\\possible missing parens for modular operation", Expr);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Reset error message qualification indication
|
|
|
|
Error_Msg_Qual_Level := 0;
|
|
end if;
|
|
end Wrong_Type;
|
|
|
|
--------------------------------
|
|
-- Yields_Synchronized_Object --
|
|
--------------------------------
|
|
|
|
function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
|
|
Has_Sync_Comp : Boolean := False;
|
|
Id : Entity_Id;
|
|
|
|
begin
|
|
-- An array type yields a synchronized object if its component type
|
|
-- yields a synchronized object.
|
|
|
|
if Is_Array_Type (Typ) then
|
|
return Yields_Synchronized_Object (Component_Type (Typ));
|
|
|
|
-- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
|
|
-- yields a synchronized object by default.
|
|
|
|
elsif Is_Descendant_Of_Suspension_Object (Typ) then
|
|
return True;
|
|
|
|
-- A protected type yields a synchronized object by default
|
|
|
|
elsif Is_Protected_Type (Typ) then
|
|
return True;
|
|
|
|
-- A record type or type extension yields a synchronized object when its
|
|
-- discriminants (if any) lack default values and all components are of
|
|
-- a type that yelds a synchronized object.
|
|
|
|
elsif Is_Record_Type (Typ) then
|
|
|
|
-- Inspect all entities defined in the scope of the type, looking for
|
|
-- components of a type that does not yeld a synchronized object or
|
|
-- for discriminants with default values.
|
|
|
|
Id := First_Entity (Typ);
|
|
while Present (Id) loop
|
|
if Comes_From_Source (Id) then
|
|
if Ekind (Id) = E_Component then
|
|
if Yields_Synchronized_Object (Etype (Id)) then
|
|
Has_Sync_Comp := True;
|
|
|
|
-- The component does not yield a synchronized object
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
elsif Ekind (Id) = E_Discriminant
|
|
and then Present (Expression (Parent (Id)))
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Id);
|
|
end loop;
|
|
|
|
-- Ensure that the parent type of a type extension yields a
|
|
-- synchronized object.
|
|
|
|
if Etype (Typ) /= Typ
|
|
and then not Yields_Synchronized_Object (Etype (Typ))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- If we get here, then all discriminants lack default values and all
|
|
-- components are of a type that yields a synchronized object.
|
|
|
|
return Has_Sync_Comp;
|
|
|
|
-- A synchronized interface type yields a synchronized object by default
|
|
|
|
elsif Is_Synchronized_Interface (Typ) then
|
|
return True;
|
|
|
|
-- A task type yelds a synchronized object by default
|
|
|
|
elsif Is_Task_Type (Typ) then
|
|
return True;
|
|
|
|
-- Otherwise the type does not yield a synchronized object
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Yields_Synchronized_Object;
|
|
|
|
---------------------------
|
|
-- Yields_Universal_Type --
|
|
---------------------------
|
|
|
|
function Yields_Universal_Type (N : Node_Id) return Boolean is
|
|
begin
|
|
-- Integer and real literals are of a universal type
|
|
|
|
if Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
|
|
return True;
|
|
|
|
-- The values of certain attributes are of a universal type
|
|
|
|
elsif Nkind (N) = N_Attribute_Reference then
|
|
return
|
|
Universal_Type_Attribute (Get_Attribute_Id (Attribute_Name (N)));
|
|
|
|
-- ??? There are possibly other cases to consider
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Yields_Universal_Type;
|
|
|
|
end Sem_Util;
|