mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			254 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /*							log1pq.c
 | |
|  *
 | |
|  *      Relative error logarithm
 | |
|  *	Natural logarithm of 1+x, 128-bit long double precision
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * SYNOPSIS:
 | |
|  *
 | |
|  * long double x, y, log1pq();
 | |
|  *
 | |
|  * y = log1pq( x );
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * DESCRIPTION:
 | |
|  *
 | |
|  * Returns the base e (2.718...) logarithm of 1+x.
 | |
|  *
 | |
|  * The argument 1+x is separated into its exponent and fractional
 | |
|  * parts.  If the exponent is between -1 and +1, the logarithm
 | |
|  * of the fraction is approximated by
 | |
|  *
 | |
|  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
 | |
|  *
 | |
|  * Otherwise, setting  z = 2(w-1)/(w+1),
 | |
|  *
 | |
|  *     log(w) = z + z^3 P(z)/Q(z).
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * ACCURACY:
 | |
|  *
 | |
|  *                      Relative error:
 | |
|  * arithmetic   domain     # trials      peak         rms
 | |
|  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
 | |
|  */
 | |
| 
 | |
| /* Copyright 2001 by Stephen L. Moshier
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
 | |
|  * 1/sqrt(2) <= 1+x < sqrt(2)
 | |
|  * Theoretical peak relative error = 5.3e-37,
 | |
|  * relative peak error spread = 2.3e-14
 | |
|  */
 | |
| static const __float128
 | |
|   P12 = 1.538612243596254322971797716843006400388E-6Q,
 | |
|   P11 = 4.998469661968096229986658302195402690910E-1Q,
 | |
|   P10 = 2.321125933898420063925789532045674660756E1Q,
 | |
|   P9 = 4.114517881637811823002128927449878962058E2Q,
 | |
|   P8 = 3.824952356185897735160588078446136783779E3Q,
 | |
|   P7 = 2.128857716871515081352991964243375186031E4Q,
 | |
|   P6 = 7.594356839258970405033155585486712125861E4Q,
 | |
|   P5 = 1.797628303815655343403735250238293741397E5Q,
 | |
|   P4 = 2.854829159639697837788887080758954924001E5Q,
 | |
|   P3 = 3.007007295140399532324943111654767187848E5Q,
 | |
|   P2 = 2.014652742082537582487669938141683759923E5Q,
 | |
|   P1 = 7.771154681358524243729929227226708890930E4Q,
 | |
|   P0 = 1.313572404063446165910279910527789794488E4Q,
 | |
|   /* Q12 = 1.000000000000000000000000000000000000000E0L, */
 | |
|   Q11 = 4.839208193348159620282142911143429644326E1Q,
 | |
|   Q10 = 9.104928120962988414618126155557301584078E2Q,
 | |
|   Q9 = 9.147150349299596453976674231612674085381E3Q,
 | |
|   Q8 = 5.605842085972455027590989944010492125825E4Q,
 | |
|   Q7 = 2.248234257620569139969141618556349415120E5Q,
 | |
|   Q6 = 6.132189329546557743179177159925690841200E5Q,
 | |
|   Q5 = 1.158019977462989115839826904108208787040E6Q,
 | |
|   Q4 = 1.514882452993549494932585972882995548426E6Q,
 | |
|   Q3 = 1.347518538384329112529391120390701166528E6Q,
 | |
|   Q2 = 7.777690340007566932935753241556479363645E5Q,
 | |
|   Q1 = 2.626900195321832660448791748036714883242E5Q,
 | |
|   Q0 = 3.940717212190338497730839731583397586124E4Q;
 | |
| 
 | |
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
 | |
|  * where z = 2(x-1)/(x+1)
 | |
|  * 1/sqrt(2) <= x < sqrt(2)
 | |
|  * Theoretical peak relative error = 1.1e-35,
 | |
|  * relative peak error spread 1.1e-9
 | |
|  */
 | |
| static const __float128
 | |
|   R5 = -8.828896441624934385266096344596648080902E-1Q,
 | |
|   R4 = 8.057002716646055371965756206836056074715E1Q,
 | |
|   R3 = -2.024301798136027039250415126250455056397E3Q,
 | |
|   R2 = 2.048819892795278657810231591630928516206E4Q,
 | |
|   R1 = -8.977257995689735303686582344659576526998E4Q,
 | |
|   R0 = 1.418134209872192732479751274970992665513E5Q,
 | |
|   /* S6 = 1.000000000000000000000000000000000000000E0L, */
 | |
|   S5 = -1.186359407982897997337150403816839480438E2Q,
 | |
