mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			C
		
	
	
	
| /* e_acoshl.c -- long double version of e_acosh.c.
 | |
|  * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* acoshq(x)
 | |
|  * Method :
 | |
|  *	Based on
 | |
|  *		acoshl(x) = logq [ x + sqrtq(x*x-1) ]
 | |
|  *	we have
 | |
|  *		acoshl(x) := logq(x)+ln2,	if x is large; else
 | |
|  *		acoshl(x) := logq(2x-1/(sqrtq(x*x-1)+x)) if x>2; else
 | |
|  *		acoshl(x) := log1pq(t+sqrtq(2.0*t+t*t)); where t=x-1.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	acoshl(x) is NaN with signal if x<1.
 | |
|  *	acoshl(NaN) is NaN without signal.
 | |
|  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128
 | |
| one	= 1.0,
 | |
| ln2	= 0.6931471805599453094172321214581766Q;
 | |
| 
 | |
| __float128
 | |
| acoshq(__float128 x)
 | |
| {
 | |
| 	__float128 t;
 | |
| 	uint64_t lx;
 | |
| 	int64_t hx;
 | |
| 	GET_FLT128_WORDS64(hx,lx,x);
 | |
| 	if(hx<0x3fff000000000000LL) {		/* x < 1 */
 | |
| 	    return (x-x)/(x-x);
 | |
| 	} else if(hx >=0x4035000000000000LL) {	/* x > 2**54 */
 | |
| 	    if(hx >=0x7fff000000000000LL) {	/* x is inf of NaN */
 | |
| 		return x+x;
 | |
| 	    } else
 | |
| 		return logq(x)+ln2;	/* acoshl(huge)=logq(2x) */
 | |
| 	} else if(((hx-0x3fff000000000000LL)|lx)==0) {
 | |
| 	    return 0;			/* acosh(1) = 0 */
 | |
| 	} else if (hx > 0x4000000000000000LL) {	/* 2**28 > x > 2 */
 | |
| 	    t=x*x;
 | |
| 	    return logq(2*x-one/(x+sqrtq(t-one)));
 | |
| 	} else {			/* 1<x<2 */
 | |
| 	    t = x-one;
 | |
| 	    return log1pq(t+sqrtq(2*t+t*t));
 | |
| 	}
 | |
| }
 |