|   S4 = 3.998526750980007367835804959888064681098E3Q,
 | |
|   S3 = -5.748542087379434595104154610899551484314E4Q,
 | |
|   S2 = 4.001557694070773974936904547424676279307E5Q,
 | |
|   S1 = -1.332535117259762928288745111081235577029E6Q,
 | |
|   S0 = 1.701761051846631278975701529965589676574E6Q;
 | |
| 
 | |
| /* C1 + C2 = ln 2 */
 | |
| static const __float128 C1 = 6.93145751953125E-1Q;
 | |
| static const __float128 C2 = 1.428606820309417232121458176568075500134E-6Q;
 | |
| 
 | |
| static const __float128 sqrth = 0.7071067811865475244008443621048490392848Q;
 | |
| /* ln (2^16384 * (1 - 2^-113)) */
 | |
| static const __float128 zero = 0;
 | |
| 
 | |
| __float128
 | |
| log1pq (__float128 xm1)
 | |
| {
 | |
|   __float128 x, y, z, r, s;
 | |
|   ieee854_float128 u;
 | |
|   int32_t hx;
 | |
|   int e;
 | |
| 
 | |
|   /* Test for NaN or infinity input. */
 | |
|   u.value = xm1;
 | |
|   hx = u.words32.w0;
 | |
|   if ((hx & 0x7fffffff) >= 0x7fff0000)
 | |
|     return xm1 + fabsq (xm1);
 | |
| 
 | |
|   /* log1p(+- 0) = +- 0.  */
 | |
|   if (((hx & 0x7fffffff) == 0)
 | |
|       && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
 | |
|     return xm1;
 | |
| 
 | |
|   if ((hx & 0x7fffffff) < 0x3f8e0000)
 | |
|     {
 | |
|       math_check_force_underflow (xm1);
 | |
|       if ((int) xm1 == 0)
 | |
| 	return xm1;
 | |
|     }
 | |
| 
 | |
|   if (xm1 >= 0x1p113Q)
 | |
|     x = xm1;
 | |
|   else
 | |
|     x = xm1 + 1;
 | |
| 
 | |
|   /* log1p(-1) = -inf */
 | |
|   if (x <= 0)
 | |
|     {
 | |
|       if (x == 0)
 | |
| 	return (-1 / zero);  /* log1p(-1) = -inf */
 | |
|       else
 | |
| 	return (zero / (x - x));
 | |
|     }
 | |
| 
 | |
|   /* Separate mantissa from exponent.  */
 | |
| 
 | |
|   /* Use frexp used so that denormal numbers will be handled properly.  */
 | |
|   x = frexpq (x, &e);
 | |
| 
 | |
|   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
 | |
|      where z = 2(x-1)/x+1).  */
 | |
|   if ((e > 2) || (e < -2))
 | |
|     {
 | |
|       if (x < sqrth)
 | |
| 	{			/* 2( 2x-1 )/( 2x+1 ) */
 | |
| 	  e -= 1;
 | |
| 	  z = x - 0.5Q;
 | |
| 	  y = 0.5Q * z + 0.5Q;
 | |
| 	}
 | |
|       else
 | |
| 	{			/*  2 (x-1)/(x+1)   */
 | |
| 	  z = x - 0.5Q;
 | |
| 	  z -= 0.5Q;
 | |
| 	  y = 0.5Q * x + 0.5Q;
 | |
| 	}
 | |
|       x = z / y;
 | |
|       z = x * x;
 | |
|       r = ((((R5 * z
 | |
| 	      + R4) * z
 | |
| 	     + R3) * z
 | |
| 	    + R2) * z
 | |
| 	   + R1) * z
 | |
| 	+ R0;
 | |
|       s = (((((z
 | |
| 	       + S5) * z
 | |
| 	      + S4) * z
 | |
| 	     + S3) * z
 | |
| 	    + S2) * z
 | |
| 	   + S1) * z
 | |
| 	+ S0;
 | |
|       z = x * (z * r / s);
 | |
|       z = z + e * C2;
 | |
|       z = z + x;
 | |
|       z = z + e * C1;
 | |
|       return (z);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
 | |
| 
 | |
|   if (x < sqrth)
 | |
|     {
 | |
|       e -= 1;
 | |
|       if (e != 0)
 | |
| 	x = 2 * x - 1;	/*  2x - 1  */
 | |
|       else
 | |
| 	x = xm1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (e != 0)
 | |
| 	x = x - 1;
 | |
|       else
 | |
| 	x = xm1;
 | |
|     }
 | |
|   z = x * x;
 | |
|   r = (((((((((((P12 * x
 | |
| 		 + P11) * x
 | |
| 		+ P10) * x
 | |
| 	       + P9) * x
 | |
| 	      + P8) * x
 | |
| 	     + P7) * x
 | |
| 	    + P6) * x
 | |
| 	   + P5) * x
 | |
| 	  + P4) * x
 | |
| 	 + P3) * x
 | |
| 	+ P2) * x
 | |
|        + P1) * x
 | |
|     + P0;
 | |
|   s = (((((((((((x
 | |
| 		 + Q11) * x
 | |
| 		+ Q10) * x
 | |
| 	       + Q9) * x
 | |
| 	      + Q8) * x
 | |
| 	     + Q7) * x
 | |
| 	    + Q6) * x
 | |
| 	   + Q5) * x
 | |
| 	  + Q4) * x
 | |
| 	 + Q3) * x
 | |
| 	+ Q2) * x
 | |
|        + Q1) * x
 | |
|     + Q0;
 | |
|   y = x * (z * r / s);
 | |
|   y = y + e * C2;
 | |
|   z = y - 0.5Q * z;
 | |
|   z = z + x;
 | |
|   z = z + e * C1;
 | |
|   return (z);
 | |
| }
 |